Testing Filter-Based Air Cleaners with Surrogate Particles for Viruses and Exhaled Droplets
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Comparison of the Test Aerosols
3.2. Influence of the Filter Class
3.3. Effect of Aging with Cigarette Smoke
4. Modeling of Different Scenarios
- The particle concentration can be reduced due to natural deposition, mainly caused by diffusion, sedimentation, electrophoresis, or thermophoresis. Those factors are summarized in the decay rate . In a number-based metric, agglomeration can also contribute to the decay rate, but it is rather negligible at typical indoor concentrations.
- For the case of microbiological particles such as viruses, natural inactivation over time can occur. This is expressed by the decay rate .
- There can be a venting rate caused by the unintended leakage of the room, intended opening of a window, or operation of an HVAC system.
- If an air cleaner is present, it causes an additional decay rate , which is related to the CADR via
- The limited lifetime of airborne SARS-CoV-2 with a half-life of approximately 1.1 h [61]. This corresponds to a decay rate of kinac = ln(2)/1.1 h = 0.6 h−1.
- A leak rate of 0.5 h−1 through windows, doors, and other openings, which is a typical value for European houses [62].
- The natural deposition of particles, which the testing standards GB/T 18801-2015 and ANSI/AHAM AC-1-2020 assume as 0.2 h−l in the submicron size range.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stelzer-Braid, S.; Oliver, B.G.; Blazey, A.J.; Argent, E.; Newsome, T.P.; Rawlinson, W.D.; Tovey, E.R. Exhalation of respiratory viruses by breathing, coughing, and talking. J. Med. Virol. 2009, 81, 1674–1679. [Google Scholar] [CrossRef] [PubMed]
- Papineni, R.S.; Rosenthal, F.S. The size distribution of droplets in the exhaled breath of healthy human subjects. J. Aerosol Med. 1997, 10, 105–116. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Li, Y.S.H.; Liu, L. Exhaled droplets due to talking and coughing. J. R. Soc. Interface 2009, 6, 703–714. [Google Scholar] [CrossRef]
- Han, Z.Y.; Weng, W.G.; Huang, Q.Y. Characterizations of particle size distribution of the droplets exhaled by sneeze. J. R. Soc. Interface 2013, 10, 20130560. [Google Scholar] [CrossRef] [PubMed]
- Position Paper of the Gesellschaft für Aerosolforschung on Understanding the Role of Aerosol Particles in SARS-CoV-2 Infection. Available online: https://www.info.gaef.de/position-paper (accessed on 30 August 2022).
- Asadi, S.; Wexler, A.; Barreda, C.C.S.; Bouvier, N.; Ristenpart, W. Aerosol emission and superemission during human speech increase with voice loudness. Sci. Rep. 2019, 9, 2348. [Google Scholar] [CrossRef]
- Haslbeck, K.; Schwarz, K.; Hohlfeld, J.; Seume, J.; Koch, W. Submicron droplet formation in the human lung. J. Aerosol Sci. 2010, 41, 429–438. [Google Scholar] [CrossRef]
- Schwarz, K.; Biller, H.; Windt, H.; Koch, W.; Hohlfeld, J. Characterization of exhaled particles from the healthy human lung-a systematic analysis in relation to pulmonary function variables. J. Aerosol Med. Pulm. Drug Deliv. 2010, 23, 371–379. [Google Scholar] [CrossRef]
- Scheuch, G. Breathing is enough: For the spread of influenza virus and SARS-CoV-2 by breathing only. J. Aerosol Med. Pulm. Drug Deliv. 2020, 33, 230–234. [Google Scholar] [CrossRef]
- Ma, J.; Qi, X.; Chen, H.; Li, X.; Zhang, Z.; Wang, H.; Sun, L.; Zhang, L.; Guo, J.; Morawska, L.; et al. Coronavirus Disease 2019 Patients in Earlier Stages Exhaled Millions of Severe Acute Respiratory Syndrome Coronavirus 2 Per Hour. Clin. Infect. Dis. 2021, 72, e652–e654. [Google Scholar] [CrossRef]
- Wells, W. On Air-borne Infection. Study II. Droplets and Droplet Nuclei. Am. J. Hyg. 1934, 20, 611–618. [Google Scholar]
- Parienta, D.; Morawska, L.; Johnson, G.; Ristovski, Z.; Hargreaves, M.; Mengersen, K.; Corbett, S.; Chao, C.; Li, Y.; Katoshevski, D. Theoretical analysis of the motion and evaporation of exhaled respiratory droplets of mixed composition. J. Aerosol Sci. 2011, 42, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Marr, L.; Tang, J.; van Mullekom, J.; Lakdawala, S. Mechanistic insights into the effect of humidity on airborne influenza virus survival, transmission and incidence. J. R. Soc. Interface 2019, 16, 20180298. [Google Scholar] [CrossRef] [PubMed]
- Nordsiek, F.; Bodenschatz, E.; Bagheri, G. Risk assessment for airborne disease transmission by poly-pathogen aerosols. PLoS ONE 2020, 16, e0248004. [Google Scholar] [CrossRef] [PubMed]
- Nazaroff, W.W. Indoor aerosol science aspects of SARS-CoV-2 transmission. Indoor Air 2022, 32, e12970. [Google Scholar] [CrossRef] [PubMed]
- Morawska, L.; Tang, J.; Bahnfleth, W.; Bluyssen, P.; Boerstra, A.; Buonanno, G.; Cao, J.; Dancer, S.; Floto, A.; Franchimon, F.; et al. How can airborne transmission of COVID-19 indoors be minimised? Environ. Int. 2020, 142, 105832. [Google Scholar] [CrossRef]
- Curtius, J.; Granzin, M.; Schrod, J. Testing mobile air purifiers in a school classroom: Reducing the airborne transmission risk for SARS-CoV-2. Aerosol Sci. Technol. 2021, 55, 586–599. [Google Scholar] [CrossRef]
- Ciuzas, D.; Prasauskas, T.; Krugly, E.; Jurelionis, A.; Seduikyte, L.; Martucevicius, D. Indoor air quality management by combined ventilation and air cleaning: An experimental study. Aerosol Air Qual. Res. 2016, 16, 2550–2559. [Google Scholar] [CrossRef]
- Wang, C.; Otani, Y. Removal of nanoparticles from gas streams by fibrous filters: A review. Ind. Eng. Chem. Res. 2013, 52, 5–17. [Google Scholar] [CrossRef]
- Todea, A.; Schmidt, F.; Schuldt, T.; Asbach, C. Development of a method to determine the fractional efficiency of full scale HVAC and HEPA filter cassettes for nanoparticles >3.5 nm. Atmosphere 2020, 11, 1191. [Google Scholar] [CrossRef]
- Wang, S.-C. Electrostatic forces in fibrous filters—A review. Powder Technol. 2001, 118, 166–170. [Google Scholar] [CrossRef]
- Thakur, R.; Da, D.; Das, A. Electret Air Filters. Sep. Purif. Rev. 2013, 42, 87–129. [Google Scholar] [CrossRef]
- Walsh, D.C.; Stenhouse, J.I.T. Clogging of an electrically active fibrous filter material: Experimental results and two-dimensional simulations. Powder Technol. 1997, 93, 63–75. [Google Scholar] [CrossRef]
- Ji, J.H.; Bae, G.N.; Kang, S.H.; Hwang, J. Effect of particle loading on the collection performance of an electret cabin air filter for submicron aerosols. J. Aerosol. Sci. 2003, 34, 1493–1504. [Google Scholar] [CrossRef]
- Choi, H.J.; Park, E.S.; Kim, J.U.; Kim, S.H.; Lee, M.H. Experimental study on charge decay of electret filter due to organic solvent exposure. Aerosol Sci. Technol. 2015, 49, 977–983. [Google Scholar] [CrossRef]
- Kerner, M.; Schmidt, K.; Schumacher, S.; Asbach, C.; Antonyuk, S. Electret filters—from the influence of discharging methods to optimization potential. Atmosphere 2021, 12, 65. [Google Scholar] [CrossRef]
- Motyl, E.; Lowkis, B. Effect of air humidity on charge decay and lifetime of PP electret nonwovens. Fibres Text. East. Eur. 2006, 14, 39–42. [Google Scholar]
- Wang, Y.; Lin, Z.; Zhang, W. Comparison of effects of particle charging, media characteristics, humidity and aerosols on loading performance of electret media. Build. Environ. 2020, 179, 106962. [Google Scholar] [CrossRef]
- Finger, H.; Schneiderwind, U.; Asbach, C. Bewertung mobiler Raumluftreinigungsgeräte. Gefahrst.–Reinh. Luft 2015, 75, 497. [Google Scholar]
- Schumacher, S.; Spiegelhoff, D.; Schneiderwind, U.; Finger, H.; Asbach, C. Performance of new and artificially aged electret filters in indoor air cleaners. Chem. Eng. Technol. 2018, 41, 27–34. [Google Scholar] [CrossRef]
- Afshari, A.; Ekberg, L.; Forejt, L.; Mo, J.; Rahimi, S.; Siegel, J.; Chen, W.; Wargocki, P.; Zuraimi, S.; Zhang, J. Electrostatic precipitators as an indoor air cleaner—A literature review. Sustainability 2020, 12, 8774. [Google Scholar] [CrossRef]
- Sahu, S.K.; Tiwari, M.; Bhangare, R.C.; Pandit, G.G. Particle size distribution of mainstream and exhaled cigarette smoke and predictive deposition in human respiratory tract. Aerosol Air Qual. Res. 2013, 13, 324–332. [Google Scholar] [CrossRef]
- Kaniyala Melanthota, S.; Banik, S.; Chakraborty, I.; Pallen, S.; Gopal, D.; Chakrabarti, S.; Mazumder, S. Elucidating the microscopic and computational techniques to study the structure and pathology of SARS-CoVs. Micros. Res. Tech. 2020, 83, 1623–1638. [Google Scholar] [CrossRef] [PubMed]
- O’Leary, V.B.; Dolly, O.J.; Höschl, C.; Černa, M.; Ovsepian, S.V. Unpacking pandora from its box: Deciphering the molecular basis of the SARS-CoV-2 coronavirus. Int. J. Mol. Sci. 2020, 22, 386. [Google Scholar] [CrossRef]
- Forsyth, B.; Liu, B.Y.; Romay, F.J. Particle charge distribution measurement for commonly generated laboratory aerosols. Aerosol Sci. Technol. 1998, 28, 489–501. [Google Scholar] [CrossRef]
- Tsai, C.J.; Lin, J.S.; Deshpande, C.G.; Liu, L.C. Electrostatic charge measurement and charge neutralization of fine aerosol particles during the generation process. Part. Part. Syst. Charact. 2005, 22, 293–298. [Google Scholar] [CrossRef]
- Wallner, P.; Kundi, M.; Panny, M.; Tappler, P.; Hutter, H.P. Exposure to air ions in indoor environments: Experimental study with healthy adults. Int. J. Environ. Res. Public Health 2015, 12, 14301–14311. [Google Scholar] [CrossRef]
- Liu, B.Y.; Pui, D.Y. Electrical neutralization of aerosols. J. Aerosol Sci. 1974, 5, 465–472. [Google Scholar] [CrossRef]
- Schumacher, S.; Jasti, R.; Kerner, M.; Antonyuk, S.; Asbach, C. Ursachenanalyse zum Einfluss des Prüfaerosols auf die Abscheideeffizienz von Elektretfiltern. Gefahrst.–Reinh. Luft 2019, 79, 435–442. [Google Scholar] [CrossRef]
- Jaccard, G.; Djoko, D.T.; Korneliou, A.; Stabbert, R.; Belushkin, M.; Esposito, M. Mainstream smoke constituents and in vitro toxicity comparative analysis of 3R4F and 1R6F reference cigarettes. Toxicol. Rep. 2019, 6, 222–231. [Google Scholar] [CrossRef]
- Rengasamy, S.; Zhuang, Z.; Niezgoda, G.; Walbert, G.; Lawrence, R.; Boutin, B.; Hudnall, J.; Monagham, W.P.; Bergman, M.; Miller, C.; et al. A comparison of total inward leakage measured using sodium chloride (NaCl) and corn oil aerosol methods for air-purifying respirators. J. Occup. Environ. Hyg. 2018, 15, 616–627. [Google Scholar] [CrossRef]
- Schumacher, S.; Jasti, R.; Asbach, C. Einfluss von Entladungsmethode und Aerosolmaterial auf die Abscheideeffizienz von Elektretfiltern. Gefahrst. –Reinh. Luft 2018, 78, 316–322. [Google Scholar]
- Rogak, S.; Flagan, R. Bipolar Diffusion Charging of Spheres and Agglomerate Aerosol Particles. J. Aerosol Sci. 1992, 23, 693–710. [Google Scholar] [CrossRef]
- Chen, B.T.; Cheng, Y.S.; Yeh, H.C. A study of density effect and droplet deformation in the TSI aerodynamic particle sizer. Aerosol Sci. Technol. 1990, 12, 278–285. [Google Scholar] [CrossRef]
- Baron, P.; Deye, G.J.; Martinez, A.B.; Jones, E.N.; Bennett, J.S. Size shifts in measurements of droplets with the aerodynamic particle sizer and the aerosizer. Aerosol Sci. Technol. 2008, 42, 201–209. [Google Scholar] [CrossRef]
- Volckens, J.; Peters, T.M. Counting and particle transmission efficiency of the aerodynamic particle sizer. J. Aerosol Sci. 2005, 36, 1400–1408. [Google Scholar] [CrossRef]
- Jeon, W.; Lee, B.; Yun, H.; Kim, J.; Kang, S.; Seo, Y. Characterization of pressure drop through two-stage particulate air filters. Sci. Technol. Built Environ. 2020, 26, 835–843. [Google Scholar] [CrossRef]
- Pei, J.; Dong, C.; Liu, J. Operating behavior and corresponding performance of portable air cleaners in residential buildings, China. Build. Environ. 2019, 147, 473–481. [Google Scholar] [CrossRef]
- Bluyssen, P.M.; Ortiz, M.; Zhang, D. The effect of a mobile HEPA filter system on ‘infectious’ aerosols, sound and air velocity in the SenseLab. Build. Environ. 2021, 188, 107475. [Google Scholar] [CrossRef]
- Kim, J.; Lee, M. Effect of filter collection efficiency on the clean air delivery rate in an air cleaner. Indoor Air 2021, 3, 745. [Google Scholar] [CrossRef]
- Wichmann, J.; Lind, T.; Nilsson, M.M.; Bellander, T. PM2.5, soot and NO2 indoor–outdoor relationships at homes, pre-schools and schools in Stockholm, Sweden. Atmos. Environ. 2010, 44, 4536–4544. [Google Scholar] [CrossRef]
- Lehtimäki, M.; Heinonen, K. Reliability of electret filters. Build. Environ. 1994, 29, 353–355. [Google Scholar] [CrossRef]
- Pei, J.; Dai, W.; Li, H.; Liu, J. Laboratory and field investigation of portable air cleaners’ long-term performance for particle removal. Build. Environ. 2020, 181, 107100. [Google Scholar] [CrossRef]
- Heo, K.J.; Lee, G.D.; Doh, S.J.; Jung, J.H. Effect of cigarette smoke on the lifetime of electret air filters. Sci. Total Environ. 2022, 807, 150754. [Google Scholar] [CrossRef]
- Ohlwein, S.; Kappeler, R.; Kutlar Joss, M.; Künzli, N.; Hoffmann, B. Health effects of ultrafine particles: A systematic literature review update of epidemiological evidence. Int. J. Public Health 2019, 64, 547–559. [Google Scholar] [CrossRef] [PubMed]
- Schumacher, S.; Schmid, H.-J.; Asbach, C. Effektivität von Luftreinigern zur Reduzierung des COVID-19-Infektionsrisikos. Gefahrst.–Reinh. Luft 2021, 81, 16–28. [Google Scholar] [CrossRef]
- Shaughnessy, R.J.; Sextro, R.G. What is an effective portable air cleaning device? A review. J. Occup. Environ. Hyg. 2006, 3, 169–181. [Google Scholar] [CrossRef]
- Küpper, M.; Asbach, C.; Schneiderwind, U.; Finger, H.; Spiegelhoff, D.; Schumacher, S. Testing of an indoor air cleaner for particulate pollutants under realistic conditions in an office room. Aerosol Air Qual. Res. 2019, 19, 1655–1665. [Google Scholar] [CrossRef]
- Szabadi, J.; Meyer, J.; Lehmann, M.; Dittler, A. Simultaneous temporal, spatial and size-resolved measurements of aerosol particles in closed indoor environments applying mobile filters in various use-cases. J. Aerosol Sci. 2022, 160, 105906. [Google Scholar] [CrossRef]
- Kriegel, M.; Buchholz, U.; Gastmeier, P.; Bischoff, P.; Abdelgawad, I.; Hartmann, A. Predicted infection risk for aerosol transmission of sars-COV-2. medRxiv 2020. [Google Scholar] [CrossRef]
- Van Doremalen, N.; Bushmaker, T.; Morris, D.H.; Holbrook, M.G.; Gamble, A.; Williamson, B.N.; Tamin, A.; Harcourt, J.L.; Thornburg, N.J.; Gerber, S.I.; et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N. Engl. J. Med. 2020, 382, 1564–1567. [Google Scholar] [CrossRef]
- Dimitroulopoulou, C. Ventilation in European dwellings: A review. Build. Environ. 2012, 47, 109–125. [Google Scholar] [CrossRef]
- Zhou, L.; Yao, M.; Zhang, X.; Hu, B.; Li, X.; Chen, H.; Zhang, L.; Liu, Y.; Sun, B.; Jiang, Y.; et al. Breath-, air-and surface-borne SARS-CoV-2 in hospitals. J. Aerosol Sci. 2021, 152, 105693. [Google Scholar] [CrossRef] [PubMed]
- Gale, P. Thermodynamic equilibrium dose-response models for MERS-CoV infection reveal a potential protective role of human lung mucus but not for SARS-CoV-2. Microb. Risk Anal. 2021, 16, 100140. [Google Scholar] [CrossRef] [PubMed]
- Prentiss, M.; Chu, A.; Berggren, K.K. Finding the infectious dose for COVID-19 by applying an airborne-transmission model to superspreader events. PLoS ONE 2022, 17, e0265816. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, T.; Bartrand, T.A.; Weir, M.H.; Omura, T.; Haas, C.N. Development of a dose-response model for SARS coronavirus. Risk Anal. Int. J. 2010, 30, 1129–1138. [Google Scholar]
Parameter | |||||||
---|---|---|---|---|---|---|---|
value | 1000 min−1 | 40 m³ | 0.2 h−1 | 0.6 h−1 | 0.5 / 4.5 h−1 * | 0.0 / 4.0 h−1 ** | 9 L/min |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schumacher, S.; Banda Sanchez, A.; Caspari, A.; Staack, K.; Asbach, C. Testing Filter-Based Air Cleaners with Surrogate Particles for Viruses and Exhaled Droplets. Atmosphere 2022, 13, 1538. https://doi.org/10.3390/atmos13101538
Schumacher S, Banda Sanchez A, Caspari A, Staack K, Asbach C. Testing Filter-Based Air Cleaners with Surrogate Particles for Viruses and Exhaled Droplets. Atmosphere. 2022; 13(10):1538. https://doi.org/10.3390/atmos13101538
Chicago/Turabian StyleSchumacher, Stefan, Arantxa Banda Sanchez, Anna Caspari, Katharina Staack, and Christof Asbach. 2022. "Testing Filter-Based Air Cleaners with Surrogate Particles for Viruses and Exhaled Droplets" Atmosphere 13, no. 10: 1538. https://doi.org/10.3390/atmos13101538
APA StyleSchumacher, S., Banda Sanchez, A., Caspari, A., Staack, K., & Asbach, C. (2022). Testing Filter-Based Air Cleaners with Surrogate Particles for Viruses and Exhaled Droplets. Atmosphere, 13(10), 1538. https://doi.org/10.3390/atmos13101538