Longitudinal Ambient PM2.5 Measurement at Fifteen Locations in Eight Sub-Saharan African Countries Using Low-Cost Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Continuous Ambient Air-Quality Monitoring (Data Collection)
2.3. Data Management
2.4. Data Analysis
2.5. Ethical Considerations
3. Results
3.1. Study Sites
3.2. Data Coverage
3.3. Annual Mean Concentrations by Site
3.4. Seasonal and Diurnal Variation
3.5. Comparison with US Embassy Beta Attenuated Monitor or BAM Monitor
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- WHO. Air Pollution Causes 7 Million Premature Deaths a Year. Available online: https://www.dw.com/en/who-air-pollution-causes-7-million-premature-deaths-a-year/a-59264198 (accessed on 24 January 2022).
- WHO. New WHO Global Air Quality Guidelines Aim to Save Millions of Lives from Air Pollution. 2021. Available online: https://www.who.int/news/item/22-09-2021-new-who-global-air-quality-guidelines-aim-to-save-millions-of-lives-from-air-pollution (accessed on 12 December 2021).
- Health Effects Institute. State of Global Air 2019. 2020. Available online: https://www.stateofglobalair.org/report (accessed on 26 August 2021).
- WHO. 2018. Available online: https://www.who.int/news-room/detail/02-05-2018-9-out-of-10-people-worldwide-breathe-polluted-air-but-more-countries-are-taking-action (accessed on 28 February 2022).
- Awokola, B.I.; Amusa, G.A.; Jewell, C.P.; Okello, G.; Stolbrink, M.; Finney, L.J.; Mohammed, N.; Erhart, A.; Mortimer, K.J. Chronic obstructive pulmonary disease in sub-Saharan Africa. Int. J. Tuberc. Lung Dis. 2022, 26, 232–242. [Google Scholar] [CrossRef] [PubMed]
- Schraufnagel, D.E.; Balmes, J.; Cowl, C.T.; De Matteis, S.; Jung, S.H.; Mortimer, K.; Perez-Padilla, R.; Rice, M.B.; Riojas-Rodroguez, H.; Sood, A.; et al. Air Pollution and Non-Communicable Diseases: A review by the Forum of International Respiratory Societies’ Environmental Committee. Part 2: Air pollution and organ systems. Chest 2018, 155, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Schraufnagel, D.E.; Balmes, J.; Cowl, C.T.; De Matteis, S.; Jung, S.H.; Mortimer, K.; Perez-Padilla, R.; Rice, M.B.; Riojas-Rodroguez, H.; Sood, A.; et al. Air Pollution and Non-Communicable Diseases: A Review by the Forum of International Respiratory Societies’ Environmental Committee, Part 1: The damaging effects of air pollution. Chest 2018, 155, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Amegah, A.K.; Dakun, G.; Mudu, P.; Jaakkola, J.J.K. Particulate matter pollution at traffic hotspots of Accra, Ghana: Levels, experiences of Street traders, and associated respiratory and cardiovascular symptoms. J. Expo. Sci. Environ. Epidemiol. 2022, 32, 333–342. [Google Scholar] [CrossRef]
- Amegah, A.K.; Agyei-Mensah, S. Urban air pollution in sub-Saharan Africa: Time for Action. Environ. Pollut. 2017, 220, 738–743. [Google Scholar] [CrossRef]
- Awokola, B.I.; Okello, G.; Mortimer, K.J.; Jewell, C.P.; Erhart, A.; Semple, S. Measuring Air Quality for Advocacy in Africa (MA3): Feasibility & Practicality of Longitudinal Ambient PM2.5 measurement using low-cost sensors. Int. J. Environ. Res. Public Health 2020, 17, 7243. [Google Scholar] [CrossRef]
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide. October 2021. Available online: https://apps.who.int/iris/handle/10665/345329 (accessed on 2 January 2022).
- Balakrishnan, K. Virtual Briefing on WHO’s New Air Quality Guidelines. Inspire. 2021. Available online: https://www.inspirecleanair.org/resources (accessed on 29 December 2021).
- Environmental Protection Department. Air Pollution Control Strategies. Available online: https://www.epd.gov.hk/epd/English/environmentinhk/air/prob_solutions/strategies-apc.html (accessed on 14 September 2022).
- Ramirez, S.A.; Ramondt, S.; Bogart, K.V.; Zuniga, R.P. Public awareness of air pollution and health threaths: Challenges and opportunities for communication strategies to improve environmental health literacy. J. Health Commun. 2019, 24, 75–83. [Google Scholar] [CrossRef]
- Landrigan, P.J.; Fuller, R.; Acosta, N.J.R.; Adeyi, O.; Arnold, R.; Basu, N.N.; Baldé, A.B.; Bertollini, R.; Bose-O’Reilly, S.; Zhong, M.; et al. The Lancet Commission on pollution and health. Lancet 2018, 391, 462–512. [Google Scholar] [CrossRef]
- Felix, L. How China Is Winning Its Battle against Air Pollution. Available online: https://www.earth.org/how-china-is-winning-its-battle-against-air-pollution/ (accessed on 14 September 2022).
- McCarron, A.; Semple, S.; Braban, C.F.; Swanson, V.; Gillespie, C.; Price, H.D. Public engagement with air quality data: Using health behaviour change theory to support exposure-minimising behaviours. J. Expo. Sci. Environ. Epidemiol. 2022. [CrossRef]
- Hoffman, B.; Boogaard, H.; de Nazelle, A.; Andersen, Z.J.; Abramson, M.; Brauer, M.; Brunekreef, B.; Forastiere, F.; Hwang, W.; Kan, H.; et al. WHO Air quality guidelines 2021-Aiming for healthier air for all: A joint statement by medical, public health, scientific societies as patient representative organizations. Int. J. Public Health 2021, 66, 1604465. [Google Scholar] [CrossRef]
- Schluger, N.W. Advocacy for Clean Air: Key Strategies and Messages. Inspire. Available online: https://youtu.be/ttq-rXlI_Pw (accessed on 2 May 2022).
- United States Environment Protection Agency. Managing Air Quality-Control Strategies to Achieve Air Pollution Reduction. Available online: https://www.epa.gov/air-quality-management-process/managing-air-quality-control-strategies-achieve-air-pollution (accessed on 29 July 2022).
- Air Quality Measurement Workshop Presentation at the IMPALA Scientific Meeting, Dar es Salaam, Tanzania. June 2019. Available online: http://africancentreforcleanair.org/aqm-at-the-pan-african-thoracic-society-methods-in-epidemiologic-clinical-and-operation-research-pats-mecor (accessed on 14 September 2022).
- Measuring Air Quality for Advocacy in Africa (MA3): Feasibility and Practicality of Longitudinal Ambient PM2.5 Measurement Using Low-Cost Sensors-Supplementary Files. Available online: https://www.zenodo.org/record/3989620#.Ykr8j8nP2Uk (accessed on 22 October 2021).
- RStudio Team. RStudio: Integrated Development for R. RStudio, PBC, Boston, MA URL. 2020. Available online: http://www.rstudio.com (accessed on 22 September 2021).
- Weather Atlas. Available online: https://www.weather-atlas.com (accessed on 28 January 2022).
- McFarlane, C.; Isevulambire, P.K.; Lumbuenamo, R.S.; Ndinga, A.M.E.; Dhammapala, R.; Jin, X.; McNeill, V.F.; Malings, C.; Subramanian, R.; Westervelt, D.M. First Measurements of Ambient PM2.5 in Kinshasa, Democratic Republic of Congo and Brazzaville, Republic of Congo Using Field-calibrated Low-cost Sensors. Aerosol. Air Qual. Res. 2021, 21, 200619. [Google Scholar] [CrossRef]
- AirNow Department of State: Kampala, Uganda. Available online: https://www.airnow.gov/international/us-embassies-and-consulates/#Uganda$Kampala (accessed on 29 July 2022).
- AirNow Department of State: Khartoum, Sudan. Available online: https://www.airnow.gov/international/us-embassies-and-consulates/#Sudan$Khartoum_Embassy (accessed on 29 July 2022).
- OECD. Exposure to PM2.5 in Countries and Regions. Available online: https://stats.oecd.org/Index.aspx?DataSetCode=EXP_PM2_5 (accessed on 16 February 2022).
- Katoto, P.D.M.C.; Byamungu, L.; Brand, A.S.; Mokaya, J.; Strijdom, H.; Goswani, N.; De Boever, P.; Nawrot, T.S.; Nemery, B. Ambient air pollution and health in sub-Saharan Africa: Current evidence, perspectives and a call to action. Environ. Res. 2019, 173, 174–188. [Google Scholar] [CrossRef] [PubMed]
- Bali, K.; Dey, S.; Ganguly, D. Diurnal Patterns in Ambient PM2.5 over India Using MERRA-2 Reanalysis Data. Atmos. Environ. 2021, 248, 118180. [Google Scholar] [CrossRef]
- Singh, A.; Ng’ang’a, D.; Gatari, M.J.; Kidane, A.W.; Alemu, Z.A.; Derrick, N.; Webster, M.J.; Bartington, S.E.; Thomas, G.N.; Avis, W.; et al. Air quality assessment in three East African cities using calibrated low-cost sensors with a focus on road-based hotspots. Environ. Res. Commun. 2021, 3, 075007. [Google Scholar] [CrossRef]
- Naidja, L.; Ali-Khodja, H.; Khardi, S. Particulate matter from road traffic in Africa. J. Earth Sci. Geotech. Eng. 2017, 7, 289–304. [Google Scholar]
- European Environment Agency. Urban Air Quality. 2017. Available online: https://www.eea.europa.eu/themes/air/urban-air-quality (accessed on 29 July 2022).
- IQAir. 2019 World Air Quality Report: Region & City PM2.5 Ranking; IQAir: Goldach, Switzerland, 2020. [Google Scholar]
- Dobson, R.; Siddiqi, K.; Ferdous, T.; Huque, R.; Lesosky, M.; Balmes, J.; Semple, S. Diurnal variability of fine-particulate pollution concentration data from 14 low-and-middle-income countries. Int. J. Tuberc. Lung Dis. 2021, 25, 206–214. [Google Scholar] [CrossRef]
- Subramanian, R.; Kagabo, A.S.; Baharane, V.; Guhirwa, S.; Sindayigaya, C.; Malings, C.; Williams, N.J.; Kalisa, E.; Li, H.; Adams, P.; et al. Air pollution in Kigali, Rwanda: Spatial and temporal variability, source contributions, and the impact of car-free Sundays. Clean Air J. 2022, 30, 1–15. [Google Scholar] [CrossRef]
- Masiol, M.; Agostinelli, C.; Formenton, G.; Tarabotti, E.; Pavoni, B. Thirteen years of air pollution hourly monitoring in a large city: Potential sources, trends, cycles and effects of car-free days. Sci. Total Environ. 2014, 494–495, 84–96. [Google Scholar] [CrossRef]
- Elemo, E.O.; Ogobor, E.A.; Alagbe, G.A.; Ayantunji, B.G.; Mangete, O.E.; Tomori, O.S.; Doherty, K.B.; Onuh, B.O. Statistical analysis of the average wind speeds and maximum wind speed (gust winds) at a location in Abuja, Nigeria. Open Access Libr. J. 2021, 8, 1–22. [Google Scholar] [CrossRef]
- Pitz, M.; Schmid, O.; Heinrich, J.; Birmili, W.; Maguhn, J.; Zimmermann, R.; Wichmann, H.-E.; Peters, A.; Cyrys, J. Seasonal and Diurnal Variation of PM2.5 Apparent Particle Density in Urban Air in Augsburg, Germany. Environ. Sci. Technol. 2008, 42, 5087–5093. [Google Scholar] [CrossRef]
- Kendrick, C.M.; Koonce, P.; George, L.A. Diurnal and seasonal variations of NO, NO2 and PM2.5 mass as a function of traffic volumes alongside an urban arterial. Atmos. Environ. 2015, 122, 133–141. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Zhang, X.; Xu, X.; Xu, J.; Meng, W.; Pu, W. Seasonal and diurnal variations of ambient PM2.5 concentration in urban and rural environments in Beijing. Atmos. Environ. 2009, 43, 2893–2900. [Google Scholar] [CrossRef]
- Liu, Z.; Hu, B.; Wang, L.; Wu, F.; Gao, W.; Wang, Y. Seasonal and diurnal variation in particulate matter (PM10 and PM2.5) at an urban site of Beijing: Analyses from a 9-year study. Environ. Sci. Pollut. Res. 2014, 22, 627–642. [Google Scholar] [CrossRef] [PubMed]
- Nieuwstadt, F.T.M. The atmospheric boundary layer. In Environmental Stratified Flows; Armenio, V., Sarkar, S., Eds.; Springer: Vienna, Austria, 2005; pp. 179–232. [Google Scholar]
- Dhammapala, R. Analysis of fine particle pollution data measured at 29 diplomatic posts worldwide. Atmos. Environ. 2019, 213, 367–376. [Google Scholar] [CrossRef]
- Hagler, G.; Hanley, T.; Hassett-Sipple, B.; Vanderpool, R.; Smith, M.; Wilbur, J.; Wilbur, T.; Oliver, T.; Shand, D.; Vidacek, V.; et al. Evaluation of two collocated federal equivalent method PM2.5 instruments over a wide range of concentrations in Sarajevo, Bosnia and Herzegovina. Atmos. Pollut. Res. 2022, 13, 101374. [Google Scholar] [CrossRef]
- PurpleAir-II-SD Device. Available online: https://www2.purpleair.com/products/purpleair-pa-ii (accessed on 2 August 2022).
No. | Country | Town & City | Wi-Fi Connection | Five-Minute Periods Covered (%) | # Days Meeting > 22 h Threshold (%) | Median Sensor Agreement % (IQR) |
---|---|---|---|---|---|---|
1 | Nigeria | Trans-Ekulu, Enugu | No | 98,407 (93) | 315 (86) | 88% (15–97) |
2 | Nigeria | Goshen, Enugu | No | 100,040 (95) | 324 (89) | 98% (90–99) |
3 | Nigeria | Awka, Anambra | No | 63,310 (60) | 16 (4) | 99% (97–100) |
4 | Nigeria | Bariga, Lagos $ | No | 83,401 (79) | 194 (53) | 99% (93–99) |
5 | Sudan | Khartoum North, Khartoum | No | 69,328 (66) | 222 (61) | 97% (96–99) |
6 | Burkina Faso | Balkuy, Ouagadougou | No | 96,307 (91) | 317 (87) | 96% (87–99) |
7 | Nigeria | Nnewi, Anambra | No | 77,209 (73) | 151 (41) | 98% (97–99) |
8 | The Gambia | Sukuta, Kanifing | No | 63,002 (60) | 244 (67) | 92% (86–95) |
9 | Nigeria | Abakaliki Rd, Enugu | No | 66,468 (63) | 117 (32) | 98% (97–99) |
10 | Benin Republic | Akpakpa, Cotonou | No | 43,351 (41) | 127 (35) | 0 |
11 | Nigeria | New Haven, Enugu | No | 55,296 (52) | 136 (37) | 99% (98–9) |
12 | Cameroon # | Douala, Douala | No | 8233 (8) | 27 (7) | 0 |
13 * | The Gambia | Fajara, Kombo | Yes | 81,437 (77) | 244 (67) | 93% (85–97) |
14 | Uganda | Ntinda, Kampala | No | 61,344 (58) | 125 (34) | 92 (84–96) |
15 * | Kenya | Ngong Road, Nairobi | Yes | 95,467 (91) | 299 (82) | 98% (97–99) |
Country | Town & City | Mean PM2.5 (±SD) µg/m3 | Median PM2.5 (IQR) µg/m3 |
---|---|---|---|
Nigeria | Trans-Ekulu, Enugu | 48(±60) | 27 (18–51) |
Nigeria | Goshen, Enugu | 63 (±82) | 36 (19–69) |
Nigeria | Awka, Anambra | 60 (±60) | 43 (27–70) |
Nigeria | Bariga, Lagos | 48 (±39) | 37 (24–62) |
Sudan | Khartoum North, Khartoum | 30 (±125) | 16 (10–28) |
Burkina Faso | Balkuy, Ouagadougou | 46 (±54) | 10 (3–27) |
Nigeria | Nnewi, Anambra | 62 (±120) | 36 (21–66) |
The Gambia | Sukuta, Kanifing | 22 (±26) | 16 (11–25) |
Nigeria | Abakaliki Rd, Enugu | 52 (±49) | 37 (23–62) |
Benin Republic | Akpakpa, Cotonou | 21 (±27) | 10 (3–27) |
Nigeria | New Haven, Enugu | 78 (±87) | 49 (27–91) |
Cameroon | Douala, Douala | 116 (±52) | 106 (79–142) |
The Gambia | Fajara, Kombo | 10 (±10) | 10 (6–11) |
Uganda | Ntinda, Kampala | 47 (±29) | 42 (29–57) |
Kenya | Ngong Road, Nairobi | 25 (±27) | 21 (13–31) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awokola, B.; Okello, G.; Johnson, O.; Dobson, R.; Ouédraogo, A.R.; Dibba, B.; Ngahane, M.; Ndukwu, C.; Agunwa, C.; Marangu, D.; et al. Longitudinal Ambient PM2.5 Measurement at Fifteen Locations in Eight Sub-Saharan African Countries Using Low-Cost Sensors. Atmosphere 2022, 13, 1593. https://doi.org/10.3390/atmos13101593
Awokola B, Okello G, Johnson O, Dobson R, Ouédraogo AR, Dibba B, Ngahane M, Ndukwu C, Agunwa C, Marangu D, et al. Longitudinal Ambient PM2.5 Measurement at Fifteen Locations in Eight Sub-Saharan African Countries Using Low-Cost Sensors. Atmosphere. 2022; 13(10):1593. https://doi.org/10.3390/atmos13101593
Chicago/Turabian StyleAwokola, Babatunde, Gabriel Okello, Olatunji Johnson, Ruaraidh Dobson, Abdoul Risgou Ouédraogo, Bakary Dibba, Mbatchou Ngahane, Chizalu Ndukwu, Chuka Agunwa, Diana Marangu, and et al. 2022. "Longitudinal Ambient PM2.5 Measurement at Fifteen Locations in Eight Sub-Saharan African Countries Using Low-Cost Sensors" Atmosphere 13, no. 10: 1593. https://doi.org/10.3390/atmos13101593
APA StyleAwokola, B., Okello, G., Johnson, O., Dobson, R., Ouédraogo, A. R., Dibba, B., Ngahane, M., Ndukwu, C., Agunwa, C., Marangu, D., Lawin, H., Ogugua, I., Eze, J., Nwosu, N., Ofiaeli, O., Ubuane, P., Osman, R., Awokola, E., Erhart, A., ... Semple, S. (2022). Longitudinal Ambient PM2.5 Measurement at Fifteen Locations in Eight Sub-Saharan African Countries Using Low-Cost Sensors. Atmosphere, 13(10), 1593. https://doi.org/10.3390/atmos13101593