Effect of Air Purification Systems on Particulate Matter and Airborne Bacteria in Public Buses
Abstract
:1. Introduction
2. Methods
2.1. Air Purification System
2.2. Air Pollutant Measuring Equipment
2.3. Selection of Buses for Air Quality Investigation
2.4. Investigation of External Air Quality and Climate
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wiley, J.A.; Robinson, J.P.; Piazza, T.; Garrett, K.; Cirksena, K.; Cheng, Y.-T.; Martin, G. Activity Patterns of California Residents; California Air Resources Board: Sacramento, CA, USA, 1991.
- Klepeis, N.E.; Nelson, W.C.; Ott, W.R.; Robinson, J.P.; Tsang, A.M.; Switzer, P.; Behar, J.V.; Hern, S.C.; Engelmann, W.H. The National Human Activity Pattern Survey (NHAPS): A Resource for Assessing Exposure to Environmental Pollutants. J. Expo. Anal. Environ. Epidemiol. 2001, 11, 231–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sicard, P.; Khaniabadi, Y.O.; Perez, S.; Gualtieri, M.; De Marco, A. Effect of O3, PM10 and PM2.5 on cardiovascular and respiratory diseases in cities of France, Iran and Italy. Environ. Sci. pollut. Res. Int. 2019, 26, 32645–32665. [Google Scholar] [CrossRef] [PubMed]
- Burrows, S.M.; Elbert, W.; Lawrence, M.G.; Pöschl, U. Bacteria in the Global Atmosphere—Part 1: Review and Synthesis of Literature Data for Different Ecosystems. Atmos. Chem. Phys. 2009, 9, 9263–9280. [Google Scholar] [CrossRef] [Green Version]
- Burrows, S.M.; Butler, T.; Jöckel, P.; Tost, H.; Kerkweg, A.; Pöschl, U.; Lawrence, M.G. Bacteria in the Global Atmosphere—Part 2: Modeling of Emissions and Transport between Different Ecosystems. Atmos. Chem. Phys. 2009, 9, 9281–9297. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.Y.; Park, E.H.; Lee, S.; Ko, G.; Honda, Y.; Hashizume, M.; Deng, F.; Yi, S.M.; Kim, H. Airborne Bacterial Communities in Three East Asian Cities of China, South Korea, and Japan. Sci. Rep. 2017, 7, 5545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, H.S.; Nieuwenhuijsen, M.J.; Colvile, R.N.; McMullen, M.A.S.; Khandelwal, P. Fine Particle (PM2.5) Personal Exposure Levels in Transport Microenvironments, London, UK. Sci. Total Environ. 2001, 279, 29–44. [Google Scholar] [CrossRef]
- Adams, H.S.; Nieuwenhuijsen, M.J.; Colvile, R.N. Determinants of Fine Particle (PM2.5) Personal Exposure Levels in Transport Microenvironments, London, UK. Atmos. Environ. 2001, 35, 4557–4566. [Google Scholar] [CrossRef]
- Chan, L.Y.; Lau, W.L.; Lee, S.C.; Chan, C.Y. Commuter Exposure to Particulate Matter in Public Transportation Modes in Hong Kong. Atmos. Environ. 2002, 36, 3363–3373. [Google Scholar] [CrossRef]
- Chan, L.Y.; Lau, W.L.; Zou, S.C.; Cao, Z.X.; Lai, S.C. Exposure Level of Carbon Monoxide and Respirable Suspended Particulate in Public Transportation Modes While Commuting in Urban Area of Guangzhou, China. Atmos. Environ. 2002, 36, 5831–5840. [Google Scholar] [CrossRef]
- Gómez-Perales, J.E.; Colvile, R.N.; Nieuwenhuijsen, M.J.; Fernández-Bremauntz, A.A.; Gutiérrez-Avedoy, V.J.; Páramo-Figueroa, V.H.; Blanco-Jiménez, S.; Bueno-López, E.; Mandujano, F.; Bernabé-Cabanillas, R.; et al. Commuters’ Exposure to PM2.5, CO, and Benzene in Public Transport in the Metropolitan Area of Mexico City. Atmos. Environ. 2004, 38, 1219–1229. [Google Scholar] [CrossRef]
- Gómez-Perales, J.E.; Colvile, R.N.; Fernández-Bremauntz, A.A.; Gutiérrez-Avedoy, V.; Páramo-Figueroa, V.H.; Blanco-Jiménez, S.; Bueno-López, E.; Bernabé-Cabanillas, R.; Mandujano, F.; Hidalgo-Navarro, M.; et al. Bus, Minibus, Metro Inter-Comparison of Commuters’ Exposure to Air Pollution in Mexico City. Atmos. Environ. 2007, 41, 890–901. [Google Scholar] [CrossRef]
- Huang, H.L.; Hsu, D.J. Exposure Levels of Particulate Matter in Long-Distance Buses in Taiwan. Indoor Air 2009, 19, 234–242. [Google Scholar] [CrossRef]
- Zhu, S.; Demokritou, P.; Spengler, J. Experimental and Numerical Investigation of Micro-Environmental Conditions in Public Transportation Buses. Build. Environ. 2010, 45, 2077–2088. [Google Scholar] [CrossRef]
- Keskin, S.S.; Dilmac, E. Indoor Air Particulate Matter Exposure of Commuter Bus Passengers in Istanbul, Turkey. Indoor Built Environ. 2017, 26, 337–346. [Google Scholar] [CrossRef]
- Yoo, H.C.; Noh, K.H. The Assessing the HVAC System and Measurements of Indoor Air Quality of Highway Bus. In Proceedings of the KSES 2009 Spring Annual Conference; The Korean Solar Energy Society: Daegu, Korea, 2009; pp. 263–268. [Google Scholar]
- Yoo, H.C.; Noh, K.H. Natural Ventilation System of Express Bus for Indoor Air Quality and Energy Saving. J. Kor. Soc. Living Environ. Syst. 2010, 17, 21–30, (In Korean with English abstract). [Google Scholar]
- Lee, E.S.; Zhu, Y. Application of a High-Efficiency Cabin Air Filter for Simultaneous Mitigation of Ultrafine Particle and Carbon Dioxide Exposures inside Passenger Vehicles. Environ. Sci. Technol. 2014, 48, 2328–2335. [Google Scholar] [CrossRef]
- Morawska, L.; Ristovski, Z.; Jayaratne, E.R.; Keogh, D.U.; Ling, X. Ambient Nano and Ultrafine Particles from Motor Vehicle Emissions: Characteristics, Ambient Processing and Implications on Human Exposure. Atmos. Environ. 2008, 42, 8113–8138. [Google Scholar] [CrossRef] [Green Version]
- Song, W.W.; Ashmore, M.R.; Terry, A.C. The Influence of Passenger Activities on Exposure to Particles inside Buses. Atmos. Environ. 2009, 43, 6271–6278. [Google Scholar] [CrossRef]
- Goldman, E. Exaggerated Risk of Transmission of COVID-19 by Fomites. Lancet Infect. Dis. 2020, 20, 892–893. [Google Scholar] [CrossRef]
- Lee, E.S.; Fung, C.-C.D.; Zhu, Y. Evaluation of a High Efficiency Cabin Air (HECA) Filtration System for Reducing Particulate Pollutants Inside School Buses. Environ. Sci. Technol. 2015, 49, 3358–3365. [Google Scholar] [CrossRef]
- Chen, S.C.; Chang, D.Q.; Pei, C.; Tsai, C.J.; Pui, D.Y. Removal Efficiency of bimodal PM2.5 and PM10 by electret respirators and mechanical engine intake filters. Aerosol Air Qual. Res. 2016, 16, 1722–1729. [Google Scholar] [CrossRef] [Green Version]
- Bovallius, A.K.E.; Bucht, B.; Roffey, R.; Anäs, P. Three-year investigation of the natural airborne bacterial flora at four localities in Sweden. Appl. Environ. Microbiol. 1978, 35, 847–852. [Google Scholar] [CrossRef] [Green Version]
Bus | BUS1 | BUS2 | BUS3 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Air Purification | On | Off | Ratio | On | Off | Ratio | On | Off | Ratio | |
PM25 | Indoor [μg/m3] | 7.0 | 17.4 | 40% | 8.2 | 12.3 | 67% | 2.1 | 5.3 | 40% |
Outdoor [μg/m3] | 22.8 | 23.2 | 98% | 23.6 | 19.9 | 119% | 27.7 | 27.3 | 101% | |
IOR | 0.31 | 0.75 | 41% | 0.35 | 0.62 | 56% | 0.08 | 0.19 | 42% | |
PM10 | Indoor [μg/m3] | 7.9 | 20.3 | 39% | 10.4 | 13.8 | 75% | 3.8 | 7.8 | 49% |
Outdoor [μg/m3] | 45.3 | 47.2 | 96% | 72.4 | 73.2 | 99% | 51.8 | 53.9 | 96% | |
IOR | 0.17 | 0.43 | 40% | 0.14 | 0.19 | 74% | 0.07 | 0.14 | 50% | |
Bacteria [CFU/m3] | Whole trip | 36.8 | 165.4 | 22% | 129.4 | 89.4 | 145% | 83.5 | 105.2 | 79% |
30 min and after | 42.4 | 195.2 | 22% | 51.1 | 83.6 | 61% | 77.1 | 101.3 | 76% | |
CO2 | CO2 [ppm] | 1223.5 | 931.4 | 131% | 3545.1 | 2478.2 | 143% | 1385.0 | 1763.5 | 79% |
Passenger | 10.0 | 7.8 | 128% | 24.4 | 20.2 | 121% | 14.4 | 19.7 | 73% | |
CO2/passengers | 122.0 | 119.3 | 102% | 145.1 | 122.7 | 118% | 96.2 | 89.4 | 108% | |
Temperature | Indoor [°C] | 19.6 | 20.6 | 95% | 21.1 | 21.1 | 100% | 26.2 | 25.3 | 104% |
Outdoor [°C] | 12.4 | 12.5 | 99% | 14.6 | 15.4 | 95% | 12.8 | 12.6 | 102% | |
IOR | 1.58 | 1.65 | 96% | 1.45 | 1.37 | 105% | 2.05 | 2.01 | 102% | |
Relative humidity | Indoor [%] | 47.2 | 48.7 | 97% | 56.3 | 43.9 | 128% | 30.0 | 31.0 | 97% |
Outdoor [%] | 78.7 | 79.3 | 99% | 48.0 | 47.2 | 102% | 48.1 | 52.9 | 91% | |
IOR | 0.60 | 0.61 | 98% | 1.17 | 0.93 | 126% | 0.62 | 0.59 | 106% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.J.; Hwang, H.; Hong, S.C.; Lee, J.Y. Effect of Air Purification Systems on Particulate Matter and Airborne Bacteria in Public Buses. Atmosphere 2022, 13, 55. https://doi.org/10.3390/atmos13010055
Lee JJ, Hwang H, Hong SC, Lee JY. Effect of Air Purification Systems on Particulate Matter and Airborne Bacteria in Public Buses. Atmosphere. 2022; 13(1):55. https://doi.org/10.3390/atmos13010055
Chicago/Turabian StyleLee, Jae Jung, Hyemin Hwang, Suk Chan Hong, and Jae Young Lee. 2022. "Effect of Air Purification Systems on Particulate Matter and Airborne Bacteria in Public Buses" Atmosphere 13, no. 1: 55. https://doi.org/10.3390/atmos13010055
APA StyleLee, J. J., Hwang, H., Hong, S. C., & Lee, J. Y. (2022). Effect of Air Purification Systems on Particulate Matter and Airborne Bacteria in Public Buses. Atmosphere, 13(1), 55. https://doi.org/10.3390/atmos13010055