Emission Determination by Three Remote Sensing Methods in Two Release Trials
Abstract
:1. Introduction
1.1. Basics
1.2. Inverse Dispersion Modelling
1.3. Tracer Method
2. Materials and Methods
2.1. Methods and Metrology
2.2. Measurement Devices and Software
2.3. Release Trial
2.4. Field Trial at Landfill
3. Results and Discussion
3.1. Release Trial
3.2. Emission Measurements at Landfill
3.3. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dlugokencky, E.J. Global CH4 Monthly Means. Available online: https://www.esrl.noaa.gov/gmd/ccgg/trends_ch4/#global_data (accessed on 9 February 2021).
- IPCC. Klimaänderung 2014: Synthesebericht: Beitrag der Arbeitsgruppen I, II und III zum Fünften Sachstandsbericht des Zwischenstaatlichen Ausschusses für Klimaänderungen; IPCC: Genf, Schweiz, 2016. [Google Scholar]
- UBA. Nationale Trendtabellen für die Treibhausgas-Emissionen nach Sektoren des Klimaschutzgesetzes 1990–2018: Stand zur Vorjahresschätzung: 11.03.2020; Umweltbundesamt: Dessau-Roßlau, Germany, 2020. [Google Scholar]
- IPCC. Climate Change 2021: The Physical Science Basis; IPCC: Genf, Schweiz, 2021. [Google Scholar]
- United Nations. UN climate Change conference: COP 26. Available online: https://ukcop26.org/ (accessed on 23 December 2021).
- Nastev, M.; Therrien, R.; Lefebvre, R.; Gélinas, P. Gas production and migration in landfills and geological materials. J. Contam. Hydrol. 2001, 52, 187–211. [Google Scholar] [CrossRef]
- Rettenberger, G. Untersuchung zur Entstehung, Ausbreitung und Ableitung von Zersetzungsgasen im Abfallablagerungen; Umweltbundesamt: Dessau-Roßlau, Germany, 1982. [Google Scholar]
- Rettenberger, G.; Mezger, H. Der Deponiegashaushalt in Altablagerungen: Leitfaden Deponiegas. In Handbuch Altlasten und Grundwasserschadensfälle, 1st ed.; LFUBW, Ed.; AlfaWeb: Karlsruhe, Germany, 1992. [Google Scholar]
- Butz, W. Ansatz für die Schätzung der Luftseitigen Deponieemissionen für das E-PRTR., Umweltbundesamt, F. 3.3G [III]. 2006. Available online: https://wiki.prtr.bund.de/images/6/66/E-PRTR_CH4_Schaetzmethode_Deponien.pdf (accessed on 22 December 2021).
- Oonk, J.; Boom, A. Landfill Gas Formation, Recovery and Emissions. Dutch National Research Programm on Global Air Pollution and Climate Change. 1995. Available online: https://www.osti.gov/etdeweb/biblio/574892 (accessed on 13 December 2021).
- Figueroa, V.K.; Mackie, K.R.; Guarriello, N.; Cooper, C.D. A Robust Method for Estimating Landfill Methane Emissions. J. Air Waste Manag. Assoc. 2009, 59, 925–935. [Google Scholar] [CrossRef] [PubMed]
- Monster, J.; Scheutz, C. Quantification of the Methane Emission from Masons Landfill–Part II; Technical University of Denmark (DTU): Kongens Lyngby, Denmark, 2015. [Google Scholar]
- VDI 3790 Blatt 2. Umweltmeteorologie Emissionen von Gasen, Gerüchen und Stäuben aus diffusen Quellen Deponien: VDI-Richtlinie. Kommission Reinhaltung der Luft im VDI und DIN—Normenausschuss KRdL 2000. Available online: https://www.yumpu.com/de/document/view/31986572/table-of-contents-pdf-vdi (accessed on 13 December 2021).
- Flesch, T.K.; Wilson, J.D.; Harper, L.A.; Crenna, B.P.; Sharpe, R.R. Deducing Ground-to-Air Emissions from Observed Trace Gas Concentrations: A Field Trial. J. Appl. Meteorol. 2004, 43, 487–502. [Google Scholar] [CrossRef] [Green Version]
- Flesch, T.K.; Wilson, J.D.; Harper, L.A.; Crenna, B.P. Estimating gas emissions from a farm with an inverse-dispersion technique. Atmos. Environ. 2005, 39, 4863–4874. [Google Scholar] [CrossRef]
- Flesch, T.K.; Wilson, J.D.; Harper, L.A. Deducing Ground-to-Air Emissions from observed trace gas concentrations: A field trial with wind disturbance. J. Appl. Meteorol. 2005, 44, 475–485. [Google Scholar] [CrossRef]
- Flesch, T.K.; Harper, L.A.; Powell, J.M.; Wilson, J.D. Inverse-Dispersion Calculation of Ammonia Emissions from Wisconsin Dairy Farms. Trans. Am. Soc. Agric. Biol. Eng. 2009, 52, 253–265. [Google Scholar] [CrossRef]
- Zhu, H.; Letzel, M.O.; Reiser, M.; Kranert, M.; Bachlin, W.; Flassak, T. A new approach to estimation of methane emission rates from landfills. Waste Manag. 2013, 33, 2713–2719. [Google Scholar] [CrossRef] [PubMed]
- Vesenmaier, A. Validierung und Weiterentwicklung einer Methode zur Inversen Dispersionsmodellierung für die Quantifizierung von Methanemissionen. Doktorarbeit; Universität Stuttgart: Stuttgart, Germany, 2020. [Google Scholar]
- Hrad, M.; Vesenmaier, A.; Flandorfer, C.; Piringer, M.; Stenzel, S.; Huber-Humer, M. Comparison of forward and backward Lagrangian transport modelling to determine methane emissions from anaerobic digestion facilities. Atmos. Environ. X 2021, 12, 100131. [Google Scholar] [CrossRef]
- VDI 4285 Blatt 1. Messtechnische Bestimmung der Emissionen diffuser Quellen Grundlagen. VDI-Richtlinie. Kommission Reinhaltung der Luft im VDI und DIN—Normenausschuss KRdL 2005. Available online: https://www.vdi.de/fileadmin/pages/vdi_de/redakteure/richtlinien/inhaltsverzeichnisse/9601467.pdf (accessed on 13 December 2021).
- VDI 3790 Blatt 2. Umweltmeteorologie Emissionen von Gasen, Gerüchen und Stäuben aus diffusen Quellen Deponien. VDI-Richtlinie. Kommission Reinhaltung der Luft im VDI und DIN—Normenausschuss KRdL 2017. Available online: https://www.vdi.de/fileadmin/pages/vdi_de/redakteure/richtlinien/inhaltsverzeichnisse/2629351.pdf (accessed on 13 December 2021).
- Babilotte, A.; Lagier, T.; Fiani, E.; Taramini, V. Fugitive Methane Emissions from Landfills: Field Comparison of Five Methods on a French Landfill. J. Environ. Eng. 2010, 136, 777–784. [Google Scholar] [CrossRef]
- Allen, G.; Hollingsworth, P.; Kabbabe, K.; Pitt, J.R.; Mead, M.I.; Illingworth, S.; Roberts, G.; Bourn, M.; Shallcross, D.E.; Percival, C.J. The development and trial of an unmanned aerial system for the measurement of methane flux from landfill and greenhouse gas emission hotspots. Waste Manag. 2019, 87, 883–892. [Google Scholar] [CrossRef] [PubMed]
- Fredenslund, A.M.; Scheutz, C.; Kjeldsen, P. Tracer method to measure landfill gas emissions from leachate collection systems. Waste Manag. 2010, 30, 2146–2152. [Google Scholar] [CrossRef] [PubMed]
- Monster, J.; Kjeldsen, P.; Scheutz, C. Methodologies for measuring fugitive methane emissions from landfills—A review. Waste Manag. 2019, 87, 835–859. [Google Scholar] [CrossRef] [PubMed]
- Galle, B.; Samuelsson, J.; Svensson, B.H.; Börjesson, G. Measurements of Methane Emissions from Landfills Using a Time Correlation Tracer Method Based on FTIR Absorption Spectroscopy. Environ. Sci. Technol. 2001, 35, 21–25. [Google Scholar] [CrossRef] [PubMed]
- DIN EN 16253. Luftqualität—Messungen in der bodennahen Atmosphäre mit der aktiven Differentiellen Optischen Absorptionsspektroskopie (DOAS)-Immissionsmessungen und Messungen von diffusen Emissionen; Deutsche Norm. Kommission Reinhaltung der Luft im VDI und DIN—Normenausschuss KRdL 2013. Available online: https://www.beuth.de/de/norm/din-en-16253/170299920 (accessed on 13 December 2021).
- Gasmet Technologies Oy. FTIR Gas Analysis: White Paper. 2020. Available online: https://info.gasmet.com/download-ftir-technology-white-paper (accessed on 26 October 2020).
- Wong, C.L.Y.; Ramkellawan, J. Calibration of a fugitive emission rate measurement of an area source. J. Air Waste Manag. Assoc. 2013, 63, 1324–1334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scharff, H.; Jacobs, J. Applying guidance for methane emission estimation for landfills. Waste Manag. 2006, 26, 417–429. [Google Scholar] [CrossRef] [PubMed]
Time Interval | CH4-Release Rate in g/s | N2O-Release Rate in g/s |
---|---|---|
11:25 a.m.–11:35 a.m. | 0.05 | 1 |
12:36 p.m.–12:46 p.m. | 0.16 | 1 |
12:46 p.m.–12:56 p.m. | 0.16 | 1 |
1:30 p.m.–1:40 p.m. | 0.05 | 0.1 |
1:40 p.m.–1:50 p.m. | 0.05 | 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elpelt-Wessel, I.; Reiser, M.; Morrison, D.; Kranert, M. Emission Determination by Three Remote Sensing Methods in Two Release Trials. Atmosphere 2022, 13, 53. https://doi.org/10.3390/atmos13010053
Elpelt-Wessel I, Reiser M, Morrison D, Kranert M. Emission Determination by Three Remote Sensing Methods in Two Release Trials. Atmosphere. 2022; 13(1):53. https://doi.org/10.3390/atmos13010053
Chicago/Turabian StyleElpelt-Wessel, Imke, Martin Reiser, Daniel Morrison, and Martin Kranert. 2022. "Emission Determination by Three Remote Sensing Methods in Two Release Trials" Atmosphere 13, no. 1: 53. https://doi.org/10.3390/atmos13010053
APA StyleElpelt-Wessel, I., Reiser, M., Morrison, D., & Kranert, M. (2022). Emission Determination by Three Remote Sensing Methods in Two Release Trials. Atmosphere, 13(1), 53. https://doi.org/10.3390/atmos13010053