Analysis of Past and Projected Trends of Rainfall and Temperature Parameters in Eastern and Western Hararghe Zones, Ethiopia
Abstract
:1. Introduction
2. Methodology
2.1. Description of the Study Area
2.2. Data Sources
2.3. Data Quality Assessment
2.3.1. Outlier Detection
2.3.2. Homogeneity Test
2.3.3. Test of Randomness and Persistence
2.4. Analytical Procedure
2.4.1. Trend Analysis
Mann–Kendall Trend Test
Sen’s Slope Estimator Test
2.4.2. Variability analysis
The Coefficient of Variation (CV%)
Rainfall Anomaly and Precipitation Concentration Index
2.5. Future Climate Projection
3. Results and Discussion
3.1. Past Rainfall Trend at the Local and Regional Level
3.2. Rainfall Variability
3.2.1. Precipitation Concentration Index
3.2.2. Rainfall Anomaly Index(RAI)
3.3. Past Minimum and Maximum Temperature Trends
3.4. Projected Temperature and Rainfall in East and West Hararghe Zones, Ethiopia
3.4.1. Minimum and Maximum Temperature
3.4.2. Rainfall
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC (Intergovernmental Panel on Climate Change). Summary for Policymakers. In Global Warming of 1.5 °C: An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Masson-Delmotte, V., Zhai, P., Pörtner, H.O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., et al., Eds.; Press Cambridge: Cambridge, UK; New York, NY, USA, 2018; p. 24. [Google Scholar]
- IPCC (Intergovernmental Panel on Climate Change). Climate Change: Impacts, Adaptation, and Vulnerability: Part A: Global and Sectoral Aspects: Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; p. 1132. [Google Scholar]
- Haileab, Z. Climate Change in Ethiopia: Impacts, Mitigation and Adaptation. Int. J. Res. Environ. Stud. 2018, 2, 66–84. [Google Scholar] [CrossRef]
- World Bank Group. Climate Risk Profile: Ethiopia; World Bank Group: Washington, DC, USA, 2020; p. 24. [Google Scholar]
- Liu, Y.; Liu, R.; Shiu, S.C.; Li, C.J.; Zhang, J. Trend of Regional Precipitation and Their Control Mechanisms during 1979–2013. Adv. Atmos. Sci. 2016, 33, 164–174. [Google Scholar] [CrossRef]
- Kumar, R.; Gautam, H.R. Climate Change and its Impact on Agricultural Productivity in India. Climatology and Weather Forecasting. J. Clim. Weather Forecast. 2014, 2, 109. [Google Scholar] [CrossRef] [Green Version]
- Panda, A.; Sahu, N. Trend Analysis of Seasonal Rainfall and Temperature Pattern in Kalahandi, Bolangir and Koraput districts of Odisha, India. Atmos. Sci. Lett. 2019, 20, e932. [Google Scholar] [CrossRef] [Green Version]
- Tesfaye, S.; Taye, G.; Birhane, E.; van der Zee, S.E. Observed and model-simulated twenty-first-century hydro-climatic change of Northern Ethiopia. J. Hydrol. Reg. Stud. 2019, 22, 100595. [Google Scholar] [CrossRef]
- Taye, M.; Simane, B.; Zaitchik, B.F.; Selassie, Y.G.; Setegn, S. Rainfall Variability across the Agro-Climatic Zones of a Tropical Highland: The Case of the Jema Watershed, Northwestern Ethiopia. Environments 2019, 6, 118. [Google Scholar] [CrossRef] [Green Version]
- Mekonnen, Z.; Woldeamanuel, T.; Kassa, H. Socio-ecological Vulnerability to Climate Change/Variability in Central Rift Valley, Ethiopia. Adv. Clim. Chang. Res. 2019, 10, 9–20. [Google Scholar] [CrossRef]
- Ministry of Foreign Affairs of the Netherland. Climate Change Profile Ethiopia; Ministry of Foreign Affairs: Hague, The Netherland, 2018. [Google Scholar]
- USAID. Climate Change Risk in Ethiopia: Country Fact Sheet; USAID: Washington, DC, USA, 2016. [Google Scholar]
- Shumetie, A.; Alemayehu, M. Effect of Climate Variability on Crop Income and Indigenous Adaptation Strategies of Households. Int. J. Clim. Chang. Strateg. Manag. 2018, 10, 580–595. [Google Scholar] [CrossRef] [Green Version]
- WFP (World Food Program). Ethiopia Food Security Outlook; WFP: Rome, Italy, 2019. [Google Scholar]
- Mulugeta, M.; Tolossa, D.; Abebe, G. Description of Long-term Climate Data in Eastern and Southeastern Ethiopia. Data Br. 2017, 12, 26–36. [Google Scholar] [CrossRef]
- FAO (Food and Agriculture Organization). Cereal Supply and Demand Brief Diminishing Maize Production Prospects in the United States Dampen the Global Cereal Production Outlook This Year; FAO: Rome, Italy, 2019; pp. 3–5. [Google Scholar]
- Girmay, A. Spatiotemporal Climate Change Trend and Adaptation Through Environmental Rehabilitation in Ethiopia. In Proceedings of the Conference: International Conference on SLM and Watershed Management (SLMWM), Beijing, China, 21–23 October 2013; pp. 1–19. Available online: https://www.researchgate.net/publication/283014124 (accessed on 10 October 2020).
- Sorech, E.M. Trend Analysis and Challenges of Adaptations to Climate Change in Hararghe, Ethiopia. Environ. Pollut. Clim. Chang. 2017, 1, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Tamiru, S.; Tesfaye, K.; Mamo, G. Analysis of Rainfall and Temperature Variability to Guide Sorghum (Sorghum Bicolar) Production in Miesso Areas, Eastern Ethiopia. Int. J. Sustain. Agric. Res. 2015, 2, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Hegerl, G.C.; Zwiers, F.W.; Braconnot, P.; Gillett, N.P.; Luo, Y.; Marengo Orsini, J.A.; Nicholls, N.; Penner, J.E.; Stott, P.A. Understanding and Attributing Climate Change. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; pp. 664–746. [Google Scholar]
- Kassie, B.T.; Rötter, R.P.; Hengsdijk, H.; Asseng, S.; Van Ittersum, K.H.; Van Keulen, H. Climate variability and change in the Central Rift Valley of Ethiopia: Challenges for Rainfed Crop Production. J. Agric. Sci. 2014, 152, 58–74. [Google Scholar] [CrossRef]
- Ayalew, D.; Tesfaye, K.; Mamo, G.; Yitaferu, B.; Bayu, W. Outlook of future climate in northwestern Ethiopia. Agric. Sci. 2012, 3, 608–624. [Google Scholar] [CrossRef] [Green Version]
- Tessema, Y.A.; Aweke, C.S.; Endris, G.S. Understanding the Process of Adaptation to Climate Change by Smallholder Farmers: The case of east Hararghe Zone, Ethiopia. Agric. Food Econ. 2013, 1, 13. [Google Scholar] [CrossRef] [Green Version]
- Seleshi, Y.; Zanke, U. Recent Changes in Rainfall and Rainy days in Ethiopia. Int. J. Clim. 2004, 24, 973–983. [Google Scholar] [CrossRef]
- IPCC (Intergovernmental Panel on Climate Change). IPCC Special Report; IPCC: Geneva, Switzerland, 1999. [Google Scholar]
- Ngongondo, C.S.; Lena, C.X.; Alemaw, B.; Chirwa, T. Regional Frequency Analysis of Rainfall Extremes in Southern Malawi using the Index Rainfall and L-moments Approaches. Stoch. Environ. Res. Risk Assess. 2011, 25, 939–955. [Google Scholar] [CrossRef] [Green Version]
- Buishand, T.A. Some Methods for Testing the Homogeneity of Rainfall Records. J. Hydrol. 1882, 58, 11–27. [Google Scholar] [CrossRef]
- Storch, H. Misuses of Statistical Analysis in Climate Research. In Analysis of Climate Variability; Von Storch, H., Navarra, A., Eds.; Springer: Berlin/Heidelberg, Germany, 1995. [Google Scholar] [CrossRef]
- Partal, T.; Kahya, E. Trend analysis in Turkish precipitation data. Hydrol. Process. 2006, 20, 2011–2026. [Google Scholar] [CrossRef]
- Stern, R.; Rijks, D.; Dale, I.; Knock, J. Instat Climatic Guide; University of Reading: Reading, UK, 2006. [Google Scholar]
- Mann, H.B. Nonparametric Tests Against Trend. J. Econom. Soc. 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Charles Griffin: London, UK, 1975. [Google Scholar]
- Asfaw, A.; Simane, B.; Hassen, A.; Bantider, A. Variability and Time Series Trend Analysis of Rainfall and Temperature in North-Central Ethiopia: A case study in Woleka sub-basin. Weather Clim. Extrem. 2018, 19, 29–41. [Google Scholar] [CrossRef]
- Ketema, A.; Siddaramaiah, D.G. Trend and Variability of Hydrometeorological Variables of Tikur Wuha Watershed in Ethiopia. Arab. J. Geosci. 2020, 13, 142. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Canchola, J.A.; Tang, S.; Hemyari, P.; Paxinos, E.; Marins, E. Correct use of per cent coefficient of variation (% CV) formula for log-transformed data. MOJ Proteom. Bioinform. 2017, 6, 316–317. [Google Scholar] [CrossRef]
- Hare, W. Assessment of Knowledge on Impacts of Climate Change-Contribution to the Specification of Art. 2 of the UNFCCC: Impact on Ecosystem, Food Production, Water and Socio-economic System. Potsdam, Berlin, 2003. Available online: https://www.researchgate.net/publication/242460387 (accessed on 20 September 2020).
- Sachindra, D.A.; Huang, F.; Barton, A.; Perera, B.J. Statistical downscaling of general circulation model outputs to precipitation part 2: Bias-correction and future. Int. J. Climatol. 2014, 34, 3282–3303. [Google Scholar] [CrossRef] [Green Version]
- Jones, P.G.; Thornton, P.K. Generating Downscaled Weather Data from a Suite of Climate Models for Agricultural Modelling Applications. Agric. Syst. 2013, 114, 1–5. [Google Scholar] [CrossRef]
- Wu, T.A. Mass-flux cumulus parameterization scheme for large-scale models: Description and test with observations. J. Clim. Dyn. 2012, 38, 725–744. [Google Scholar] [CrossRef]
- Colliera, M.A.; Jeffrey, S.J.; Rotstayna, L.D.; Wongb, K.K.-H.; Dravitzkia, S.M.; Moesenederc, C.; Hamalainen, C.; Syktusb, J.I.; Suppiaha, R.; Antony, J.; et al. The CSIRO-Mk3.6.0 Atmosphere-Ocean GCM: Participation in CMIP5 and data publication. In Proceedings of the 19th International Congress on Modelling and Simulation, Perth, Australia, 12–16 December 2011; pp. 2691–2697. [Google Scholar]
- Song, Z.; Qiao, F.; Song, Y. Response of the equatorial basin-wide SST to non-breaking surface wave-induced mixing in a climate model: An amendment to tropical bias. J. Geophys. Res. Oceans 2012, 117, 1–8. [Google Scholar] [CrossRef]
- Donner, L.J.; Bruce, L.; Hemler, R.S.; Horowitz, L.W.; Ming, Y.; Zhao, M.; Golaz, J.C.; Ginoux, P.; Lin, S.; Schwarzkopf, J.; et al. The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. J. Clim. 2011, 4, 3484–3519. [Google Scholar] [CrossRef]
- Dunne, J.P.; John, J.G.; Shevliakova, S.; Stouffer, R.J.; Krasting, J.P.; Malyshev, S.L.; Milly, P.C.D.; Sentman, L.T.; Adcroft, A.J.; Cooke, W.; et al. GFDL’s ESM2 global coupled climate-carbon Earth system models. Part II: Carbon system formulation and baseline simulation characteristics. J. Clim. 2013, 26, 2247–2267. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, G.A.; Ruedy, R.; Hansen, J.E.; Aleinov, I.; Bell, N.; Bauer, M.; Bauer, S.; Cairns, B.; Canuto, V.; Cheng, Y.; et al. Present-day atmospheric simulations using GISS Model E: Comparison to in situ, satellite, and reanalysis data. J. Clim. 2006, 19, 153–192. [Google Scholar] [CrossRef]
- Collins, W.J.; Bellouin, N.; Gedney, N.; Halloran, W.J.; Collins, N.; Bellouin, N.; Gedney, N.; Halloran, P.; Hinton, T.; Hughes, J.; et al. Development and evaluation of an Earth-system model—HadGEM2. Geosci. Model Dev. Discuss. 2011, 4, 997. [Google Scholar] [CrossRef] [Green Version]
- Dufresne, J.-L.; Foujols, M.-A.; Denvil, S.; Caubel, A.; Marti, O.; Aumont, O.; Balkanski, Y.; Bekki, S.; Bellenger, H.; Benshila, R.; et al. Climate change projections using the IPSL-CM5 Earth System Model: From CMIP3 to CMIP5. Clim. Dyn. 2013, 40, 2123–2165. [Google Scholar] [CrossRef]
- Watanabe, S.; Hajima, T.; Sudo, K.; Nagashima, T.; Takemura, T.; Okajima, H.; Nozawa, T.; Kawase, H.; Abe, M.; Yokohata, T.; et al. MIROC-ESM 2010: Model description and basic results of CMIP5-20c3m experiments. Geosci. Model Dev. 2011, 4, 845–872. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, M.; Suzuki, T.; O’Ishi, R.; Komuro, Y.; Watanabe, S.; Emori, S.; Takemura, T.; Chikira, M.; Ogura, T.; Sekiguchi, M.; et al. Improved climate simulation by MIROC5: Mean states, variability, and climate sensitivity. J. Clim. 2010, 23, 6312–6335. [Google Scholar] [CrossRef]
- Yukimoto, S.; Adachi, Y.; Hosaka, M.; Sakami, T.; Yoshimura, H.; Hirabara, M.; Tanaka, T.Y.; Shindo, E.; Tsujino, H.; Deushi, M.; et al. A new global climate model of the Meteorological Research Institute: MRI-CGCM3: Model description and basic performance. J. Meteorol. Soc. Jpn. 2012, 90, 23–64. [Google Scholar] [CrossRef] [Green Version]
- Kirkevåg, A.; Iversen, T.; Seland, Ø.; Debernard, J.B.; Storelvmo, T.; Kristjánsson, J.E. Aerosol-cloud-climate interactions in the climate model CAM-Oslo. Tellus Ser. A Dyn. Meteorol. Oceanogr. 2008, 60, 492–512. [Google Scholar] [CrossRef] [Green Version]
- Seland, O.; Iversen, T.; Kirkevag, A.; Storelvmo, T. Aerosol-climate interactions in the CAM-Oslo atmospheric GCM and investigation of associated basic shortcomings. Tellus Ser. A Dyn. Meteorol. Oceanogr. 2008, 60, 459–491. [Google Scholar] [CrossRef]
- Asmame, B. Temporal Variability and Trend Analysis of Temperature and Tainfall in the Northern Highlands of Ethiopia. Phys. Geogr. 2020, 42, 434–451. [Google Scholar] [CrossRef]
- Meseret, M.; Taye, G. Analysis of Spatial Variability and Temporal Trends of Rainfall in Amhara Region, Ethiopia. J. Water Clim. Chang. 2020, 11, 1505–1520. [Google Scholar] [CrossRef]
- Eshetu, G.; Johansson, T.; Garedew, W. Rainfall Trend and Variability Analysis in Setema-Gatira area of Jimma, Southwestern Ethiopia. Afr. J. Agric. Res. 2016, 11, 3037–3045. [Google Scholar] [CrossRef]
- Bekele-Biratu, E.; Thiaw, W.M.; Korecha, D. Sub-seasonal Variability of the Belg Rains in Ethiopia. Int. J. Climatol. 2018, 38, 2940–2953. [Google Scholar] [CrossRef]
- Segele, Z.T.; Lamb, P.J.; Leslie, L.M. Large-scale atmospheric circulation and global sea surface temperature associations with Horn of Africa June-September rainfall. Int. J. Climatol. 2009, 29, 1075–1100. [Google Scholar] [CrossRef]
- Arega, A.; Bazezew, A. Spatiotemporal variability and trends of rainfall and temperature in the Northeastern Highlands of Ethiopia. Model. Earth Syst. Environ. 2020, 6, 285–300. [Google Scholar] [CrossRef]
- Megersa, G.; Tesfaye, K.; Getnet, M.; Tana, T.; Jaleta, M.; Lakew, B. Rainfall Variability and its Implications for Wheat and Barley Production in Rainfall Variability and its Implications for Wheat and Barley Production in Central Ethiopia. Ethiop. J. Crop Sci. 2019, 7, 89–111. [Google Scholar]
- IDP (Internally Displaced Persons). Multi-Agency IDP Returnees Need Assessment Report East and West Hararghe Zones of Oromia, 2019 East and West Hararghe Zones; IDP: Oromia, Ethiopia, 2019. [Google Scholar]
- WFP/CSA. World Food Program and Central Statistical Agency of Ethiopia: Comprehensive Food Security and Vulnerability Analysis, Ethiopia, Addis Ababa; WFP: Rome, Italy, 2019. [Google Scholar]
- Taye, M.; Zewdu, F.; Ayalew, D. Characterizing the Climate System of Western Amhara, Ethiopia: A GIS Approach. Am. J. Res. Commun. 2013, 1, 319–355. Available online: www.usa-journals.com (accessed on 1 December 2021).
- Bahiru, W.; Assefa, E. Department Climatology and Weather Forecasting Temperature and Rainfall Trends in North-Eastern Ethiopia. Climatol. Weather Forecast. 2020, 8, 262. [Google Scholar] [CrossRef]
- Mathur, S.; Jajoo, A. Photosynthesis: Response to high-temperature stress. J. Photochem. Photobiol. B Biol. 2014, 137, 16–126. [Google Scholar] [CrossRef]
- Wylie, P. Managing Sorghum for High Yields: A Blueprint for Doubling Sorghum Production; Grains Research and Development Corporation: Barton, Australia, 2008. [Google Scholar]
- Egeru, A.; Barasa, B.; Nampijja, J.; Siya, A.; Makooma, M.T.; Gilbert, M.; Majaliwa, J. Past, Present and Future Climate Trends Under Varied Representative Concentration Pathways for a Sub-Humid Region in Uganda. Climate 2019, 7, 35. [Google Scholar] [CrossRef] [Green Version]
- Hatfield, J.L.; Boote, K.J.; Kimball, B.A.; Ziska, L.H.; Izaurralde, R.C.; Ort, D.; Thomson, A.M.; Wolfe, D. Climate impacts on agriculture: Implications for crop production. Agron. J. 2011, 103, 351–370. [Google Scholar] [CrossRef] [Green Version]
- Tessema, B.; Chamberlin, J.; Reidsma, P.; Silva, J.V.; Van Ittersum, M.K. Correction to Unravelling the Variability and Causes of Smallholder Maize Yield Gaps in Ethiopia. Food Secur. 2020, 12, 83–103. [Google Scholar] [CrossRef] [Green Version]
- EPCC (Intergovernmental Panel on Climate Change). Ethiopian Panel on Climate Change: First Assessment Report, Working Group I Report on Climate Change in Ethiopia; IPCC: Geneva, Switzerland, 2015. [Google Scholar]
No. | Stations | Latitude (°N) | Longitude (°E) | Elevation (m.a.s.l.) | Database Period |
---|---|---|---|---|---|
1 | Badessa | 8.9 | 40.8 | 1704 | 1988−2017 |
2 | Chiro | 9.1 | 40.9 | 1784 | 1988−2017 |
3 | Gursum | 9.4 | 42.4 | 1960 | 1988−2017 |
4 | Haramaya | 9.4 | 42.0 | 2039 | 1988−2017 |
5 | Mieso | 9.2 | 40.8 | 1331 | 1988−2017 |
N° | GCMs | Institution | Resolution, Lat. × Long. | References |
---|---|---|---|---|
1 | BCC-CSM 1.1 | Beijing Climate Center, China Meteorological Administration | 2.8125 × 2.8125 | [40] |
2 | BCC-CSM 1.1 (m) | Beijing Climate Center, China Meteorological Administration | 2.8125 × 2.8125 | [40] |
3 | CSIRO-Mk 3.6.0 | Commonwealth Scientific and Industrial Research Organization and the Queensland Climate Change Centre of Excellence | 1.875 × 1.875 | [41] |
4 | FIO-ESM | The First Institute of Oceanography, SOA, China | 2.812 × 2.812 | [42] |
5 | GFDL-CM3 | Geophysical Fluid Dynamics Laboratory | 2.0 × 2.5 | [43] |
6 | GFDL-ESM2G | Geophysical Fluid Dynamics Laboratory | 2.0 × 2.5 | [44] |
7 | GFDL-ESM2M | Geophysical Fluid Dynamics Laboratory | 2.0 × 2.5 | [44] |
8 | GISS-E2-H | NASA Goddard Institute for Space Studies | 2.0 × 2.5 | [45] |
9 | GISS-E2-R | NASA Goddard Institute for Space Studies | 2.0 × 2.5 | [45] |
10 | HadGEM2-ES | Met Office Hadley Centre | 1.2414 × 1.875 | [46] |
11 | IPSL-CM5A-LR | Institut Pierre-Simon Laplace | 1.875 × 3.75 | [47] |
12 | IPSL-CM5A-MR | Institut Pierre-Simon Laplace | 1.2587 × 2.5 | [47] |
13 | MIROC-ESM | Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for Environmental Studies, and Japan Agency for Marine-Earth Science and Technology | 2.8125 × 2.8125 | [48] |
14 | MIROC-ESM-CHEM | Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for Environmental Studies, and Japan Agency for Marine-Earth Science and Technology | 2.8125 × 2.8125 | [48] |
15 | MIROC5 | Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean Research Institute (The University of Tokyo), and the National Institute for Environmental Studies | 1.4063 × 1.4063 | [49] |
16 | MRI-CGCM3 | Meteorological Research Institute | 1.125 × 1.125 | [50] |
17 | NorESM1-M | Norwegian climate centre | 1.875 × 2.5 | [51,52] |
Period | Min (mm) | Max (mm) | Mean (mm) | SD | CV (%) | CAT (%) | Zs | β |
---|---|---|---|---|---|---|---|---|
Annual | 647.6 | 1106.9 | 877.5 | 120.2 | 13.7 | - | −1.7 | −4.7 |
Belg | 154.8 | 609.5 | 331.5 | 106.8 | 32.2 | 37.8 | −1.2 | −2.5 |
Kiremit | 246.5 | 568.4 | 456.2 | 75.2 | 16.5 | 52 | 0.2 | 0.5 |
January | 0 | 63 | 12 | 15 | 125 | 1.4 | −0.5 | −0.1 |
February | 0 | 97 | 19 | 26 | 136.8 | 2.2 | −2.5 * | −0.7 |
March | 5 | 160 | 73 | 45 | 61.6 | 8.3 | −2.2 * | −2.3 |
April | 36 | 229 | 123 | 49 | 39.8 | 14 | −1.3 | −1.4 |
May | 16 | 262 | 94 | 53 | 56.4 | 10.7 | 0.9 | 1.03 |
June | 21 | 104 | 59 | 23 | 38.9 | 6.7 | 0.2 | 0.15 |
July | 36 | 213 | 130 | 32 | 24.6 | 14.8 | −0.3 | −0.3 |
August | 64 | 250 | 142 | 39 | 27.5 | 16.2 | 0.5 | 0.4 |
September | 57 | 176 | 129 | 33 | 25.6 | 14.7 | 1.3 | 0.9 |
October | 1 | 265 | 63 | 57 | 90.5 | 7.2 | −1.2 | −0.8 |
November | 0 | 85 | 19 | 23 | 121.1 | 2.2 | 0.7 | 0.1 |
December | 0 | 69 | 15 | 17 | 113.3 | 1.7 | −0.9 | −0.2 |
Parameters | Statistics | Badessa | Chiro | Gursum | Haramaya | Mieso |
---|---|---|---|---|---|---|
PCI | Min | 1.3 | 10.5 | 11.3 | 12.2 | 12.8 |
Max | 19.7 | 21.1 | 21.2 | 24.2 | 21.0 | |
Mean | 14.2 | 16.1 | 15.9 | 15.3 | 16.4 | |
Zs | 0.6 | 0.8 | 2.1 * | 2.4 * | −0.7 | |
RAI | Min | −1.9 | −2.1 | −1.4 | −1.6 | −1.3 |
Max | 3.1 | 2.0 | 3.5 | 2.5 | 3.9 | |
Mean | 0.05 | 0.00 | −0.01 | −0.04 | −0.02 | |
Zs | −1.87 | −1.1 | −1.5 | 0.00 | −0.9 |
Temperature | Min (°C) | Max (°C) | Mean (°C) | SD | CV (%) | Zs | β |
---|---|---|---|---|---|---|---|
Annual | 11.7 | 14.4 | 12.8 | 0.6 | 4.7 | 1.5 | 0.05 |
Belg | 11.9 | 14.6 | 13.3 | 0.7 | 5.3 | 1.5 | 0.04 * |
Kiremit | 13.3 | 15.9 | 14.5 | 0.6 | 4.4 | 1.4 | 0.06 |
January | 8.3 | 12.6 | 10.4 | 1.9 | 11.4 | −0.02 | 0.00 |
February | 9.3 | 13.3 | 11.4 | 1.2 | 10.8 | 1.0 | 0.02 |
March | 10.8 | 15.5 | 13.2 | 1.1 | 8.3 | 1.5 | 0.03 |
April | 12.1 | 15.8 | 14.2 | 0.8 | 5.3 | 1.6 | 0.05 |
May | 12.5 | 15.6 | 14.5 | 0.8 | 5.4 | 1.0 | 0.06 |
June | 13.6 | 15.8 | 14.9 | 0.6 | 4.1 | 1.1 | 0.06 |
July | 13.2 | 16.0 | 14.6 | 0.8 | 5.2 | 1.4 | 0.07 |
August | 13.0 | 15.9 | 14.5 | 0.7 | 4.9 | 2.1 * | 0.06 * |
September | 12.2 | 15.7 | 13.7 | 0.7 | 5.0 | 2.1 * | 0.06 * |
October | 10.3 | 14.6 | 12.2 | 0.9 | 6.9 | 1.6 | 0.04 |
November | 8.2 | 12.8 | 10.2 | 1.2 | 11.2 | 3.1 * | 0.07 * |
December | 6.6 | 12.6 | 9.5 | 1.4 | 14.9 | 0.09 | 0.00 |
Temperature | Min (°C) | Max (°C) | Mean (°C) | SD | CV (%) | Zs | β |
---|---|---|---|---|---|---|---|
Annual | 26.5 | 27.8 | 27.2 | 0.31 | 1.1 | 0.8 | 0.004 |
Belg | 26.8 | 28.8 | 28.0 | 0.47 | 1.7 | 0.8 | 0.01 |
Kiremit | 26.4 | 27.9 | 27.0 | 0.4 | 1.5 | 0.8 | 0.01 |
January | 25.3 | 27.7 | 26.4 | 0.6 | 2.3 | −0.3 | −0.00 |
February | 26.3 | 28.8 | 27.7 | 0.7 | 2.4 | 0.9 | 0.02 |
March | 26.0 | 30.3 | 28.2 | 1.0 | 3.4 | 1.0 | 0.02 |
April | 26.4 | 29.2 | 27.9 | 0.8 | 2.7 | 0.5 | 0.01 |
May | 26.8 | 29.6 | 28.2 | 0.6 | 2.3 | −1.6 | −0.02 |
June | 26.5 | 29.2 | 28.2 | 0.6 | 2.2 | −0.4 | −0.00 |
July | 25.8 | 28.4 | 26.9 | 0.7 | 2.6 | 1.6 | 0.03 |
August | 25.6 | 27.5 | 26.4 | 0.6 | 2.1 | −0.02 | 0.00 |
September | 25.8 | 28.1 | 26.6 | 0.5 | 2 | −0.3 | −0.00 |
October | 25.1 | 28.2 | 26.9 | 0.7 | 2.5 | −0.5 | −0.00 |
November | 25.2 | 27.7 | 26.7 | 0.5 | 2 | 0.3 | −0.00 |
December | 24.8 | 27.5 | 25.8 | 0.5 | 2.1 | −0.9 | −0.01 |
Parameters | Badessa | Chiro | Gursum | Haramaya | Mieso | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Annual | Belg | Kiremit | Annual | Belg | Kiremit | Annual | Belg | Kiremit | Annual | Belg | Kiremit | Annual | Belg | Kiremit | |
(2030) | |||||||||||||||
Rainfall (mm) | |||||||||||||||
Baseline | 1093.5 | 349.9 | 599.8 | 914.1 | 318 | 481 | 823.7 | 326.4 | 402.8 | 806 | 264.9 | 444.3 | 769.5 | 247.6 | 399.2 |
RCP4.5 | 1121.3 | 405.0 | 582.9 | 1158.3 * | 410.7 | 617.2 | 804 | 279.1 | 419.5 | 877.4 * | 312.3 | 464.8 | 917.1 * | 346.5 | 465.3 |
RCP8.5 | 1126.8 | 409.1 | 583.8 | 1173.1 * | 407.4 | 628.7 | 810.4 | 273.2 | 418.1 | 1040.3 * | 312.3 | 478.3 | 922.9 * | 344.4 | 468.8 |
Tmax (°C) | |||||||||||||||
Baseline | 27.9 | 28.9 | 27.2 | 27.9 | 28.5 | 28.1 | 24.9 | 25.7 | 24.1 | 24.1 | 25.2 | 23.9 | 30.8 | 31.6 | 31.6 |
RCP4.5 | 28.7 * | 29.2 | 29.0 * | 27.9 | 28.5 | 28.3 | 25.7 * | 26.7 | 24.9 * | 24.9 * | 25.8 | 24.5 * | 31.4 * | 31.7 | 32.3 * |
RCP8.5 | 28.7 * | 29.3 | 29.1 * | 28.0 | 28.5 | 28.4 | 26.1 * | 26.8 | 25.0 * | 25.0 * | 25.9 | 24.6 * | 31.4 * | 31.8 | 32.3 * |
Tmin (°C) | |||||||||||||||
Baseline | 12.6 | 13.0 | 14.1 | 13.9 | 14.6 | 15.1 | 12.7 | 13.0 | 12.7 | 10.0 | 10.9 | 13.5 | 14.9 | 15.4 | 17.5 |
RCP4.5 | 14.9 * | 15.1 * | 16.1 * | 14.4 | 14.6 | 15.5 * | 13.1 * | 13.3 | 14.5 * | 12.9 * | 13.2 | 13.7 | 17.2 * | 17.5 * | 19.0 |
RCP8.5 | 15.1 * | 15.3 * | 16.3 * | 14.6 * | 14.9 | 15.7 * | 13.6 * | 13.5 | 14.7 * | 12.9 * | 13.4 | 13.9 | 17.4 * | 17.7 * | 19.2 |
(2050) | |||||||||||||||
Rainfall(mm) | |||||||||||||||
RCP 4.5 | 1131.4 | 410.2 | 586.4 | 1182.5 * | 416.3 | 624.5 | 803.7 | 270.2 | 423.7 | 905.5 * | 315 | 480.7 | 926.3 * | 336.4 | 471.3 |
RCP 8.5 | 1174.2 | 414.8 | 595.5 | 1207.5 * | 415.3 | 637.1 | 851.0 | 280.2 | 441.4 | 931.1 * | 320 | 494.1 | 945.9 * | 336.4 | 481.7 |
Tmax (°C) | |||||||||||||||
RCP4.5 | 29.3 * | 29.8 | 29.6 * | 28.4 * | 29.04 | 28.9 | 25.8 * | 27.3 | 25.4 * | 25.5 * | 26.4 | 25.0 * | 31.9 * | 32.4 * | 32.8 * |
RCP8.5 | 29.5 * | 30.2 | 30.0 * | 28.9 * | 29.5 | 29.3 * | 26.7 * | 27.7 * | 25.8 * | 26.0 * | 26.9 | 25.5 * | 32.3 * | 32.8 * | 33.5 * |
Tmin (°C) | |||||||||||||||
RCP4.5 | 15.4 * | 15.6 * | 16.7 * | 14.8 * | 14.1 | 16.1 * | 13.2 * | 13.9 | 15.0 * | 13.5 * | 13.8 | 14.2 | 17.8 * | 18.0 * | 19.6 * |
RCP 8.5 | 15.9 * | 16.3 * | 17.3 * | 15.7 * | 15.9 * | 16.7* | 14.1 * | 14.5 | 15.5 * | 14.1 * | 14.4 | 14.8 | 18.4 * | 18.6 * | 20.1 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teshome, H.; Tesfaye, K.; Dechassa, N.; Tana, T.; Huber, M. Analysis of Past and Projected Trends of Rainfall and Temperature Parameters in Eastern and Western Hararghe Zones, Ethiopia. Atmosphere 2022, 13, 67. https://doi.org/10.3390/atmos13010067
Teshome H, Tesfaye K, Dechassa N, Tana T, Huber M. Analysis of Past and Projected Trends of Rainfall and Temperature Parameters in Eastern and Western Hararghe Zones, Ethiopia. Atmosphere. 2022; 13(1):67. https://doi.org/10.3390/atmos13010067
Chicago/Turabian StyleTeshome, Helen, Kindie Tesfaye, Nigussie Dechassa, Tamado Tana, and Matthew Huber. 2022. "Analysis of Past and Projected Trends of Rainfall and Temperature Parameters in Eastern and Western Hararghe Zones, Ethiopia" Atmosphere 13, no. 1: 67. https://doi.org/10.3390/atmos13010067
APA StyleTeshome, H., Tesfaye, K., Dechassa, N., Tana, T., & Huber, M. (2022). Analysis of Past and Projected Trends of Rainfall and Temperature Parameters in Eastern and Western Hararghe Zones, Ethiopia. Atmosphere, 13(1), 67. https://doi.org/10.3390/atmos13010067