How Photochemically Consumed Volatile Organic Compounds Affect Ozone Formation: A Case Study in Chengdu, China
Abstract
:1. Introduction
2. Methods
2.1. Monitoring Site and Instruments
2.2. Data Analysis
2.2.1. Contribution to O3 Formation
2.2.2. Photochemical Initial Concentration (PIC)
2.3. Observation-Based Model (OBM)
3. Results and Discussion
3.1. General Statistics
3.1.1. Data Overview
3.1.2. Diurnal and Nocturnal Variation
3.2. PICs and Consumed Concentrations of VOCs
3.3. VOCs Reactivity Characteristics
3.4. O3-VOC-NOx Relations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Felzer, B.S.; Cronin, T.; Reilly, J.M.; Melilloa, J.M.; Wang, X.D. Impacts of ozone on trees and crops. C. R. Geosci. 2007, 339, 784–798. [Google Scholar] [CrossRef]
- Zhu, X.K.; Feng, Z.Z.; Sun, T.F.; Liu, X.C.; Tang, H.Y.; Zhu, J.G.; Guo, W.S.; Kobayashi, K. Effects of elevated ozone concentration on yield of four Chinese cultivars of winter wheat under fully open-air field conditions. Glob. Change Biol. 2011, 17, 2697–2706. [Google Scholar] [CrossRef]
- Sun, J.; Shen, Z.X.; Zhang, Y.; Zhang, Z.; Zhang, Q.; Zhang, T.; Niu, X.Y.; Huang, Y.; Cui, L.; Xu, H.M.; et al. Urban VOC profiles, possible sources, and its role in ozone formation for a summer campaign over Xi’an, China. Environ. Sci. Pollut. Res. 2019, 26, 27769–27782. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.S.; Hsieh, C.C. Ambient volatile organic compound presence in the highly urbanized city: Source apportionment and emission position. Atmos. Environ. 2019, 206, 45–59. [Google Scholar] [CrossRef]
- Zheng, H.; Kong, S.; Chen, N.; Niu, Z.; Zhang, Y.; Jiang, S.; Yan, Y.; Qi, S. Source apportionment of volatile organic compounds: Implications to reactivity, ozone formation, and secondary organic aerosol potential. Atmos. Res. 2021, 249, 105344. [Google Scholar] [CrossRef]
- Li, Y.D.; Yin, S.S.; Yu, S.J.; Yuan, M.H.; Dong, Z.; Zhang, D.; Yang, L.M.; Zhang, R.Q. Characteristics, source apportionment and health risks of ambient VOCs during high ozone period at an urban site in central plain, China. Chemosphere 2020, 250, 126283. [Google Scholar] [CrossRef]
- Deng, Y.Y.; Li, J.; Li, Y.Q.; Wu, R.R.; Xie, S.D. Characteristics of volatile organic compounds, NO2, and effects on ozone formation at a site with high ozone level in Chengdu. J. Environ. Sci. 2019, 75, 334–345. [Google Scholar] [CrossRef]
- Warneke, C.; De Gouw, J.A.; Goldan, P.D.; Kuster, W.C.; Williams, E.J.; Lerner, B.M.; Jakoubek, R.; Brown, S.S.; Stark, H.; Aldener, M.; et al. Comparison of daytime and nighttime oxidation of biogenic and anthropogenic VOCs along the New England coast in summer during New England Air Quality Study 2002. J. Geophys. Res.: Atmos. 2004, 109, D10309. [Google Scholar] [CrossRef]
- Gao, Y.Q.; Li, M.; Wan, X.; Zhao, X.W.; Wu, Y.; Liu, X.X.; Li, X. Important contributions of alkenes and aromatics to VOCs emissions, chemistry and secondary pollutants formation at an industrial site of central eastern China. Atmos. Environ. 2021, 244, 117927. [Google Scholar] [CrossRef]
- Zhan, J.L.; Feng, Z.M.; Liu, P.F.; He, X.W.; He, Z.M.; Chen, T.Z.; Wang, Y.F.; He, H.; Mu, Y.J.; Liu, Y.C. Ozone and SOA formation potential based on photochemical loss of VOCs during the Beijing summer. Environ. Pollut. 2021, 285, 117444. [Google Scholar] [CrossRef]
- He, Z.; Wang, X.; Ling, Z.; Zhao, J.; Guo, H.; Shao, M.; Wang, Z. Contributions of different anthropogenic volatile organic compound sources to ozone formation at a receptor site in the Pearl River Delta region and its policy implications. Atmos. Chem. Phys. 2019, 19, 8801–8816. [Google Scholar] [CrossRef]
- Yuan, B.; Hu, W.W.; Shao, M.; Wang, M.; Chen, W.T.; Lu, S.H.; Zeng, L.M.; Hu, M. VOC emissions, evolutions and contributions to SOA formation at a receptor site in eastern China. Atmos. Chem. Phys. 2013, 13, 8815–8832. [Google Scholar] [CrossRef]
- Shao, M.; Wang, B.; Lu, S.H.; Yuan, B.; Wang, M. Effects of Beijing Olympics Control Measures on Reducing Reactive Hydrocarbon Species. Environ. Sci. Technol. 2011, 45, 514–519. [Google Scholar] [CrossRef]
- Shi, G.M.; Yang, F.M.; Zhang, L.M.; Zhao, T.L.; Hu, J. Impact of Atmospheric Circulation and Meteorological Parameters on Wintertime Atmospheric Extinction in Chengdu and Chongqing of Southwest China during 2001–2016. Aerosol Air Qual. Res. 2019, 19, 1538–1554. [Google Scholar] [CrossRef]
- Bo, Y.; Cai, H.; Xie, S.D. Spatial and temporal variation of historical anthropogenic NMVOCs emission inventories in China. Atmos. Chem. Phys. 2008, 8, 7297–7316. [Google Scholar] [CrossRef]
- Hu, W.; Hu, M.; Hu, W.W.; Niu, H.Y.; Zheng, J.; Wu, Y.S.; Chen, W.T.; Chen, C.; Li, L.Y.; Shao, M.; et al. Characterization of submicron aerosols influenced by biomass burning at a site in the Sichuan Basin, southwestern China. Atmos. Chem. Phys. 2016, 16, 13213–13230. [Google Scholar] [CrossRef]
- Tao, J.; Gao, J.; Zhang, L.; Zhang, R.; Che, H.; Zhang, Z.; Lin, Z.; Jing, J.; Cao, J.; Hsu, S.C. PM2.5 pollution in a megacity of southwest China: Source apportionment and implication. Atmos. Chem. Phys. 2014, 14, 8679–8699. [Google Scholar] [CrossRef]
- Chen, D.Y.; Zhou, L.; Wang, C.; Liu, H.F.; Qiu, Y.; Shi, G.M.; Song, D.L.; Tan, Q.W.; Yang, F.M. Characteristics of ambient volatile organic compounds during spring O3 pollution episode in Chengdu, China. J. Environ. Sci. 2022, 114, 115–125. [Google Scholar] [CrossRef]
- Tan, Q.; Zhou, L.; Liu, H.; Feng, M.; Qiu, Y.; Yang, F.; Jiang, W.; Wei, F. Observation-Based Summer O3 Control Effect Evaluation: A Case Study in Chengdu, a Megacity in Sichuan Basin, China. Atmosphere 2020, 11, 1278. [Google Scholar] [CrossRef]
- Tan, Q.W.; Liu, H.F.; Xie, S.D.; Zhou, L.; Song, T.L.; Shi, G.M.; Jiang, W.J.; Yang, F.M.; Wei, F.S. Temporal and spatial distribution characteristics and source origins of volatile organic compounds in a megacity of Sichuan Basin, China. Environ. Res. 2020, 185, 109478. [Google Scholar] [CrossRef]
- Tan, Z.F.; Lu, K.D.; Jiang, M.Q.; Su, R.; Dong, H.B.; Zeng, L.M.; Xie, S.D.; Tan, Q.W.; Zhang, Y.H. Exploring ozone pollution in Chengdu, southwestern China: A case study from radical chemistry to O3-VOC-NOx sensitivity. Sci. Total Environ. 2018, 636, 775–786. [Google Scholar] [CrossRef] [PubMed]
- Xiong, C.; Wang, N.; Zhou, L.; Yang, F.M.; Qiu, Y.; Chen, J.H.; Han, L.; Li, J.J. Component characteristics and source apportionment of volatile organic compounds during summer and winter in downtown Chengdu, southwest China. Atmos. Environ. 2021, 258, 118485. [Google Scholar] [CrossRef]
- Han, L.; Chen, J.H.; Jiang, T.; Xu, C.X.; Li, Y.J.; Wang, C.H.; Wang, B.; Qian, J.; Liu, Z. Characteristics of O3 pollution and key precursors in Chengdu during spring. Environ. Sci. 2021, 42, 4611–4620. [Google Scholar] [CrossRef]
- Han, L.; Chen, J.H.; Jiang, T.; Xu, C.X.; Li, Y.J.; Wang, C.H.; Wang, B.; Qian, J.; Liu, Z. Sensitivity analysis of atmospheric ozone formation to its precursors in Chengdu with an observation based model. Acta Sci. Circumstantiae 2020, 40, 4092–4104. [Google Scholar] [CrossRef]
- Song, M.D.; Tan, Q.W.; Feng, M.; Qu, Y.; Liu, X.G.; An, J.L.; Zhang, Y.H. Source apportionment and secondary transformation of atmospheric nonmethane hydrocarbons in Chengdu, southwest China. J. Geophys. Res.-Atmos. 2018, 123, 9741–9763. [Google Scholar] [CrossRef]
- Carter, W.P.L. Updated maximum incremental reactivity scale and hydrocarbon bin reactivities for regulatory applications. Prepared for California Air Resources Board Contract No. 07–339. 19 January 2010. Available online: https://www.cert.ucr.edu/~carter/SAPRC.
- Carter, W.P.L. Development of a database for chemical mechanism assignments for volatile organic emissions. J. Air Waste Manage. Assoc. 2015, 65, 1171–1184. [Google Scholar] [CrossRef]
- Roberts, J.M.; Fehsenfeld, F.C.; Liu, S.C.; Bollinger, M.J.; Hahn, C.; Albritton, D.L.; Sievers, R.E. Measurements of Aromatic Hydrocarbon Ratios and Nox Concentrations in the Rural Troposphere-Observation of Air-Mass Photochemical Aging and Nox Removal. Atmos. Environ. 1984, 18, 2421–2432. [Google Scholar] [CrossRef]
- Parrish, D.D.; Stohl, A.; Forster, C.; Atlas, E.L.; Blake, D.R.; Goldan, P.D.; Kuster, W.C.; De Gouw, J.A. Effects of mixing on evolution of hydrocarbon ratios in the troposphere. J. Geophys. Res. Atmos. 2007, 112, D10S34. [Google Scholar] [CrossRef]
- Shao, M.; Lu, S.H.; Liu, Y.; Xie, X.; Chang, C.C.; Huang, S.; Chen, Z.M. Volatile organic compounds measured in summer in Beijing and their role in ground-level ozone formation. J. Geophys. Res. Atmos. 2009, 114, D00G06. [Google Scholar] [CrossRef]
- Han, D.M.; Wang, Z.; Cheng, J.P.; Wang, Q.; Chen, X.J.; Wang, H.L. Volatile organic compounds (VOCs) during non-haze and haze days in Shanghai: Characterization and secondary organic aerosol (SOA) formation. Environ. Sci. Pollut. Res. 2017, 24, 18619–18629. [Google Scholar] [CrossRef]
- Yuan, B.; Shao, M.; De Gouw, J.; Parrish, D.D.; Lu, S.H.; Wang, M.; Zeng, L.M.; Zhang, Q.; Song, Y.; Zhang, J.B.; et al. Volatile organic compounds (VOCs) in urban air: How chemistry affects the interpretation of positive matrix factorization (PMF) analysis. J. Geophys. Res. Atmos. 2012, 117, D24302. [Google Scholar] [CrossRef]
- Atkinson, R.; Arey, J. Atmospheric degradation of volatile organic compounds. Chem. Rev. 2003, 103, 4605–4638. [Google Scholar] [CrossRef] [PubMed]
- Jenkin, M.E.; Saunders, S.M.; Pilling, M.J. The tropospheric degradation of volatile organic compounds: A protocol for mechanism development. Atmos. Environ. 1997, 31, 81–104. [Google Scholar] [CrossRef]
- Saunders, S.M.; Jenkin, M.E.; Derwent, R.G.; Pilling, M.J. Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part A): Tropospheric degradation of non-aromatic volatile organic compounds. Atmos. Chem. Phys. 2003, 3, 161–180. [Google Scholar] [CrossRef]
- Jenkin, M.E.; Saunders, S.M.; Wagner, V.; Pilling, M.J. Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part B): Tropospheric degradation of aromatic volatile organic compounds. Atmos. Chem. Phys. 2003, 3, 181–193. [Google Scholar] [CrossRef]
- Wang, M.; Chen, W.T.; Zhang, L.; Qin, W.; Zhang, Y.; Zhang, X.Z.; Xie, X. Ozone pollution characteristics and sensitivity analysis using an observation-based model in Nanjing, Yangtze River Delta Region of China. J. Environ. Sci. 2020, 93, 13–22. [Google Scholar] [CrossRef]
- Li, J.; Zhai, C.Z.; Yu, J.Y.; Liu, R.L.; Li, Y.Q.; Zeng, L.M.; Xie, S.D. Spatiotemporal variations of ambient volatile organic compounds and their sources in Chongqing, a mountainous megacity in China. Sci. Total Environ. 2018, 627, 1442–1452. [Google Scholar] [CrossRef]
- GB 3095-2012; Ambient Air Quality Standards. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 29 February 2012.
- Yang, X.Y.; Wu, K.; Wang, H.L.; Liu, Y.M.; Gu, S.; Lu, Y.Q.; Zhang, X.L.; Hu, Y.S.; Ou, Y.H.; Wang, S.G.; et al. Summertime ozone pollution in Sichuan Basin, China: Meteorological conditions, sources and process analysis. Atmos. Environ. 2020, 226, 117392. [Google Scholar] [CrossRef]
- Atkinson, R. Atmospheric chemistry of VOCs and NOx. Atmos. Environ. 2000, 34, 2063–2101. [Google Scholar] [CrossRef]
- Song, M.; Feng, M.; Li, X.; Tan, Q.; Song, D.; Liu, H.; Dong, H.; Zeng, L.; Lu, K.; Zhang, Y. Causes and sources of heavy ozone pollution in Chengdu. China Environ. Sci. 2022, 42, 1057–1065. [Google Scholar] [CrossRef]
- Xu, Z.N. Observation Based Study of VOCs and Their Influence of on Ozone and Secondary Organic Aerosol formation in the Western YRD Region, China. Ph.D. Thesis, Nanjing University, Nanjing, China, 2019. [Google Scholar]
- Zhu, J.; Cheng, H.; Peng, J.; Zeng, P.; Wang, Z.; Lyu, X.; Guo, H. O3 photochemistry on O3 episode days and non-O3 episode days in Wuhan, Central China. Atmos. Environ. 2020, 223, 117236. [Google Scholar] [CrossRef]
- Li, J.; Wu, R.; Li, Y.; Hao, Y.; Xie, S.; Zeng, L. Effects of rigorous emission controls on reducing ambient volatile organic compounds in Beijing, China. Sci. Total Environ. 2016, 557, 531–541. [Google Scholar] [CrossRef] [PubMed]
- Cai, C.J.; Geng, F.H.; Tie, X.X.; Yu, Q.O.; An, J.L. Characteristics and source apportionment of VOCs measured in Shanghai, China. Atmos. Environ. 2010, 44, 5005–5014. [Google Scholar] [CrossRef]
- Cardelino, C.A.; Chameides, W.L. An Observation-Based Model for Analyzing Ozone Precursor Relationships in the Urban Atmosphere. J. Air Waste Manag. Assoc. 1995, 45, 161–180. [Google Scholar] [CrossRef] [PubMed]
- An, J.L.; Zou, J.N.; Wang, J.X.; Lin, X.; Zhu, B. Differences in ozone photochemical characteristics between the megacity Nanjing and its suburban surroundings, Yangtze River Delta, China. Environ. Sci. Pollut. Res. 2015, 22, 19607–19617. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xue, L.; Chen, T.; Shen, H.; Li, H.; Wang, W. Development history of Observation-Based Model (OBM) and its application and prospect in atmospheric chemistry studies in China. Res. Environ. Sci. 2022, 35, 621–632. [Google Scholar] [CrossRef]
Before (2 Days) | During (9 Days) | After (1 Day) | |
---|---|---|---|
T (°C) | 27.9 ± 2.2 | 32.9 ± 3.5 | 24.8 ± 1.6 |
RH (%) | 77.3 ± 23.0 | 50.8 ± 13.2 | 85.5 ± 25.4 |
WS (m/s) | 0.9 ± 0.7 | 0.8 ± 0.6 | 1.9 ± 1.1 |
UVA (W/m2) | 14.5 ± 11.9 | 23.9 ± 18.4 | 5.6 ± 4.7 |
JNO2 (/s) | 1.6×10−3 ± 2.0×10−3 | 2.6×10−3 ± 3.0×10−3 | 6.2×10−4 ± 8.2×10−4 |
JO1D (/s) | 4.7×10−6 ± 7.2×10−6 | 7.4×10−6 ± 1.0×10−5 | 1.5×10−6 ± 2.5×10−6 |
O3 (μg/m3) | 74.4 ± 37.0 | 132.3 ± 84.0 | 107.8 ± 40.4 |
Ox (μg/m3) | 103.9 ± 32.3 | 162.6 ± 77.1 | 129.3 ± 39.9 |
NO (μg/m3) | 2.7 ± 2.0 | 3.9 ± 4.7 | 1.8 ± 1.0 |
NO2 (μg/m3) | 29.3 ± 11.1 | 32.4 ± 16.3 | 21.8 ± 12.9 |
NOx (μg/m3) | 31.9 ± 13.3 | 38.3 ± 21.1 | 20.4 ± 15.5 |
CO (mg/m3) | 0.5 ± 0.1 | 0.6 ± 0.2 | 0.6 ± 0.2 |
Alkanes (ppbv) | 10.0 ± 3.9 | 14.0 ± 6.2 | 8.7 ± 3.4 |
Alkenes (ppbv) | 2.6 ± 1.0 | 3.3 ± 1.4 | 2.1 ± 1.1 |
Aromatics (ppbv) | 2.4 ± 1.3 | 4.4 ± 2.4 | 1.4 ± 0.8 |
NMHC (ppbv) | 15.0 ± 5.7 | 21.7 ± 9.1 | 12.2 ± 5.0 |
Location | Time | VOC | Chemical Mechanism | O3 Formation Mechanism | Active VOC Species | Ref. |
---|---|---|---|---|---|---|
Wuhou | 3 September 2016–2 October 2016 | Measured | RACM2 | VOC-limited | Alkenes | [21] |
Wuhou | 2 April 2018–30 April 2018 | Measured | CB05 | VOC-limited | Alkenes | [23] |
Wuhou | 1 April 2019–31 August 2019 | Measured | CB05 | VOC-limited | AVOCs* | [24] |
Qingyang | 25 July 2021–5 August 2021 | Measured | MCM v3.3.1 | VOC-limited | Aromatics | This study |
PICs | transition | Alkenes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Wang, N.; Chen, D.; Tan, Q.; Song, D.; Huang, F. How Photochemically Consumed Volatile Organic Compounds Affect Ozone Formation: A Case Study in Chengdu, China. Atmosphere 2022, 13, 1534. https://doi.org/10.3390/atmos13101534
Liu H, Wang N, Chen D, Tan Q, Song D, Huang F. How Photochemically Consumed Volatile Organic Compounds Affect Ozone Formation: A Case Study in Chengdu, China. Atmosphere. 2022; 13(10):1534. https://doi.org/10.3390/atmos13101534
Chicago/Turabian StyleLiu, Hefan, Ning Wang, Dongyang Chen, Qinwen Tan, Danlin Song, and Fengxia Huang. 2022. "How Photochemically Consumed Volatile Organic Compounds Affect Ozone Formation: A Case Study in Chengdu, China" Atmosphere 13, no. 10: 1534. https://doi.org/10.3390/atmos13101534
APA StyleLiu, H., Wang, N., Chen, D., Tan, Q., Song, D., & Huang, F. (2022). How Photochemically Consumed Volatile Organic Compounds Affect Ozone Formation: A Case Study in Chengdu, China. Atmosphere, 13(10), 1534. https://doi.org/10.3390/atmos13101534