Contrasts in the Evolution and Microphysical Features of Two Convective Systems during a Heavy Rainfall Event along the Coast of South China
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Estimation of Liquid and Ice Water Contents
2.3. Identification and Classification of Hydrometeors
2.4. Inversion of the Raindrop Size Distribution
3. Precipitation Process and Synoptic Analyses
4. Comparison of The Evolution of The Two CSs
4.1. Triggering and Evolution of Convection
4.2. Differences in the Convective Cells
4.3. Differences in Microphysical Characteristics
5. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, J.; Zhang, Y.; Liu, R.; Fu, S.; Tian, F. A review of research on warm-sector heavy rainfall in China. Adv. Atmos. Sci. 2019, 36, 1299–1307. [Google Scholar] [CrossRef]
- Tao, S. Rainstorms in China; Science Press: Beijing, China, 1980; pp. 45–46. (In Chinese) [Google Scholar]
- Liu, R.; Sun, J.; Wei, J.; Fu, S. Classification of persistent heavy rainfall events over South China and associated moisture source analysis. J. Meteor. Res. 2016, 30, 678–693. [Google Scholar] [CrossRef]
- Meng, W.; Wang, A.; Li, J.; Fong, S.; Hou, E. Moist potential vorticity analysis of the heavy rainfall and mesoscale convective systems in South China. Chin. J. Atmos. Sci. 2004, 28, 330–341, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Sun, J.; Zhao, S. A study of mesoscale convective systems and its environmental fields during the June 1994 record heavy rainfall in South China Part II: Effect of physical processes, initial environmental fields and topography on meso-β convective system. Chin. J. Atmos. Sci. 2002, 26, 633–646. (In Chinese) [Google Scholar] [CrossRef]
- Xia, R.; Zhao, S. Diagnosis and modeling of meso-β-scale systems of heavy rainfall in warm sector ahead of front in South China (middle part of Guangdong Province) in June 2005. Chin. J. Atmos. Sci. 2009, 33, 468–488. (In Chinese) [Google Scholar] [CrossRef]
- Chen, X.; Zhao, K.; Xue, M. Spatial and temporal characteristics of warm season convection over Pearl River Delta region, China, based on 3 years of operational radar data. J. Geophys. Res. Atmos. 2014, 119, 12447–12465. [Google Scholar] [CrossRef]
- Du, Y.; Chen, G. Heavy rainfall associated with double low-level jets over Southern China. Part II: Convection initiation. Mon. Weather Rev. 2019, 147, 543–565. [Google Scholar] [CrossRef]
- Fu, S.-M.; Li, D.-S.; Sun, J.-H.; Si, D.; Ling, J.; Tian, F.-Y. A 31-year trend of the hourly precipitation over South China and the associated mechanisms. Atmos. Sci. Lett. 2016, 17, 216–222. [Google Scholar] [CrossRef]
- Wu, M.; Luo, Y. Mesoscale observational analysis of lifting mechanism of a warm sector convective system producing the maximal daily precipitation in China mainland during the 2015 pre-rainy season. J. Meteorol. Res. 2016, 30, 719–736. [Google Scholar] [CrossRef]
- Yang, R.; Zhang, Y.; Sun, J.; Fu, S.; Li, J. The characteristics and classification of eastward-propagating mesoscale convective systems generated over the second-step terrain in the Yangtze River Valley. Atmos. Sci. Lett. 2018, 20, e874. [Google Scholar] [CrossRef] [Green Version]
- Mai, Z.; Fu, S.; Sun, J.; Hu, L.; Wang, X. Key statistical characteristics of the mesoscale convective systems generated over the Tibetan Plateau and their relationship to precipitation and southwest vortices. Int. J. Climatol. 2020, 36, 3148–3160.30. [Google Scholar] [CrossRef]
- Luo, Y.; Gong, Y.; Zhang, D. Initiation and organizational modes of an extreme-rain-producing mesoscale convective system along a Mei-Yu Front in East China. Mon. Wea. Rev. 2014, 142, 203–221. [Google Scholar] [CrossRef]
- Fu, P.; Hu, D.; Zhang, Y. Microphysical Characteristics, Initiation and Maintenance of Record Heavy Rainfall over Guangzhou Region on 7 May 2017. Meteorol. Mon. 2019, 44, 500–510. [Google Scholar]
- Guo, Z.; Wu, Z.; Cai, J.; Zhang, H.; Chen, X. Analysis of water vapor transport characteristics of a monsoon low-pressure continuous heavy rain event at the end of August 2018 in Guangdong area. J. Torrential Rain Disasters 2019, 38, 587–596. [Google Scholar]
- Liang, Q.; Xiang, S.; Lin, L. Activity characteristics and organizational development of MCS during the first flood season in South China. J. Trop. Meteorol. 2012, 28, 541–551. [Google Scholar]
- Wang, H.; Luo, Y.; Jou, B.J.D. Initiation, maintenance and properties of convection in an extreme rainfall event during SCMREX: Observational analysis. J. Geophys. Res. Atmos. 2014, 119, 206–232. [Google Scholar] [CrossRef]
- Liu, X.; Luo, Y.; Guan, Z.; Zhang, D. An extreme rainfall event in coastal south China during SCMREX-2014: Formation and roles of rainband and echo trainings. J. Geophys. Res. Atmos. 2018, 123, 9256–9278. [Google Scholar] [CrossRef]
- Li, H.; Liu, X.; Xiao, H. Assimilation of Polarimetric Radar Data Using an Ensemble Kalman Filter for the Analysis and Forecast of Tropical Storm Ewiniar. J. Trop. Meteorol. 2021, 27, 94–108. [Google Scholar] [CrossRef]
- Du, Y.; Chen, G. Heavy Rainfall Associated with Double Low-Level Jets over Southern China. Part I: Ensemble-Based Analysis. Mon. Weather Rev. 2018, 146, 3827–3844. [Google Scholar] [CrossRef]
- Chen, S.; Huang, H. Analysis of the intensity variation of convective cells when they enter the Hangzhou Bay. Meteorol. Monthly. 2011, 37, 889–896. (In Chinese) [Google Scholar]
- Wen, J.; Zhao, K.; Huang, H.; Zhou, B.; Yang, Z.; Chen, G.; Lee, W.C. Evolution of microphysical structure of a subtropical squall line observed by a polarimetric radar and a disdrometer during OPACC in Eastern China. J. Geophys. Res. –D Atmos. 2017, 122, 8033–8050. [Google Scholar] [CrossRef]
- Lang, T.J.; Rutledge, S.A.; Cifelli, R. Polarimetric radar observations of convection in northwestern Mexico during the North American Monsoon Experiment. J. Hydrometeorol. 2010, 11, 1345–1357. [Google Scholar] [CrossRef]
- Rowe, A.; Rutledge, S.; Lang, T. Investigation of microphysical processes occurring in isolated convection during NAME. Monthly Weather Rev. 2011, 139, 424–443. [Google Scholar] [CrossRef]
- Han, B.; Du, Y.; Wu, C.; Liu, X. Microphysical characteristics of the coexisting frontal and warm-sector heavy rainfall in South China. J. Geophys. Res. Atmos. 2021, 126, e2021JD035446. [Google Scholar] [CrossRef]
- Ulbrich, C.W.; Atlas, D. Microphysics of raindrop size spectra: Tropical continental and maritime storms. J. Appl. Meteorol. Climatol. 2007, 46, 1777–1791. [Google Scholar] [CrossRef]
- Bringi, V.N.; Chandrasekar, V. Polarimetric Doppler Weather Radar: Principles and Applications; Cambridge University Press: Cambridge, UK, 2001; p. 636. [Google Scholar]
- Zrnic, D.; Ryzhkov, A. Polarimetry for weather surveillance radars. Bull. Am. Meteorol. Soc. 1999, 80, 389–406. [Google Scholar] [CrossRef]
- Barnes, H.C.; Houze, R.A., Jr. Precipitation hydrometeor type relative to the mesoscale airflow in oceanic deep convection of the Madden–Julian oscillation. J. Geophys. Res. Atmos. 2014, 119, 13990–14014. [Google Scholar] [CrossRef]
- Kumjian, M.R.; Ryzhkov, A.V. Polarimetric signatures in supercell thunderstorms. J. Appl. Meteorol. Climatol. 2008, 47, 1940–1961. [Google Scholar] [CrossRef]
- Li, H.; Wan, Q.; Peng, D.; Liu, X.; Xiao, H. Multiscale analysis of a record-breaking heavy rainfall event in Guangdong, China. Atmos. Res. 2020, 232, 104703. [Google Scholar] [CrossRef]
- Yu, S.; Luo, Y.; Zheng, D.; Wu, C.; Liu, X.; Xu, W. Convective and microphysical characteristics of extreme precipitation revealed by multisource observations over the Pearl River Delta at monsoon coast. Geophy. Res. Let. 2022, 49, e2021GL097043. [Google Scholar]
- Wang, H.; Kong, F.; Wu, N.; Lan, H.; Yin, J. An investigation into microphysical structure of a squall line in South China observed with a polarimetric radar and a disdrometer. Atmos. Res. 2019, 226, 171–180. [Google Scholar] [CrossRef]
- Zhang, G.; Vivekanandan, J.; Brandes, E. A method for estimating rain rate and drop size distribution from polarimetric radar measurements. IEEE Trans. Geosci. Remote Sens. 2001, 39, 830–841. [Google Scholar] [CrossRef]
- Golestani, Y.; Chandrasekar, V.; Bringi, V.N. Intercomparison of multiparameter radar measurements. In Proceedings of the 24th Conference on Radar Meteorology of the American Meteorological Society, Tallahassee, FL, USA, 27–31 March 1989; pp. 309–314. [Google Scholar]
- Wu, D.; Zhao, K.; Kumjian, M.; Chen, X.; Huang, H.; Wang, M.; Didlake, A., Jr.; Duan, Y.; Zhang, F. Kinematics and microphysics of convection in the outer rainband of typhoon Nida (2016) revealed by polarimetric radar. Mon. Weather Rev. 2018, 146, 2147–2159. [Google Scholar] [CrossRef]
- Park, H.S.; Ryzhkov, A.V.; Zrnić, D.S.; Kim, K.-E. The Hydrometeor Classification Algorithm for the Polarimetric WSR-88D: Description and Application to an MCS. Weather Forecast. 2009, 24, 730–748. [Google Scholar] [CrossRef]
- Wu, C.; Liu, L.; Wei, M.; Xi, B.; Yu, M. Statistics-based optimization of the polarimetric radar hydrometeor classification algorithm and its application for a squall line in South China. Adv. Atmos. Sci. 2018, 35, 296–316. [Google Scholar] [CrossRef]
- Zhang, G.; Vivekanandan, J.; Brandes, E.; Meneghini, R.; Kozu, T. The shape-slope relation in observed Gamma raindrop size distributions: Statistical error or useful information. J. Atmos. Ocean. Technol. 2003, 20, 1106–1119. [Google Scholar] [CrossRef]
- Sun, J.; Yang, B. Meso-β scale torrential rain affected by topography and the urban circulation. Chin. J. Atmos. Sci. 2008, 32, 1352–1364. (In Chinese) [Google Scholar] [CrossRef]
- Bringi, V.; Chandrasekar, V.; Hubbert, J.; Gorgucci, E.; Randeu, W.; Schoenhuber, M. Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. J. Atmos. Sci. 2003, 60, 354–365. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, L.; Liu, X.; Pu, Y.; Li, H.; Xia, F.; Xu, B. Contrasts in the Evolution and Microphysical Features of Two Convective Systems during a Heavy Rainfall Event along the Coast of South China. Atmosphere 2022, 13, 1549. https://doi.org/10.3390/atmos13101549
Ye L, Liu X, Pu Y, Li H, Xia F, Xu B. Contrasts in the Evolution and Microphysical Features of Two Convective Systems during a Heavy Rainfall Event along the Coast of South China. Atmosphere. 2022; 13(10):1549. https://doi.org/10.3390/atmos13101549
Chicago/Turabian StyleYe, Langming, Xiantong Liu, Yiliang Pu, Huiqi Li, Feng Xia, and Biyu Xu. 2022. "Contrasts in the Evolution and Microphysical Features of Two Convective Systems during a Heavy Rainfall Event along the Coast of South China" Atmosphere 13, no. 10: 1549. https://doi.org/10.3390/atmos13101549
APA StyleYe, L., Liu, X., Pu, Y., Li, H., Xia, F., & Xu, B. (2022). Contrasts in the Evolution and Microphysical Features of Two Convective Systems during a Heavy Rainfall Event along the Coast of South China. Atmosphere, 13(10), 1549. https://doi.org/10.3390/atmos13101549