Temporal Evolution of Urban Heat Island and Quantitative Relationship with Urbanization Development in Chongqing, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Study Area
2.1.2. Data
2.2. Methods
- Mann–Kendall test
- 2.
- Calculation method of UHII
- 3.
- Grey relational analysis (GRA)
- 4.
- Principal component analysis (PCA)
3. Results
3.1. Temporal Dynamics of Temperature Change in Chongqing
3.1.1. The Interannual Variation of Temperature
3.1.2. The Seasonal Variation of Temperature
3.2. Temporal Dynamics of UHI in Chongqing
3.2.1. The Inter-Annual Variation of UHII
3.2.2. The Seasonal Variation of UHII
3.3. Quantitative Analysis between the Urbanization Factors and UHI
3.3.1. GRA of between the Urbanization Factors and UHII
3.3.2. The Quantitative Relationship between the Urbanization Factors and UHII
4. Discussion
5. Conclusions
- The temperatures in urban and rural areas of Chongqing show a noticeable increasing trend after 1985, and the warming rate in urban areas (4 °C/century) is higher than that in rural areas (2.7 °C/century) due to urbanization. During the study period, the warming rates are higher in spring and summer in urban and rural areas. Using the Mann–Kendall test, it is shown that with the rapid urbanization of Chongqing in the 21st century, the temperatures in urban and rural areas experienced abrupt changes during this period. The annual mean temperature and annual mean daily minimum temperature in urban areas show a statistically significant positive trend after 2013 and 2003, respectively. The mean daily minimum temperature for all seasons and the mean temperature in autumn in urban areas show a significant upward trend, while the temperature trends in rural areas are not significant.
- The statistically significant upward trends of UHIImean and UHIImin in Chongqing are progressive with urbanization. During the study period, UHII increased at most from 0.1 °C to 1.5 °C. The growth rate of UHIImean is stronger in summer (1.6 °C/century) and weaker in winter (1.3 °C/century). Whereas the growth rate of UHIImin is stronger in autumn (1.7 °C/century) and weaker in spring (1.4 °C/century). The Mann–Kendall test for UHIImax shows a non-significant decreasing trend, and the slightly increasing rate (0.5 °C/century) in the linear trend may be attributed to the sharp increase in temperature in urban areas of Chongqing in 2015. The nighttime UHII during the study period is much stronger than the daytime UHII in all seasons, and this difference is larger in summer and autumn.
- UHIImean, UHIImax, and UHIImin are proved to be related to urbanization factors and more related to urban resident population using GRA. The comprehensive UHII index and the comprehensive urbanization index are constructed using PCA and a tertiary regression model is established. The curve obtained by the model shows that although the relationship between UHI and urbanization factors is not simply linear, and UHII in Chongqing is currently in a phase of rapid increase with urbanization factors. It is necessary to accelerate the implementation of effective urban ecological construction strategies.
- The limited number of long-term meteorological stations in Chongqing introduces some limitations to this paper, and other methods can be used in the future to improve the comprehension of the changing characteristics of UHII in Chongqing. This paper explores the quantitative relationship between UHI and urbanization factors, but a comprehensive analysis of the reasons for the change in UHI with urbanization factors is not provided. Meanwhile, UHII is not only related to urbanization factors, but weather conditions also influence daily UHII. A more in-depth and detailed study can be conducted in the future, which will help to make targeted urban planning recommendations.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nations, U. Key Facts. In World Urbanization Prospects 2018; United Nations Publications: New York, NY, USA, 2018. [Google Scholar]
- Yu, Z.; Yao, Y.; Yang, G.; Wang, X.; Vejre, H. Spatiotemporal patterns and characteristics of remotely sensed region heat islands during the rapid urbanization (1995–2015) of Southern China. Sci. Total Environ. 2019, 674, 242–254. [Google Scholar] [CrossRef]
- Sun, R.; Lü, Y.; Yang, X.; Chen, L. Understanding the variability of urban heat islands from local background climate and urbanization. J. Clean. Prod. 2019, 208, 743–752. [Google Scholar] [CrossRef]
- Yue, W.; Qiu, S.; Xu, H.; Xu, L.; Zhang, L. Polycentric urban development and urban thermal environment: A case of Hangzhou, China. Landsc. Urban Plan. 2019, 189, 58–70. [Google Scholar] [CrossRef]
- Peng, S.; Feng, Z.; Liao, H.; Huang, B.; Peng, S.; Zhou, T. Spatial-temporal pattern of, and driving forces for, urban heat island in China. Ecol. Indic. 2019, 96, 127–132. [Google Scholar] [CrossRef]
- Mirzaei, P.A.; Haghighat, F. Approaches to study Urban Heat Island—Abilities and limitations. Build. Environ. 2010, 45, 2192–2201. [Google Scholar] [CrossRef]
- Xu, D.; Zhou, D. Research on the Planning Methods of Mitigating Summer Urban Heat Island Effects among Basin Cities—A Case Study at Xi’an, China. Procedia Eng. 2016, 169, 248–255. [Google Scholar] [CrossRef]
- Min, M.; Lin, C.; Duan, X.; Jin, Z.; Zhang, L. Spatial distribution and driving force analysis of urban heat island effect based on raster data: A case study of the Nanjing metropolitan area, China. Sustain. Cities Soc. 2019, 50, 101637. [Google Scholar] [CrossRef]
- Li, K.; Chen, Y.; Wang, M.; Gong, A. Spatial-temporal variations of surface urban heat island intensity induced by different definitions of rural extents in China. Sci. Total Environ. 2019, 669, 229–247. [Google Scholar] [CrossRef] [PubMed]
- Streutker, D.R. Satellite-measured growth of the urban heat island of Houston, Texas. Remote Sens. Environ. 2003, 85, 282–289. [Google Scholar] [CrossRef]
- Voogt, J.A.; Oke, T.R. Thermal remote sensing of urban climates. Remote Sens. Environ. 2003, 86, 370–384. [Google Scholar] [CrossRef]
- Li, H.; Zhou, Y.; Wang, X.; Zhou, X.; Zhang, H.; Sodoudi, S. Quantifying urban heat island intensity and its physical mechanism using WRF/UCM. Sci. Total Environ. 2019, 650, 3110–3119. [Google Scholar] [CrossRef]
- Antoniou, N.; Montazeri, H.; Neophytou, M.; Blocken, B. CFD simulation of urban microclimate: Validation using high-resolution field measurements. Sci. Total Environ. 2019, 695, 133743. [Google Scholar] [CrossRef]
- Li, G.; Zhang, X.; Mirzaei, P.A.; Zhang, J.; Zhao, Z. Urban heat island effect of a typical valley city in China: Responds to the global warming and rapid urbanization. Sustain. Cities Soc. 2018, 38, 736–745. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, Y.; Weng, F.; Zhang, F.; Shu, W. Impacts of urban spatial layout and scale on local climate: A case study in Beijing. Sustain. Cities Soc. 2021, 68, 102767. [Google Scholar] [CrossRef]
- Kedia, S.; Bhakare, S.P.; Dwivedi, A.K.; Islam, S.; Kaginalkar, A. Estimates of change in surface meteorology and urban heat island over northwest India: Impact of urbanization. Urban Clim. 2021, 36, 100782. [Google Scholar] [CrossRef]
- Macintyre, H.L.; Heaviside, C.; Cai, X.; Phalkey, R. The winter urban heat island: Impacts on cold-related mortality in a highly urbanized European region for present and future climate. Environ. Int. 2021, 154, 106530. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Sun, S.; Song, C.; Li, J.; Xu, W.; Xu, Y. Understanding the spatiotemporal pattern of the urban heat island footprint in the context of urbanization, a case study in Beijing, China. Appl. Geogr. 2021, 133, 102496. [Google Scholar] [CrossRef]
- Moazzam, M.F.U.; Doh, Y.H.; Lee, B.G. Impact of urbanization on land surface temperature and surface urban heat Island using optical remote sensing data: A case study of Jeju Island, Republic of Korea. Build. Environ. 2022, 222, 109368. [Google Scholar] [CrossRef]
- Barrao, S.; Serrano-Notivoli, R.; Cuadrat, J.M.; Tejedor, E.; Sánchez, M.A.S. Characterization of the UHI in Zaragoza (Spain) using a quality-controlled hourly sensor-based urban climate network. Urban Clim. 2022, 44, 101207. [Google Scholar] [CrossRef]
- Leconte, F.; Bouyer, J.; Claverie, R.; Pétrissans, M. Using Local Climate Zone scheme for UHI assessment: Evaluation of the method using mobile measurements. Build. Environ. 2015, 83, 39–49. [Google Scholar] [CrossRef]
- Cao, Q.; Yu, D.; Georgescu, M.; Wu, J. Impacts of urbanization on summer climate in China: An assessment with coupled land-atmospheric modeling. J. Geophys. Res. Atmos. 2016, 121, 10505–10521. [Google Scholar] [CrossRef]
- Cai, Z.; Liu, Z.; Zuo, S.; Cao, S. Finding a Peaceful Road to Urbanization in China. Land Use Policy 2019, 83, 560–563. [Google Scholar] [CrossRef]
- Liu, C.; Li, Y. Spatio-Temporal Features of Urban Heat Island and Its Relationship with Land Use/Cover in Mountainous City: A Case Study in Chongqing. Sustainability 2018, 10, 1943. [Google Scholar] [CrossRef]
- Jiang, P.; Liu, X.; Zhu, H.; Li, Y. Features of Urban Heat Island in Mountainous Chongqing from a Dense Surface Monitoring Network. Atmosphere 2019, 10, 67. [Google Scholar] [CrossRef]
- Liao, D.; Zhu, H.; Jiang, P. Study of urban heat island index methods for urban agglomerations (hilly terrain) in Chongqing. Theor. Appl. Climatol. 2021, 143, 279–289. [Google Scholar] [CrossRef]
- Liu, X.; Ming, Y.; Liu, Y.; Yue, W.; Han, G. Influences of landform and urban form factors on urban heat island: Comparative case study between Chengdu and Chongqing. Sci. Total Environ. 2022, 820, 153395. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Dan, Y.; Jie, M.; Feitong, Z.; Yu, W.; Xiaojiao, W.; Hongrui, Z. Spatial patern analysis and quantitative detection of multi—Factor influence for urban heat island efect in a mountainous city: A case study of Chongqing metropolitan circle. Geogr. Res. 2021, 40, 856–868. [Google Scholar]
- Haonan, Z.; Xiaoran, L.; Jia, S.; Jie, Z.; Bingyan, C.; Ning, Z. Evaluation of the Urban Heat Island Effect of Sponge City in Chongqing using Satelite Remote Sensing Data and Numerical Simulation. Plateau Meteorol. 2021, 40, 1202–1212. [Google Scholar]
- Karl, T.R.; Diaz, H.F.; Kukla, G. Urbanization: Its Detection and Effect in the United States Climate Record. J. Clim. 1988, 1, 1099–1123. [Google Scholar] [CrossRef]
- Chongqing Municipal Bureau of Statistics; National Bureau of Statistics of China. Chongqing Statistical Yearbook 2019; China Statistics Press: Beijing, China, 2019. [Google Scholar]
- Shang-ming, D.; Hai-feng, A.; Bo, N.D.A.; Hui-xi, X.; Ling, G.Y.A.N.; Gang-yi, N.C.H.E. An analysis of urban heat island effects in Chongqing based on AVHRR and DEM. Resour. Environ. Yangtze Basin 2009, 7, 680–685. [Google Scholar]
- Güçlü, Y.S. Multiple Şen-innovative trend analyses and partial Mann-Kendall test. J. Hydrol. 2018, 566, 685–704. [Google Scholar] [CrossRef]
- Yürekli, K. Impact of climate variability on precipitation in the Upper Euphrates–Tigris Rivers Basin of Southeast Turkey. Atmos. Res. 2015, 154, 25–38. [Google Scholar] [CrossRef]
- Ullah, S.; You, Q.; Ali, A.; Ullah, W.; Jan, M.A.; Zhang, Y.; Xie, W.; Xie, X. Observed changes in maximum and minimum temperatures over China- Pakistan economic corridor during 1980–2016. Atmos. Res. 2019, 216, 37–51. [Google Scholar] [CrossRef]
- Ramli, F.M.; Aris, Z.A.; Jamil, R.N.; Aderemi, A.A. Evidence of climate variability from rainfall and temperature fluctuations in semi-arid region of the tropics. Atmos. Res. 2019, 224, 52–64. [Google Scholar]
- Theophilou, M.K.; Serghides, D. Estimating the characteristics of the Urban Heat Island Effect in Nicosia, Cyprus, using multiyear urban and rural climatic data and analysis. Energy Build. 2015, 108, 137–144. [Google Scholar] [CrossRef]
- Livada, I.; Synnefa, A.; Haddad, S.; Paolini, R.; Garshasbi, S.; Ulpiani, G.; Fiorito, F.; Vassilakopoulou, K.; Osmond, P.; Santamouris, M. Time series analysis of ambient air-temperature during the period 1970–2016 over Sydney, Australia. Sci. Total Environ. 2019, 648, 1627–1638. [Google Scholar] [CrossRef]
- Kumar, P.N.; Rajadurai, A.; Muthuramalingam, T. Multi-Response Optimization on Mechanical Properties of Silica Fly Ash Filled Polyester Composites Using Taguchi-Grey Relational Analysis. Silicon 2018, 10, 1723–1729. [Google Scholar] [CrossRef]
- Pandya, V.J.; Rathod, P.P. Optimization of mechanical properties of green composites by gray relational analysis. Mater. Today Proc. 2020, 27, 19–22. [Google Scholar] [CrossRef]
- Yan, Y.; Liu, X.; Wen, Y.; Ou, J. Quantitative analysis of the contributions of climatic and human factors to grassland productivity in northern China. Ecol. Indic. 2019, 103, 542–553. [Google Scholar] [CrossRef]
- Williams, B.; Brown, T.; Onsman, A. Exploratory factor analysis: A five-step guide for novices. Australas. J. Paramed. 2010, 8, 1–13. [Google Scholar] [CrossRef]
- IPCC. Sixth Assessment Report Climate Change 2021: The Physical Science Basis; IPCC: Geneva, Switerland, 2021. [Google Scholar]
- Tang, G.; Ding, Y.; Wang, S.; Ren, G.; Liu, H.; Zhang, L. Comparative Analysis of China Surface Air Temperature Series for the Past 100 Years. Adv. Clim. Chang. Res. 2010, 1, 11–19. [Google Scholar] [CrossRef]
- Ren, G.Y.; Chu, Z.Y.; Chen, Z.H.; Ren, Y.Y. Implications of temporal change in urban heat island intensity observed at Beijing and Wuhan stations. Geophys. Res. Lett. 2007, 34, L05711. [Google Scholar] [CrossRef]
- Wang, R.; Min, J.; Li, Y.; Hu, Y.; Yang, S. Analysis on Seasonal Variation and Influencing Mechanism of Land Surface Thermal Environment: A Case Study of Chongqing. Remote Sens. 2022, 14, 2022. [Google Scholar] [CrossRef]
- Founda, D.; Pierros, F.; Petrakis, M.; Zerefos, C. Interdecadal variations and trends of the Urban Heat Island in Athens (Greece) and its response to heat waves. Atmos. Res. 2015, 161–162, 1–13. [Google Scholar] [CrossRef]
- Zeng, Y.; Qiu, X.F.; Gu, L.H.; He, Y.J.; Wang, K.F. The urban heat island in Nanjing. Quat. Int. 2009, 208, 38–43. [Google Scholar] [CrossRef]
- Zhang, Y.; Bao, J.W.; Yu, Q.; Ma, C.W. Study on seasonal variations of the urban heat island and its interannual changes in a typical Chinese megacity. Chin. J. Geophys. 2012, 55, 1121–1128. [Google Scholar]
- Liu, W.; Ji, C.; Zhong, J.; Jiang, X.; Zheng, Z. Temporal characteristics of the Beijing urban heat island. Arch. Meteorol. Geophys. Bioclimatol. Ser. B 2006, 87, 213–221. [Google Scholar] [CrossRef]
- Ramírez-Aguilar, E.A.; Souza, L.C.L. Urban form and population density: Influences on Urban Heat Island intensities in Bogotá, Colombia. Urban Clim. 2019, 29, 100497. [Google Scholar] [CrossRef]
- Zhang, X.; Li, D.G.; Wu, X.D. Relationship between Urbanization and Urban Heat Island Effect in Zhengzhou. Urban Environ. Urban Ecol. 2016, 5, 1–6. [Google Scholar]
- Chunyan, R.; Dianting, W.; Suocheng, D. The influence of urbanization on the urban climate environment in Northwest China. Geogr. Res. 2006, 25, 233–241. [Google Scholar]
- Yao, R.; Luo, Q.; Luo, Z.; Jiang, L.; Yang, Y. An integrated study of urban microclimates in Chongqing, China: Historical weather data, transverse measurement and numerical simulation. Sustain. Cities Soc. 2015, 14, 187–199. [Google Scholar] [CrossRef]
- Bao, H.X.H.; Li, L.; Lizieri, C. City profile: Chongqing (1997–2017). Cities 2019, 94, 161–171. [Google Scholar] [CrossRef]
- Liu, Y.H.; Xu, Y.M.; Zhang, F.M.; Shu, W.J. Influence of Beijing spatial morphology on the distribution of urban heat island. Acta Geogr. Sin. 2021, 76, 1662–1679. [Google Scholar]
- Xiujuan, L.; Xuhong, W.; Linzhi, N.; Haiqing, H.; Yurong, Z.; Xiu, Z. Research on the Temporal and Spatial Distribution Characteristics of Urban Heat Island Effect and the Influence of AOD on Urban Heat Island Intensity in the Greater Xi’an Metropolitan Area. Ecol. Environ. Sci. 2020, 29, 1566–1580. [Google Scholar]
- Xu, W.; Yang, H.; Zhang, S. Variations of the urban heat island effect in Shanghai. J. Trop. Meteorol. 2018, 34, 228–238. [Google Scholar]
- Hong, J.W.; Hong, J.; Kwon, E.E.; Yoon, D. Temporal dynamics of urban heat island correlated with the socio-economic development over the past half-century in Seoul, Korea. Environ. Pollut. 2019, 254, 112934. [Google Scholar] [CrossRef] [PubMed]
- Fujibe, F. Urban warming in Japanese cities and its relation to climate change monitoring. Int. J. Climatol. 2011, 31, 162–173. [Google Scholar] [CrossRef]
- Martínez, A.; Reseña de Oke, T.R.; Mills, G.; Christen, A.; Voogt, J.A. Urban Climates; Cambridge University Press: Cambridge, UK, 2019; p. 509. [Google Scholar]
- Ngarambe, J.; Oh, J.W.; Su, M.A.; Santamouris, M.; Yun, G.Y. Influences of wind speed, sky conditions, land use and land cover characteristics on the magnitude of the urban heat island in Seoul: An exploratory analysis. Sustain. Cities Soc. 2021, 71, 102953. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, Y. Urban morphological indicators of urban heat and moisture islands under various sky conditions in a humid subtropical region. Build. Environ. 2022, 214, 108906. [Google Scholar] [CrossRef]
- He, Z.; Gao, Y.; Yang, S.; Shangguan, C. The Characteristics and Mitigating Measures of Urban Heat Island Effect of Chongqing. Plat. Mount. Met. Res. 2017, 37, 48–52. [Google Scholar]
- Huaijian, X. On Greening Functions: Ecological and Cultural Greening of Urban Roads in Chongqing. J. Chongqing Jiaotong Univ. 2007, 7, 19–22. [Google Scholar]
- Changming, C. Analysis of Planning Measures of Mountain City to Reduce Urban Heat Island. J. Green Sci. Technol. 2014, 282–284. [Google Scholar]
- Xinrui, Z.; Qingjuan, N.; Jiangxiu, L. Research on urban geothermal comfort improvement strategy based on ENVI-met. Ecol. Sci. 2021, 40, 144–155. [Google Scholar]
- Cheng, L.; Guan, D.; Zhou, L.; Zhao, Z.; Zhou, J. Urban cooling island effect of main river on a landscape scale in Chongqing, China. Sustain. Cities Soc. 2019, 47, 101501. [Google Scholar] [CrossRef]
- Jin, C.; Bai, X.; Luo, T.; Zou, M. Effects of green roofs’ variations on the regional thermal environment using measurements and simulations in Chongqing, China. Urban For. Urban Green. 2018, 29, 223–237. [Google Scholar] [CrossRef]
Station Name | ID | Latitude | Longitude | Elevation (m) | Frequency | Description |
---|---|---|---|---|---|---|
Shapingba | 57516 | 29°35′ N | 106°28′ E | 259.1 | 3-Hour | urban (LCZ5) |
Hechuan | 57512 | 29°58′ N | 106°16′ E | 230.6 | rural (LCZ9) |
Tendency Rate (°C/Century) | |||||
---|---|---|---|---|---|
Annual | Spring | Summer | Autumn | Winter | |
Mean temperature (urban) | 4 ** | 5.5 ** | 5.6 ** | 3.2 ** | 1.9 |
Mean temperature (rural) | 2.7 ** | 3.9 ** | 4.7 ** | 1.6 | 0.9 |
Mean maximum temperature (urban) | 4.9 ** | 7.7 ** | 6.4 ** | 3.0 | 2.5 |
Mean maximum temperature (rural) | 3.1 ** | 5.9 ** | 4.3 ** | 0.8 | 1.3 |
Mean minimum temperature (urban) | 3.9 ** | 4.3 ** | 5.0 ** | 4.4 ** | 1.8 |
Mean minimum temperature (rural) | 2.8 ** | 3.7 ** | 4.4 ** | 2.7 | 0.4 |
Tendency Rate (°C/Century) | |||||
---|---|---|---|---|---|
Annual | Spring | Summer | Autumn | Winter | |
UHIImean | 1.4 ** | 1.5 ** | 1.6 ** | 1.4 ** | 1.3 ** |
UHIImax (daytime UHII) | 0.5 | 0.7 | 0.3 | 0.4 | 0.7 |
UHIImin (nighttime UHII) | 1.7 ** | 1.4 ** | 1.6 ** | 1.7 ** | 1.6 ** |
Station Name | GRG | |||
---|---|---|---|---|
GDP | Fixed Investments | Urban Resident Population | Gross Industrial Output Value | |
UHIImean | 0.728 | 0.630 | 0.971 | 0.773 |
UHIImax | 0.718 | 0.615 | 0.921 | 0.769 |
UHIImin | 0.718 | 0.624 | 0.957 | 0.766 |
UHIImax | UHIImin | UHIImean | |
---|---|---|---|
UHIImax | 1 ** | 0.877 ** | 0.961 ** |
UHIImin | 0.877 ** | 1 ** | 0.918 ** |
UHIImean | 0.961 ** | 0.918 ** | 1 ** |
GDP | Fixed Investments | Urban Resident Population | Gross Industrial Output Value | |
---|---|---|---|---|
GDP | 1 ** | 0.988 ** | 0.948 ** | 0.984 ** |
Fixed investments | 0.988 ** | 1 ** | 0.973 ** | 0.995 ** |
Urban resident population | 0.948 ** | 0.973** | 1 ** | 0.96 ** |
Gross industrial output value | 0.984 ** | 0.995 ** | 0.96 ** | 1 ** |
Principal Component | Eigenvalue | Contribution Rate (%) | Accumulation Rate (%) | |
---|---|---|---|---|
Urbanization factors | 1 | 3.924 | 98.098 | 98.098 |
2 | 0.058 | 1.449 | 99.547 | |
3 | 0.015 | 0.277 | 99.924 | |
4 | 0.003 | 0.076 | 100.000 | |
UHII (UHIImean, UHIImax, UHIImin) | 1 | 2.837 | 94.567 | 94.567 |
2 | 0.130 | 4.330 | 98.897 | |
3 | 0.033 | 1.103 | 100.000 |
F1 | Z1 | ||
---|---|---|---|
Urbanization Indices | Fixed investments | 0.998 | 0.254 |
GDP | 0.990 | 0.252 | |
Urban resident population | 0.979 | 0.250 | |
Gross industrial output value | 0.994 | 0.253 | |
UHII | UHIImean | 0.987 | 0.348 |
UHIImax | 0.973 | 0.343 | |
UHIImin | 0.957 | 0.337 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Tian, L.; Lu, J. Temporal Evolution of Urban Heat Island and Quantitative Relationship with Urbanization Development in Chongqing, China. Atmosphere 2022, 13, 1594. https://doi.org/10.3390/atmos13101594
Zhang J, Tian L, Lu J. Temporal Evolution of Urban Heat Island and Quantitative Relationship with Urbanization Development in Chongqing, China. Atmosphere. 2022; 13(10):1594. https://doi.org/10.3390/atmos13101594
Chicago/Turabian StyleZhang, Junmiao, Liu Tian, and Jun Lu. 2022. "Temporal Evolution of Urban Heat Island and Quantitative Relationship with Urbanization Development in Chongqing, China" Atmosphere 13, no. 10: 1594. https://doi.org/10.3390/atmos13101594
APA StyleZhang, J., Tian, L., & Lu, J. (2022). Temporal Evolution of Urban Heat Island and Quantitative Relationship with Urbanization Development in Chongqing, China. Atmosphere, 13(10), 1594. https://doi.org/10.3390/atmos13101594