First Results of the Application of a Citizen Science-Based Mobile Monitoring System to the Study of Household Heating Emissions
Abstract
:1. Introduction
Participatory Citizen Science
2. Materials and Methods
2.1. The Cocal System
Low-Cost Sensor Performances
3. Results
3.1. Designated Area
3.2. Cocal System Deployment
3.3. First Indications of Differential Behavior
3.4. Daily Pattern in the Karst Using a Fixed Monitoring Station
3.5. CS Survey
4. Discussion
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pirozzi, C.S.; Jones, B.E.; VanDerslice, J.A.; Zhang, Y.; Paine, R.; Dean, N.C. Short-Term Air Pollution and Incident Pneumonia. A Case-Crossover Study. Ann. Am. Thorac. Soc. 2018, 15, 449–459. [Google Scholar] [CrossRef] [PubMed]
- WHO. Burden of Disease from the Joint Effects of Household and Ambient Air Pollution for 2016. WHO, May 2018. Available online: https://cdn.who.int/media/docs/default-source/air-quality-database/aqd-2018/ap_joint_effect_bod_results_may2018.pdf?sfvrsn=4dc44c26_3 (accessed on 2 August 2022).
- Brunekree, B.; Downward, G.; Forastiere, F.; Gehring, U.; Heederik, G.; Hoek, G. Air Pollution and COVID-19. European Parliament, January 2021. Available online: https://www.europarl.europa.eu/RegData/etudes/STUD/2021/658216/IPOL_STU(2021)658216_EN.pdf (accessed on 13 May 2022).
- European Commission. EU Heating and Cooling Strategy. Eu-Lex, 16 February 2016. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52016DC0051&from=EN (accessed on 12 August 2022).
- EPA. AP-42: Compilation of Air Emissions Factors. Available online: https://www3.epa.gov/ttnchie1/ap42/ch01/ (accessed on 12 August 2022).
- Pudasainee, D.; Kurian, V.; Gupta, R. 2—Coal: Past, present, and future sustainable use. In Future Energy, 3rd ed.; Letcher, T.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 21–48. [Google Scholar] [CrossRef]
- Bari, M.A.; Baumbach, G.; Kuch, B.; Scheffknecht, G. Wood smoke as a source of particle-phase organic compounds in residential areas. Atmos. Environ. 2009, 43, 4722–4732. [Google Scholar] [CrossRef]
- Cincinelli, A.; Guerranti, C.; Martellini, T.; Scodellini, R. Residential wood combustion and its impact on urban air quality in Europe. Curr. Opin. Environ. Sci. Health 2019, 8, 10–14. [Google Scholar] [CrossRef]
- Guerranti, C.; Cetta, F.; Perra, G.; Moroni, A.; di Felice, R.; Focardi, S.; Sorbellini, F.; Azzara, A.; Cisternino, F.; Dhamo, A.; et al. Polycyclic aromatic hydrocarbon (PAH) levels in various food components and in human adipose tissue. A comparison with PAH values in the atmosphere. GIMT—G. Ital. Delle Mal. Torace 2009, 63, 397404. [Google Scholar]
- Lim, S.; Bassey, E.; Bos, B.; Makacha, L.; Varaden, D.; Arku, R.E.; Baumgartner, J.; Brauer, M.; Ezzati, M.; Kelly, F.J.; et al. Comparing human exposure to fine particulate matter in low and high-income countries: A systematic review of studies measuring personal PM2.5 exposure. Sci. Total Environ. 2022, 833, 155207. [Google Scholar] [CrossRef] [PubMed]
- Champion, W.M.; Connors, L.; Montoya, L.D. Emission factors of fine particulate matter, organic and elemental carbon, carbon monoxide, and carbon dioxide for four solid fuels commonly used in residential heating by the U.S. Navajo Nation. J. Air Waste Manag. Assoc. 2017, 67, 1020–1035. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.; Yang, X.; Chu, A.; Xie, X.; Bai, M.; Peng, Y.; Zhang, Z. Acute effects of fine particulate matter (PM2.5) on hospital admissions for cardiovascular diseases in Lanzhou, China: A time-series study. Environ. Sci. Eur. 2022, 34, 55. [Google Scholar] [CrossRef]
- European Commission, Directorate-General for Energy, and European Commission. Mapping and Analyses of the Current and Future (2020–2030) Heating/Cooling Fuel Deployment (Fossil/Renewables). European Commission Directorate-General for Energy, 1 March 2016. Available online: https://energy.ec.europa.eu/system/files/2016-04/Summary%2520WP1%2520and%2520WP2_0.pdf (accessed on 12 August 2022).
- Gazzetta Ufficiale. Available online: https://www.gazzettaufficiale.it/eli/id/2017/07/31/17A05264/sg (accessed on 14 August 2022).
- Italian Ministry of Ecological Transition. Data on Imports, on Consumption (Regional and Provincial) and on the Natural Gas Balance Sheet. Available online: https://dgsaie.mise.gov.it/importazioni-gas-naturale (accessed on 2 August 2022).
- Ministry of Economic Development. Italian Natural Gas System’s Preventive Action Plan Annex 1. Available online: https://www.mise.gov.it/images/stories/documenti/all1_gas_italy_pap_en.pdf (accessed on 2 August 2022).
- SNAM. Natural Gas Storage Sites. Available online: https://www.snam.it/en/about-us/snam-infrastructures/storage-sites/ (accessed on 2 August 2022).
- Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions REPowerEU Plan. 2022. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2022%3A230%3AFIN&qid=1653033742483 (accessed on 14 August 2022).
- Bounds, A.; Varvitsioti, E. EU accepts it will burn more coal in move away from Russian gas. Financial Times, 18 May 2022. [Google Scholar]
- Irwin, A. Citizen Science: A Study of People, Expertise and Sustainable Development; Routledge: London, UK, 1995. [Google Scholar]
- Kullenberg, C.; Kasperowski, D. What Is Citizen Science?—A Scientometric Meta-Analysis. PLoS ONE 2016, 11, e0147152. [Google Scholar] [CrossRef] [Green Version]
- Sauermann, H.; Franzoni, C. Crowd science user contribution patterns and their implications. Proc. Natl. Acad. Sci. USA 2015, 112, 679–684. [Google Scholar] [CrossRef] [Green Version]
- 15 USC 3724: Crowdsourcing and Citizen Science. Available online: http://uscode.house.gov/view.xhtml?req=granuleid:USC-prelim-title15-section3724)&num=0&edition=prelim (accessed on 20 September 2022).
- Green Paper on Citizen Science for Europe: Towards a Society of Empowered Citizens and Enhanced Research | Shaping Europe’s Digital Future. Available online: https://digital-strategy.ec.europa.eu/en/library/green-paper-citizen-science-europe-towards-society-empowered-citizens-and-enhanced-research (accessed on 20 September 2022).
- Oxford Martin School. Google Award Expands Zooniverse Citizen Science Platform. Available online: https://www.oxfordmartin.ox.ac.uk/news/201312google-grant/ (accessed on 21 September 2022).
- Kasperowski, D.; Hillman, T. The epistemic culture in an online citizen science project: Programs, antiprograms and epistemic subjects. Soc. Stud. Sci. 2018, 48, 564–588. [Google Scholar] [CrossRef]
- Stewart, C.; Labrèche, G.; González, D.L. A Pilot Study on Remote Sensing and Citizen Science for Archaeological Prospection. Remote Sens. 2020, 12, 2795. [Google Scholar] [CrossRef]
- Froeling, F.; Gignac, F.; Hoek, G.; Vermeulen, R.; Nieuwenhuijsen, M.; Ficorilli, A.; De Marchi, B.; Biggeri, A.; Kocman, D.; Robinson, J.A.; et al. Narrative review of citizen science in environmental epidemiology: Setting the stage for co-created research projects in environmental epidemiology. Environ. Int. 2021, 152, 106470. [Google Scholar] [CrossRef]
- Hilton, N.H. Stimmen: A citizen science approach to minority language sociolinguistics. Linguist. Vanguard 2021, 1–15. [Google Scholar] [CrossRef]
- Fraisl, D.; Campbell, J.; See, L.; Wehn, U.; Wardlaw, J.; Gold, M.; Moorthy, I.; Arias, R.; Piera, J.; Oliver, J.L.; et al. Mapping citizen science contributions to the UN sustainable development goals. Sustain. Sci. 2020, 15, 1735–1751. [Google Scholar] [CrossRef]
- Fraisl, D.; Hager, G.; Bedessem, B.; Gold, M.; Hsing, P.-Y.; Danielsen, F.; Hitchcock, C.B.; Hulbert, J.M.; Piera, J.; Spiers, H.; et al. Citizen science in environmental and ecological sciences. Nat. Rev. Methods Primer 2022, 2, 64. [Google Scholar] [CrossRef]
- Jones, J.S.; Guézou, A.; Medor, S.; Nickson, C.; Savage, G.; Alarcón-Ruales, D.; Galloway, T.S.; Muñoz-Pérez, J.P.; Nelms, S.E.; Porter, A.; et al. Microplastic distribution and composition on two Galápagos island beaches, Ecuador: Verifying the use of citizen science derived data in long-term monitoring. Environ. Pollut. 2022, 311, 120011. [Google Scholar] [CrossRef]
- Stanton, T.; Chico, G.; Carr, E.; Cook, S.; Gomes, R.L.; Heard, E.; Law, A.; Wilson, H.L.; Johnson, M. Planet Patrolling: A citizen science brand audit of anthropogenic litter in the context of national legislation and international policy. J. Hazard. Mater. 2022, 436, 129118. [Google Scholar] [CrossRef]
- Diviacco, P.; Nadali, A.; Nolich, M.; Molinaro, A.; Iurcev, M.; Carbajales, R.; Busato, A.; Pavan, A.; Grio, L.; Malfatti, F. Citizen science and crowdsourcing in the field of marine scientific research—The MaDCrow project. J. Sci. Commun. 2021, 20, A09. [Google Scholar] [CrossRef]
- Diviacco, P.; Nadali, A.; Iurcev, M.; Carbajales, R.; Busato, A.; Pavan, A.; Burca, M.; Grio, L.; Nolich, M.; Molinaro, A.; et al. MaDCrow, a Citizen Science Infrastructure to Monitor Water Quality in the Gulf of Trieste (North Adriatic Sea). Front. Mar. Sci. 2021, 8, 619898. [Google Scholar] [CrossRef]
- Diviacco, P.; Nadali, A.; Iurcev, M.; Burca, M.; Carbajales, R.; Gangale, M.; Busato, A.; Brunetti, F.; Grio, L.; Viola, A.; et al. Underwater Noise Monitoring with Real-Time and Low-Cost Systems, (The CORMA Experience). J. Mar. Sci. Eng. 2021, 9, 390. [Google Scholar] [CrossRef]
- Silvertown, J. A new dawn for citizen science. Trends Ecol. Evol. 2009, 24, 467–471. [Google Scholar] [CrossRef]
- Singh, D.; Dahiya, M.; Kumar, R.; Nanda, C. Sensors and systems for air quality assessment monitoring and management: A review. J. Environ. Manag. 2021, 289, 112510. [Google Scholar] [CrossRef]
- Bonafè, G.; Montanari, F.; Stel, F. Air Quality in Trieste, Italy—A Hybrid Eulerian-Lagrangian-Statistical Approach to Evaluate Air Quality in a Mixed Residential-Industrial Environment; Sistema Nazionale per la Protezione dell’Ambiente: Rome, Italy, 2017; p. 37. [Google Scholar]
- Diviacco, P.; Iurcev, M.; Carbajales, R.J.; Potleca, N.; Viola, N.; Burca, M.; Busato, A. Monitoring air quality in urban areas within a mobile crowdsensing paradigm. Remote Sens. 2022. submitted. [Google Scholar]
- Iurcev, M.; Pettenati, F.; Diviacco, P. Improved automated methods for near real-time mapping—Application in the environmental domain. Bull. Geophys. Oceanogr. 2021, 62, 427–454. [Google Scholar]
- Bulot, F.M.J.; Russell, H.S.; Rezaei, M.; Johnson, M.S.; Ossont, S.J.J.; Morris, A.K.R.; Basford, P.J.; Easton, N.H.C.; Foster, G.L.; Loxham, M.; et al. Laboratory Comparison of Low-Cost Particulate Matter Sensors to Measure Transient Events of Pollution. Sensors 2020, 20, 2219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Božilov, A.; Tasić, V.; Živković, N.; Lazović, I.; Blagojević, M.; Mišić, N.; Topalović, D. Performance assessment of NOVA SDS011 low-cost PM sensor in various microenvironments. Environ. Monit. Assess. 2022, 194, 595. [Google Scholar] [CrossRef] [PubMed]
- Castell, N.; Dauge, F.R.; Schneider, P.; Vogt, M.; Lerner, U.; Fishbain, B.; Broday, D.; Bartonova, A. Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates? Environ. Int. 2017, 99, 293–302. [Google Scholar] [CrossRef]
- Suriano, D.; Penza, M. Assessment of the Performance of a Low-Cost Air Quality Monitor in an Indoor Environment through Different Calibration Models. Atmosphere 2022, 13, 567. [Google Scholar] [CrossRef]
- Liang, L. Calibrating low-cost sensors for ambient air monitoring: Techniques, trends, and challenges. Environ. Res. 2021, 197, 111163. [Google Scholar] [CrossRef]
- Zimmerman, N. Tutorial: Guidelines for implementing low-cost sensor networks for aerosol monitoring. J. Aerosol Sci. 2022, 159, 105872. [Google Scholar] [CrossRef]
- Gladich, I.; Gallai, I.; Giaiotti, D.B.; Mordacchini, G.; Palazzo, A.; Stel, F. Mesoscale heat waves induced by orography. Adv. Sci. Res. 2008, 2, 139–143. [Google Scholar] [CrossRef] [Green Version]
- Sá, J.P.; Alvim-Ferraz, M.C.M.; Martins, F.G.; Sousa, S.I.V. Application of the low-cost sensing technology for indoor air quality monitoring: A review. Environ. Technol. Innov. 2022, 28, 102551. [Google Scholar] [CrossRef]
- He, J.; Huang, C.-H.; Yuan, N.; Austin, E.; Seto, E.; Novosselov, I. Network of low-cost air quality sensors for monitoring indoor, outdoor, and personal PM2.5 exposure in Seattle during the 2020 wildfire season. Atmos. Environ. 2022, 285, 119244. [Google Scholar] [CrossRef]
- Yu, Y.T.; Xiang, S.; Li, R.; Zhang, S.; Zhang, K.M.; Si, S.; Wu, X.; Wu, Y. Characterizing spatial variations of city-wide elevated PM10 and PM2.5 concentrations using taxi-based mobile monitoring. Sci. Total Environ. 2022, 829, 154478. [Google Scholar] [CrossRef]
- Ferro, A.R.; Zíková, N.; Masiol, M.; Satsangi, G.P.; Twomey, T.; Chalupa, D.C.; Rich, D.Q.; Hopke, P.K. Residential Indoor and Outdoor PM Measured Using Low-cost Monitors during the Heating Season in Monroe County, NY. Aerosol Air Qual. Res. 2022, 22, 220210. [Google Scholar] [CrossRef]
- Chakraborty, R.; Heydon, J.; Mayfield, M.; Mihaylova, L. Indoor Air Pollution from Residential Stoves: Examining the Flooding of Particulate Matter into Homes during Real-World Use. Atmosphere 2020, 11, 1326. [Google Scholar] [CrossRef]
- Kays, R.; Lasky, M.; Parsons, A.W.; Pease, B.; Pacifici, K. Evaluation of the Spatial Biases and Sample Size of a Statewide Citizen Science Project. Citiz. Sci. Theory Pract. 2021, 6, 34. [Google Scholar] [CrossRef]
- Millar, E.E.; Hazell, E.C.; Melles, S.J. The “cottage effect” in citizen science? Spatial bias in aquatic monitoring programs. Int. J. Geogr. Inf. Sci. 2019, 33, 1612–1632. [Google Scholar] [CrossRef]
- Stavroulas, I.; Grivas, G.; Michalopoulos, P.; Liakakou, E.; Bougiatioti, A.; Kalkavouras, P.; Fameli, K.; Hatzianastassiou, N.; Mihalopoulos, N.; Gerasopoulos, E. Field Evaluation of Low-Cost PM Sensors (Purple Air PA-II) Under Variable Urban Air Quality Conditions, in Greece. Atmosphere 2020, 11, 926. [Google Scholar] [CrossRef]
- Bodor, K.; Szép, R.; Bodor, Z. Time series analysis of the air pollution around Ploiesti oil refining complex, one of the most polluted regions in Romania. Sci. Rep. 2022, 12, 11817. [Google Scholar] [CrossRef] [PubMed]
- Tao, T.; Shi, Y.; Gilbert, K.M.; Liu, X. Spatiotemporal variations of air pollutants based on ground observation and emission sources over 19 Chinese urban agglomerations during 2015–2019. Sci. Rep. 2022, 12, 4293. [Google Scholar] [CrossRef] [PubMed]
- Men, Y.; Li, J.; Liu, X.; Li, Y.; Jiang, K.; Luo, Z.; Xiong, R.; Cheng, H.; Tao, S.; Shen, G. Contributions of internal emissions to peaks and incremental indoor PM2.5 in rural coal use households. Environ. Pollut. 2021, 288, 117753. [Google Scholar] [CrossRef] [PubMed]
- Fachinger, F.; Drewnick, F.; Gieré, R.; Borrmann, S. How the user can influence particulate emissions from residential wood and pellet stoves: Emission factors for different fuels and burning conditions. Atmos. Environ. 2017, 158, 216–226. [Google Scholar] [CrossRef]
- Luan, T.; Guo, X.; Zhang, T.; Guo, L. Below-Cloud Aerosol Scavenging by Different-Intensity Rains in Beijing City. J. Meteorol. Res. 2019, 33, 126–137. [Google Scholar] [CrossRef]
- Gao, B.; Ouyang, W.; Cheng, H.; Xu, Y.; Lin, C.; Chen, J. Interactions between rainfall and fine particulate matter investigated by simultaneous chemical composition measurements in downtown Beijing. Atmos. Environ. 2019, 218, 117000. [Google Scholar] [CrossRef]
LCS 1 | LCS 2 | LCS 3 | |
---|---|---|---|
Coefficient of Determination (R2) | 0.19 | 0.27 | 0.52 |
Slope (m) | 0.79 | 0.79 | 0.90 |
Intercept (b) | −6.95 | −5.32 | −4.52 |
Root Mean Square | 21.28 | 19.12 | 16.71 |
Error (RMSE) | 79.67 | 71.59 | 62.43 |
Normalized Root Mean Square Error (NRMSE) | 0.19 | 0.27 | 0.52 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diviacco, P.; Iurcev, M.; Carbajales, R.J.; Potleca, N. First Results of the Application of a Citizen Science-Based Mobile Monitoring System to the Study of Household Heating Emissions. Atmosphere 2022, 13, 1689. https://doi.org/10.3390/atmos13101689
Diviacco P, Iurcev M, Carbajales RJ, Potleca N. First Results of the Application of a Citizen Science-Based Mobile Monitoring System to the Study of Household Heating Emissions. Atmosphere. 2022; 13(10):1689. https://doi.org/10.3390/atmos13101689
Chicago/Turabian StyleDiviacco, Paolo, Massimiliano Iurcev, Rodrigo José Carbajales, and Nikolas Potleca. 2022. "First Results of the Application of a Citizen Science-Based Mobile Monitoring System to the Study of Household Heating Emissions" Atmosphere 13, no. 10: 1689. https://doi.org/10.3390/atmos13101689
APA StyleDiviacco, P., Iurcev, M., Carbajales, R. J., & Potleca, N. (2022). First Results of the Application of a Citizen Science-Based Mobile Monitoring System to the Study of Household Heating Emissions. Atmosphere, 13(10), 1689. https://doi.org/10.3390/atmos13101689