Influence of the Geographic Channel Effect on PM2.5 Concentrations over the Taipei Basin in Relation to Continental High-Pressure Systems during Winter
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Materials
2.3. Methods
2.3.1. Location of the Continental High-Pressure System
2.3.2. Preliminary Data Treatment
2.3.3. Definition of PM2.5 Event
2.3.4. Ventilation Index
2.3.5. Principal Component Analysis
2.3.6. Non-Parametric Statistical Methods
2.3.7. Back Trajectory Tracks
2.3.8. Features of Emission Sources
3. Results
3.1. Distribution of Continental High-Pressure System
3.2. Geographical Channel Effect in the Taipei Basin
3.3. Case Studies
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lai, L.W. Fine particulate matter events associated with synoptic weather patterns, long-range transport paths and mixing height in the Taipei Basin, Taiwan. Atmos. Environ. 2015, 113, 50–62. [Google Scholar] [CrossRef]
- Tao, M.; Chen, L.F.; Xiong, X.H.; Zhang, M.G.; Ma, P.F.; Tao, J.H.; Wang, Z.F. Formation process of the widespread extreme haze pollution over northern China in January 2013: Implications for regional air quality and climate. Atmos. Environ. 2014, 98, 417–425. [Google Scholar] [CrossRef]
- Wang, S.H.; Hung, W.T.; Chang, S.C.; Yen, M.C. Transport characteristics of Chinese haze over Northern Taiwan in winter, 2005–2014. Atmos. Environ. 2016, 126, 76–86. [Google Scholar] [CrossRef]
- Fan, S.J.; Fan, Q.; Yu, W.; Luo, X.Y.; Wang, B.M.; Song, L.L.; Leong, K.L. Atmospheric boundary layer characteristics over the Pearl River Delta, China, during the summer of 2006: Measurement and model results. Atmos. Chem. Phys. 2011, 11, 6297–6310. [Google Scholar] [CrossRef]
- Gallardo, L.; Olivares, G.; Langner, J.; Aarhus, B. Coastal lows and sulfur air pollution in Central Chile. Atmos. Environ. 2002, 36, 3829–3841. [Google Scholar] [CrossRef]
- Zheng, G.J.; Duan, F.K.; Su, H.; Ma, Y.L.; Cheng, Y.; Zheng, B.; Zhang, Q.; Huang, T.; Kimoto, T.; Chang, D.; et al. Exploring the severe winter haze in Beijing: The impact of synoptic weather, regional transport and heterogeneous reactions. Atmos. Chem. Phys. 2015, 15, 2969–2983. [Google Scholar] [CrossRef]
- Zhang, Y.; Ding, A.; Mao, H.; Nie, W.; Zhou, D.; Liu, L.; Huang, X.; Fu, C. Impact of synoptic weather patterns and inter-decadal climate variability on air quality in the North China Plain during 1980–2013. Atmos. Environ. 2016, 124, 119–128. [Google Scholar] [CrossRef]
- Rutllant, J.; Garreaud, R. Meteorological air pollution potential for Santiago, Chile: Towards an objective episode forecasting. Environ. Monit. Assess. 1995, 34, 223–244. [Google Scholar] [CrossRef]
- Shu, Z.; Zhao, T.; Liu, Y.; Zhang, L.; Ma, X.; Kuang, X.; Li, Y.; Huo, Z.; Ding, Q.; Sun, X.; et al. Impact of deep basin terrain on PM2.5 distribution and its seasonality over the Sichuan Basin, Southwest China. Environ. Pollut. 2022, 300, 118944. [Google Scholar] [CrossRef]
- Watson, J.; Cao, J.; Wang, X.; Chow, J. PM2.5 Pollution in China’s Guanzhong Basin and US’s San Joaquin Valley Mega-Regions. Faraday Discuss. 2020, 226, 255–289. [Google Scholar] [CrossRef]
- Diaz-Esteban, Y.; Barrett, B.S.; Raga, G.B. Circulation patterns influencing the concentration of pollutants in central Mexico. Atmos. Environ. 2022, 274, 118976. [Google Scholar] [CrossRef]
- Liao, T.; Wang, S.; Ai, J.; Gui, K.; Duan, B.; Zhao, Q.; Zhang, X.; Jiang, W.; Sun, Y. Heavy pollution episodes, transport pathways and potential sources of PM2.5 during the winter of 2013 in Chengdu (China). Sci. Total Environ. 2017, 584–585, 1056–1065. [Google Scholar] [CrossRef]
- Chuang, M.T.; Chiang, P.C.; Chan, C.C.; Wang, C.F.; Chang, E.E.; Lee, C.T. The effects of synoptical weather pattern and complex terrain on the formation of aerosol events in the Greater Taipei area. Sci. Total Environ. 2008, 399, 128–146. [Google Scholar] [CrossRef]
- Pateraki, S.; Asimakopoulos, D.N.; Bougiatioti, A.; Maggos, T.; Vasilakos, C.; Mihalopoulos, N. Assessment of PM2.5 and PM1 chemical profile in a multiple-impacted Mediterranean urban area: Origin, sources and meteorological dependence. Sci. Total Environ. 2014, 479–480, 210–220. [Google Scholar] [CrossRef]
- Lavagnini, A.; Sempreviva, A.M.; Transerici, C.; Accadia, C.; Casaioli, M.; Mariani, S.; Speranza, A. Offshore wind climatology over the Mediterranean Basin. Wind. Energy 2006, 9, 251–266. [Google Scholar] [CrossRef]
- Wu, C.C.; Lu, F.C.; Chan, W.D.; Chao, J.C.; Juang, H.M. A study of strong wind over Taiwan coastal water in northeasterly monsoon season. Meteorol. Bull. 2006, 46, 29–43. (In Chinese) [Google Scholar]
- Chien, F.C.; Kuo, Y.H. Topographic Effects on a Wintertime Cold Front in Taiwan. Monthly Weather Review. Mon. Weather Rev. 2006, 134, 3297–3316. [Google Scholar] [CrossRef]
- Lin, C.Y.; Sheng, Y.F.; Chen, W.N.; Wang, Z.; Kuo, C.H.; Chen, W.C.; Yang, T. The impact of channel effect on Asian dust transport dynamics: A case in southeastern Asia. Atmos. Chem. Phys. 2012, 12, 271–285. [Google Scholar] [CrossRef]
- Yang, Q.; Yuan, Q.; Yue, L.; Li, T. Investigation of the spatially varying relationships of PM2.5 with meteorology, topography, and emissions over China in 2015 by using modified geographically weighted regression. Environ. Pollut. 2020, 262, 114257. [Google Scholar] [CrossRef]
- Central Weather Bureau (CWB). Northeasterly Monsoons in Taiwan. 2022. Available online: https://www.cwb.gov.tw/V8/C/K/Encyclopedia/climate/climate6_list.html#climate6-03 (accessed on 17 June 2022).
- Department of Household Registration, Ministry of Interior (DHRMI). Demographic Data in Taiwan. 2020. Available online: https://www.cwb.gov.tw/V8/E/K/Encyclopedia/nous/climate_list.html#climate-03 (accessed on 17 June 2022).
- Central Weather Bureau (CWB). Index Number of Station and Station Information. 2022. Available online: https://e-service.cwb.gov.tw/wdps/obs/state.htm (accessed on 17 June 2022).
- Environmental Protection Administration (EPA). Introduction of Central Monitoring Stations. 2022. Available online: https://airtw.epa.gov.tw/CHT/EnvMonitoring/Central/article_station.aspx (accessed on 17 June 2022).
- Li, Y.; Chen, Q.; Zhao, H.; Wang, L.; Tao, R. Variations in PM10, PM2.5 and PM1.0 in an urban area of the Sichuan Basin and their relation to meteorological factors. Atmosphere 2015, 6, 150–163. [Google Scholar] [CrossRef]
- Vincenty, T. Direct and Inverse Solutions of Geodesics on the Ellipsoid with application of nested equations. Surv. Rev. 1975, 23, 88–93. [Google Scholar] [CrossRef]
- Ainslie, B.; Jackson, P.L. The use of an atmospheric dispersion model to determine influence regions in the Prince George, B.C. airshed from the burning of open wood waste piles. J. Environ. Manag. 2009, 90, 2393–2401. [Google Scholar] [CrossRef] [PubMed]
- Kiefer, M.T.; Charney, J.J.; Zhong, S.; Heilman, W.E.; Bian, X.; Mathewson, T.O. A multiscale numerical modeling study of smoke dispersion and the ventilation index in Southwestern Colorado. Atmosphere 2020, 11, 846. [Google Scholar] [CrossRef]
- Nozaki, K.Y. Mixing Depths Model Using Hourly Surface Observations; Report 7053; USAF Environmental Technical Applications Center: Patrick Space Force Base, FL, USA, 1973.
- Huang, L.M.; Tai-Sheng Chang, T.S. Exploration of Simple Estimation Method of Mixing Layer Height. J. Soil Water Conserv. 2012, 44, 231–250. (In Chinese) [Google Scholar]
- Ali, M.A.; Hassoon, A.F. Effect of daytime and nocturnal boundary layers height on some pollutant gases profile over Baghdad city, Iraq. Plant Arch. 2020, 20, 2624–2630. [Google Scholar]
- Du, C.; Liu, S.; Yu, X.; Li, X.; Chen, C.; Peng, Y.; Dong, Y.; Dong, Z.; Wang, F. Urban boundary layer height characteristics and relationship with particulate matter mass concentrations in Xi’an, Central China. Aerosol Air. Qual. Res. 2013, 13, 1598–1607. [Google Scholar] [CrossRef]
- Lai, L.W. Poor visibility in winter due to synergistic effect related to fine particulate matter and relative humidity in the Taipei metropolis, Taiwan. Atmosphere 2022, 13, 270. [Google Scholar] [CrossRef]
- Zeng, S.; Zhang, Y. The effect of meteorological elements on continuing heavy air pollution: A case study in the Chengdu area during the 2014 Spring Festival. Atmosphere 2017, 8, 71. [Google Scholar] [CrossRef]
- Eagleson, P.S. Dynamic Hydrology; McGraw-Hill: New York, NY, USA, 1970. [Google Scholar]
- NOAA Air Resources Laboratory (ARL). Pasquill Stability Classes. 1961. Available online: https://www.ready.noaa.gov/READYpgclass.php (accessed on 18 July 2022).
- Hsieh, C.C.; Tsai, J.H. VOC concentration characteristics in Southern Taiwan. Chemosphere 2003, 50, 545–556. [Google Scholar] [CrossRef]
- Lo, K.C.; Hung, C.H. Forming high ozone concentration in the ambient air of southern Taiwan under the effects of Western Pacific Subtropical High. Adv. Meteorol. 2015, 2015, 352630. [Google Scholar] [CrossRef]
- Zhao, X.; Kim, S.K.; Zhu, W.; Kannan, N.; Li, D. Long-range atmospheric transport and the distribution of polycyclic aromatic hydrocarbons in Changbai Mountain. Chemosphere 2015, 119, 289–294. [Google Scholar] [CrossRef]
- Cheng, W.L.; Pai, J.L.; Tsuang, B.J.; Chen, C.L. Synoptic patterns in relation to ozone concentrations in west-central Taiwan. Meteorol. Atmos. Phys. 2001, 78, 11–21. [Google Scholar] [CrossRef]
- Hsu, C.H.; Cheng, F.Y. Synoptic weather patterns and associated air pollution in Taiwan. Aerosol Air. Qual. Res. 2019, 19, 1139–1151. [Google Scholar] [CrossRef] [Green Version]
- Cheng, W.L. Synoptic weather patterns and their relationship to high ozone concentrations in the Taichung Basin. Atmos. Environ. 2001, 35, 4971–4994. [Google Scholar] [CrossRef]
- Lai, L.W.; Cheng, W.L. Air quality influenced by urban heat island coupled with synoptic weather patterns. Sci. Total Environ. 2009, 407, 2724–2733. [Google Scholar] [CrossRef]
- SYSTAT. Statistics-I; Systat Software, Incorp.: San Jose, CA, USA, 2007. [Google Scholar]
- SYSTAT. Statistics-III; Systat Software, Incorp.: San Jose, CA, USA, 2007. [Google Scholar]
- SYSTAT. Statistics-III; Systat Software, Incorp.: San Jose, CA, USA, 2009. [Google Scholar]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Rolph, G.; Stein, A.; Stunder, B. Real-time Environmental Applications and Display system: READY. Environ. Model. Softw. 2017, 95, 210–228. [Google Scholar] [CrossRef]
- Hondula, D.M.; Sitka, L.; Davis, R.E.; Knight, D.B.; Gawtry, S.D.; Deaton, M.L.; Lee, T.R.; Normile, C.P.; Stenger, J. A back-trajectory and air mass climatology for the Northern Shenandoah Valley, USA. Int. J. Climatol. 2010, 30, 569–581. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, M.; Wang, S.; Wang, Y.; Feng, L.; Wu, K. Air pollutant emission characteristics and HYSPLIT model analysis during heating period in Shenyang, China. Environ. Monit. Assess. 2021, 193, 9. [Google Scholar] [CrossRef]
- Levy, R.; Hsu, C. MODIS Atmosphere L2 Aerosol Product. NASA MODIS Adaptive Processing System, Goddard Space Flight Center, USA. 2015. Available online: http://dx.doi.org/10.5067/MODIS/MOD04_L2.061 (accessed on 27 August 2022).
- Levy, R.; Hsu, C. MODIS Atmosphere L2 Aerosol Product. NASA MODIS Adaptive Processing System, Goddard Space Flight Center, USA. 2017. Available online: http://doi.org/10.5067/MODIS/MYD04_L2.061 (accessed on 7 July 2022).
- Chang, K.H.; Jeng, F.T.; Tsai, Y.L.; Lin, P.L. Modeling of long-range transport on Taiwan’s acid deposition under different weather conditions. Atmos. Environ. 2000, 34, 3281–3295. [Google Scholar] [CrossRef]
- Gao, H.; Chen, J.; Wang, B.; Tan, S.C.; Lee, C.M.; Yao, X.; Yan, H.; Shi, J. A study of air pollution of city clusters. Atmos. Environ. 2011, 45, 3069–3077. [Google Scholar] [CrossRef]
- Vecchi, R.; Marcazzan, G.; Valli, G.; Ceriani, M.; Antoniazzi, C. The role of atmospheric dispersion in the seasonal variation of PM1 and PM2.5 concentration and composition in the urban area of Milan (Italy). Atmos. Environ. 2004, 38, B4437–B4446. [Google Scholar] [CrossRef]
- Ho, W.Y.; Tseng, K.H.; Liou, M.L.; Chan, C.C.; Wang, C.H. Application of Positive Matrix Factorization in the Identification of the Sources of PM2.5 in Taipei City. Int. J. Environ. Res. Public Health 2018, 15, 1305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graham, A.; Pope, R.; McQuaid, J.; Pringle, K.; Arnold, S.; Bruno, A.G.; Moore, D.; Harrison, J.; Chipperfield, M.; Sanchez-Marroquin, A.; et al. Impact of the June 2018 Saddleworth Moor wildfires on air quality in northern England. Environ. Res. Commun. 2020, 2, 031001. [Google Scholar] [CrossRef]
- Yan, Y.; Cai, X.; Miao, Y.; Yu, M. Synoptic condition and boundary layer structure regulate PM2.5 pollution in the Huaihe River Basin, China. Atmos. Res. 2022, 269, 106041. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, X.; Cheng, S.; Guan, P.; Zhang, H.; Shan, C.; Fu, Y. Investigation on the difference of PM2.5 transport flux between the North China Plain and the Sichuan Basin. Atmos. Environ. 2022, 271, 118922. [Google Scholar] [CrossRef]
- Zhan, C.C.; Xie, M.; Fang, D.X.; Wang, T.J.; Wu, Z.; Lu, H.; Li, H.M.; Chen, P.L.; Zhuang, B.L.; Li, S.; et al. Synoptic weather patterns and their impacts on regional particle pollution in the city cluster of the Sichuan Basin, China. Atmos. Environ. 2019, 208, 34–47. [Google Scholar] [CrossRef]
- Xiao, K.; Wang, Y.; Wu, G.; Fu, B.; Zhu, Y. Spatiotemporal characteristics of Air pollutants (PM10, PM2.5, SO2, NO2, O3, and CO) in the Inland Basin City of Chengdu, Southwest China. Atmosphere 2018, 9, 74. [Google Scholar] [CrossRef]
- Wang, P.; Cao, J.; Tie, X.; Wang, G.; Li, G.; Hu, T.; Wu, Y.; Xu, Y.; Xu, G.; Zhao, Y.; et al. Impact of meteorological parameters and gaseous pollutants on PM2.5 and PM10 mass concentrations during 2010 in Xi’an, China. Aerosol Air. Qual. Res. 2015, 15, 1844–1854. [Google Scholar] [CrossRef]
- Zhao, S.; Yu, Y.; Yin, D.; Qin, D.; He, J.; Li, J.; Dong, L. Two winter PM2.5 pollution types and the causes in the city clusters of Sichuan Basin, Western China. Sci. Total Environ. 2018, 636, 1228–1240. [Google Scholar] [CrossRef]
No. | Site | Latitude | Longitude | Altitude (m) | Pertinent Information | No. | Site | Latitude | Longitude | Altitude (m) | Pertinent Information |
---|---|---|---|---|---|---|---|---|---|---|---|
CWB | 31 | Shiding | 24°50′37″ N | 121°39′49″ E | 241 | B | |||||
1 | Taipei | 25°02′23″ N | 121°30′24″ E | 5.3 | A | 32 | Huoshaoliao | 25°00′09″ N | 121°44′34″ E | 287 | B |
2 | Banqiao | 24°59′58″ N | 121°26′02″ E | 9.7 | A | 33 | Daping | 25°09′57″ N | 121°37′58″ E | 362 | B |
3 | Tamsui | 25°09′56″ N | 121°26′24″ E | 19 | A | 34 | Wuchishan | 25°07′55″ N | 121°36′31″ E | 685 | B |
4 | Keelung | 25°07′59″ N | 121°44′25″ E | 26.7 | A | 35 | Fuguijiao | 25°15′49″ N | 121°33′54″ E | 196 | B |
5 | Iran | 24°45′50″ N | 121°45′23″ E | 7.2 | A | 36 | Sanhe | 25°13′59″ N | 121°35′42″ E | 216 | B |
6 | Shanjia | 24°58′33″ N | 121°23′38″ E | 10 | B | EPA | |||||
7 | Ruifang | 25°06′54″ N | 121°47′34″ E | 97 | B | 37 | Banqiao | 25°00′46″ N | 121°27′31″ E | 21 | C |
8 | Fulong | 25°01′09″ N | 121°56′03″ E | 6 | B | 38 | Cailiao | 24°04′08″ N | 121°28′51″ E | 13 | C |
9 | Shuangxi | 25°02′17″ N | 121°51′20″ E | 40 | B | 39 | Chungshan | 25°04′47″ N | 121°32′05″ E | 17 | C |
10 | Jinshan | 25°13′31″ N | 121°38′08″ E | 49 | B | 40 | Guting | 25°01′14″ N | 121°31′46″ E | 23 | C |
11 | Shezi | 25°06′41″ N | 121°27′41″ E | 54 | B | 41 | Linkou | 25°04′42″ N | 121°21′56″ E | 18 | C |
12 | Dazhi | 25°04′47″ N | 121°32′05″ E | 49 | B | 42 | Sanchong | 25°04′21″ N | 121°29′37″ E | 0 | D |
13 | Shipai | 25°07′05″ N | 121°30′20″ E | 7 | B | 43 | Shilin | 25°06′19″ N | 121°30′55″ E | 18 | C |
14 | Tianmu | 25°07′10″ N | 121°31′44″ E | 63 | B | 44 | Songshan | 25°03′00″ N | 121°34′43″ E | 21 | C |
15 | Shilin | 25°05′32″ N | 121°29′42″ E | 26 | B | 45 | Tamsui | 25°09′52″ N | 121°26′57″ E | 14 | C |
16 | Neihu | 25°04′52″ N | 121°33′56″ E | 20 | B | 46 | Tucheng | 24°58′57″ N | 121°27′06″ E | 23 | C |
17 | Sanxia | 24°56′27″ N | 121°21′42″ E | 55 | B | 47 | Wanhua | 25°02′47″ N | 121°30′28″ E | 18 | C |
18 | Xinyi | 25°02′22″ N | 121°33′22″ E | 71 | B | 48 | Wanli | 25°10′46″ N | 121°41′23″ E | 34 | C |
19 | Wenshan | 25°00′15″ N | 121°34′03″ E | 40 | B | 49 | Xindian | 24°58′38″ N | 121°32′16″ E | 28 | C |
20 | Xinzhuang | 25°03′13″ N | 121°26′22″ E | 25 | B | 50 | Xinzhuang | 25°02′16″ N | 121°25′57″ E | 17 | C |
21 | Sanzhi | 25°15′35″ N | 121°29′36″ E | 86 | B | 51 | Xizhu | 25°03′56″ N | 121°38′26″ E | 21 | C |
22 | Bali | 25°09′08″ N | 121°23′43″ E | 27 | B | 52 | Yangming | 25°10′57″ N | 121°31′46″ E | 833 | E |
23 | Luzhou | 25°05′19″ N | 121°27′51″ E | 20 | B | 53 | Yonghe | 25°01′01″ N | 121°30′58″ E | 5 | D |
24 | Tucheng | 24°58′27″ N | 121°26′02″ E | 51 | B | 54 | Dayuan | 25°03′37″ N | 121°12′06″ E | 45 | C |
25 | Yingge | 24°57′12″ N | 121°20′17″ E | 84 | B | 55 | Zhongli | 24°57′11″ N | 121°13′18″ E | 136 | D |
26 | Pinglin | 24°25′17″ N | 121°42′33″ E | 300 | B | 56 | Pingzhen | 24°57′15″ N | 121°12′17″ E | 145 | C |
27 | Sidu | 24°53′33″ N | 121°44′45″ E | 401 | B | 57 | Taoyuan | 24°59′44″ N | 121°18′15″ E | 104 | C |
28 | Taiping | 24°58′16″ N | 121°49′25″ E | 422 | B | 58 | Keelung | 25°07′45″ N | 121°45′36″ E | 15 | C |
29 | Fushan | 24°46′34″ N | 121°30′10″ E | 405 | B | 59 | Longtan | 24°51′49″ N | 121°12′58″ E | 247 | C |
30 | Tonghou | 24°50′53″ N | 121°35′52″ E | 360 | B | 60 | Guanyin | 25°02′07″ N | 121°04′57″ E | 30 | F |
ε1 n = 385 | ε2 n = 457 | ε3 n = 32 | |
---|---|---|---|
(μg·m−3) | 15.6 ± 11.7 a | 15.5 ± 10.0 a | 13.6 ± 10.7 a |
PI | 173.9 ± 939.0 a | 59.4 ± 448.9 a | 164.3 ± 824.1 a |
Tm (°C) | 19.3 ± 3.9 c | 20.0 ± 3.7 b | 22.9 ± 3.5 a |
RH (%) | 77.2 ± 10.2 a | 75.0 ± 10.1 b | 73.8 ± 9.9 c |
WS (m·s−1) | 2.40 ± 1.04 b | 2.63 ± 1.01 a | 2.39 ± 1.14 c |
MH (m) | 1391.4 ± 639.9 c | 1588.3 ± 602.0 a | 1560.4 ± 675.4 b |
VI | 3851.5 ± 2823.3 c | 4640.4 ± 2909.6 a | 4369.7 ± 2934.3 b |
(hPa) | 33.2 ± 10.7 a | 20.5 ± 5.9 b | 16.9 ± 4.8 c |
d (km) | 3078.8 ± 458.7 a | 2201.6 ± 254.6 c | 2274.9 ± 285.1 b |
(degree) | −20.9 ± 5.4 c | −4.5 ± 5.3 b | 11.6 ± 2.6 a |
α n = 120 | β n = 1694 | γ n = 342 | |
---|---|---|---|
(μg·m−3) | 17.2 ± 10.5 a | 16.6 ± 10.4 a | 17.7 ± 10.4 a |
PI | 111.0 ± 755.5 c | 121.3 ± 718.5 b | 130.8 ± 615.2 a |
Tm (°C) | 19.4 ± 4.6 b | 19.1 ± 4.3 c | 21.7 ± 3.6 a |
RH (%) | 73.7 ± 11.3 a | 72.3 ± 11.3 a | 72.7 ± 11.2 a |
WS (m·s−1) | 2.09 ± 1.05 b | 2.52 ± 1.04 a | 1.81 ± 0.95 c |
MH (m) | 1342.4 ± 664.1 c | 1542.1 ± 625.0 a | 1167.0 ± 603.9 b |
VI | 3333.1 ± 3002.2 b | 4379.1 ± 3000.9 a | 2574.8 ± 2333.4 c |
(hPa) | 13.6 ± 4.8 a | 9.7 ± 3.0 c | 11.7 ± 3.5 b |
d (km) | 1692.4 ± 288.1 b | 954.7 ± 315.9 c | 1810.6 ± 439.5 a |
(degree) | −13.7 ± 1.6 c | −1.0 ± 4.5 b | 17.7 ± 10.4 a |
Period 1 | Period 2 | Period 3 | ||||||
---|---|---|---|---|---|---|---|---|
BE1 n = 16 | E1 n = 16 | BE2 n = 15 | E2 n = 15 | AE2 n = 15 | BE3 n = 26 | E3 n = 26 | AE3 n = 26 | |
(μg·m−3) | 27.0 ± 8.2 a | 67.1 ± 6.4 b | 28.5 ± 8.4 b | 79.2 ± 9.8 a | 18.9 ± 8.9 b | 20.6 ± 18.0 c | 71.9 ± 3.9 a | 26.3 ± 6.5 b |
PI | 102.5 ± 482.0 b | 6682.3 ± 650.4 a | 324.7 ± 841.2 b | 7796.1 ± 1221.3 a | 142.3 ± 455.9 b | 708.5 ± 1295.1 b | 6919.6 ± 492.5 a | 69.9 ± 317.3 c |
Tm (°C) | 16.3 ± 1.2 a | 15.0 ± 0.3 b | 12.7 ± 1.2 a | 11.8 ± 0.3 a | 11.5 ± 0.7 a | 18.5 ± 1.6 a | 15.3 ± 0.8 b | 12.3 ± 0.8 c |
RH (%) | 65.3 ± 4.2 a | 57. 5 ± 2.7 b | 82.3 ± 1.9 a | 67.2 ± 5.2 a | 76.6 ± 8.6 a | 80.7 ± 1.8 a | 67.1 ± 6.7 b | 56.8 ± 2.6 c |
WS (m·s−1) | 3.0 ± 0.7 a | 3.3 ± 0.5 a | 2.2 ± 0.6 a | 2.2 ± 0.5 a | 1.8 ± 0.4 a | 3.5 ± 0.4 a | 2.8 ± 0.6 b | 3.0 ± 0.7 b |
MH (m) | 1835.1 ± 330.5 b | 2339.4 ± 495.6 a | 1118.1 ± 417.1 a | 1352.4 ± 465.4 a | 1245.8 ± 289.2 a | 1608.8 ± 274.5 b | 1516.1 ± 302.3 b | 2328.4 ± 488.6 a |
VI | 5498.7 ± 1813.6 b | 7958.1 ± 2713.9 a | 2609.0 ± 1399.5 a | 3195.1 ± 1704.5 a | 2344.8 ± 959.0 a | 5686.2 ± 1255.6 c | 4373.7 ± 1434.2 b | 7146.0 ± 2742.8 a |
(hPa) | 20.5 ± 2.7 a | 11.6 ± 2.4 b | 31.5 ± 5.3 a | 11.6 ± 3.5 a | 7.8 ± 1.2 b | 41.3 ± 4.5 a | 29.2 ± 4.7 b | 15.7 ± 4.0 c |
d (km) | 2135.5 ± 104.4 a | 1247.6 ± 423.5 b | 3227.2 ± 462.0 a | 1166.4 ± 395.3 a | 622.7 ± 48.0 b | 3419.4 ± 69.1 a | 2602.3 ± 358.6 b | 1562.5 ± 519.4 c |
(degree) | −7.8 ± 0.7 b | −3.5 ± 2.2 a | −23.4 ± 4.5 a | −7.4 ± 2.4 b | −3.1 ± 0.5 c | −25.7 ± 0.5 a | −17.0 ± 3.7 b | −8.7 ± 3.6 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, L.-W.; Lin, C.-Y. Influence of the Geographic Channel Effect on PM2.5 Concentrations over the Taipei Basin in Relation to Continental High-Pressure Systems during Winter. Atmosphere 2022, 13, 1539. https://doi.org/10.3390/atmos13101539
Lai L-W, Lin C-Y. Influence of the Geographic Channel Effect on PM2.5 Concentrations over the Taipei Basin in Relation to Continental High-Pressure Systems during Winter. Atmosphere. 2022; 13(10):1539. https://doi.org/10.3390/atmos13101539
Chicago/Turabian StyleLai, Li-Wei, and Chuan-Yao Lin. 2022. "Influence of the Geographic Channel Effect on PM2.5 Concentrations over the Taipei Basin in Relation to Continental High-Pressure Systems during Winter" Atmosphere 13, no. 10: 1539. https://doi.org/10.3390/atmos13101539
APA StyleLai, L. -W., & Lin, C. -Y. (2022). Influence of the Geographic Channel Effect on PM2.5 Concentrations over the Taipei Basin in Relation to Continental High-Pressure Systems during Winter. Atmosphere, 13(10), 1539. https://doi.org/10.3390/atmos13101539