N2O Emissions from Two Austrian Agricultural Catchments Simulated with an N2O Submodule Developed for the SWAT Model
Abstract
:1. Introduction
2. Methodology and Materials
2.1. The Case Study Catchments
2.2. The SWAT Model and Model Setup
2.3. The N2O Submodule
2.4. Calibrating the SWAT Model
2.5. Evaluating the N2O Submodule
3. Results
3.1. Sensitivity Analysis, Calibration and Validation
3.2. Evaluation of the Calibrated and Validated SWAT Model
3.2.1. Water Balance
3.2.2. Remote Sensed and Simulated ET
3.2.3. Measured and Simulated Crop Yields
3.3. The Fraction of Nitrified N Lost as N2O
3.4. Simulated N2O Emissions and the EFs for N2O
3.5. Comparison of Simulated N2O Emissions with Measured N2O
3.5.1. The Melk Catchment
3.5.2. The Zaya Catchment
3.6. Comparing Simulated N2O Emissions with DNDC Simulations
3.7. EFs for N2O for the Melk and Zaya Catchments
4. Discussion
4.1. Model Performance for Simulating N2O Emissions
4.2. Uncertainties of Simulated N2O Emissions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tian, H.; Xu, R.; Canadell, J.G.; Thompson, R.L.; Winiwarter, W.; Suntharalingam, P.; Davidson, E.A.; Ciais, P.; Jackson, R.B.; Janssens-Maenhout, G.; et al. A comprehensive quantification of global nitrous oxide sources and sinks. Nature 2020, 586, 248–256. [Google Scholar] [CrossRef]
- Tubiello, F.N.; Rosenzweig, C.; Conchedda, G.; Karl, K.; Gütschow, J.; Xueyao, P.; Obli-Laryea, G.; Wanner, N.; Qiu, S.Y.; De Barros, J.; et al. Greenhouse gas emissions from food systems: Building the evidence base. Environ. Res. Lett. 2021, 16, 065007. [Google Scholar] [CrossRef]
- IPCC. 1996. Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Workbook. Available online: https://www.ipcc-nggip.iges.or.jp/public/gl/invs5.html (accessed on 24 November 2020).
- De Klein, C.; Novoa, R.S.A.; Ogle, S.; Smith, K.A.; Rochette, P.; Wirth, C.T.; McConkey, B.G.; Mosier, A.; Williams, S.A. N2O Emissions from Managed Soils, and CO2 Emissions from Lime and Urea Application; 2006 IPCC Guidelines for National Greenhouse Gas Inventories. 2006. Available online: https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/4_Volume4/V4_11_Ch11_N2O&CO2.pdf (accessed on 19 August 2018).
- Hergoualc’h, K.; Akiyama, H.; Bernoux, M.; Chirinda, N.; del Prado, A.; Kasimir, Å.; MacDonald, J.D.; Ogle, S.M.; Regina, K.; van der Weerden, T.J. N2O Emissions from Managed Soils, and CO2 Emissions from Lime and Urea Application; 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. 2019. Available online: https://www.ipcc-nggip.iges.or.jp/public/2019rf/pdf/4_Volume4/19R_V4_Ch11_Soils_N2O_CO2.pdf (accessed on 23 September 2019).
- Bouwman, A.F. Direct emission of nitrous oxide from agricultural soils. Nutr. Cycl. Agroecosystems 1996, 46, 53–70. [Google Scholar] [CrossRef]
- Sozanska, M.; Skiba, U.; Metcalfe, S. Developing an inventory of N2O emissions from British soils. Atmos. Environ. 2002, 36, 987–998. [Google Scholar] [CrossRef]
- Smith, K.A.; McTaggart, I.P.; Tsuruta, H. Emissions of N2O and NO associated with nitrogen fertilization in intensive agriculture, and the potential for mitigation. Soil Use Manag. 1997, 13, 296–304. [Google Scholar] [CrossRef]
- Stehfest, E.; Bouwman, L. N2O and NO emission from agricultural fields and soils under natural vegetation: Summarizing available measurement data and modeling of global annual emissions. Nutr. Cycl. Agroecosystems 2006, 74, 207–228. [Google Scholar] [CrossRef]
- Velthof, G.L.; Mosquera, J. The impact of slurry application technique on nitrous oxide emission from agricultural soils. Agric. Ecosyst. Environ. 2011, 140, 298–308. [Google Scholar] [CrossRef]
- Fowler, D.; Steadman, C.E.; Stevenson, D.; Coyle, M.; Rees, R.M.; Skiba, U.M.; Sutton, M.A.; Cape, J.N.; Dore, A.J.; Vieno, M.; et al. Effects of global change during the 21st century on the nitrogen cycle. Atmos. Chem. Phys. 2015, 15, 13849–13893. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Amon, B.; Schulz, K.; Mehdi, B. Factors That Influence Nitrous Oxide Emissions from Agricultural Soils as Well as Their Representation in Simulation Models: A Review. Agronomy 2021, 11, 770. [Google Scholar] [CrossRef]
- Farquharson, R. Nitrification rates and associated nitrous oxide emissions from agricultural soils—A synopsis. Soil Res. 2016, 54, 469–480. [Google Scholar] [CrossRef] [Green Version]
- Scheer, C.; Fuchs, K.; Pelster, D.E.; Butterbach-Bahl, K. Estimating global terrestrial denitrification from measured N2O:(N2O+N2) product ratios. Curr. Opin. Environ. Sustain. 2020, 47, 72–80. [Google Scholar] [CrossRef]
- Bouwman, A.F.; Boumans, L.J.M.; Batjes, N.H. Modeling global annual N2O and NO emissions from fertilized fields. Glob. Biogeochem. Cycles 2002, 16, 28. [Google Scholar] [CrossRef]
- Dalal, R.C.; Wang, W.; Robertson, G.P.; Parton, W.J. Nitrous oxide emission from Australian agricultural lands and mitigation options: A review. Soil Res. 2003, 41, 165–195. [Google Scholar] [CrossRef]
- Li, Y.; Chen, D.; Zhang, Y.; Edis, R.; Ding, H. Comparison of three modeling approaches for simulating denitrification and nitrous oxide emissions from loam-textured arable soils. Glob. Biogeochem. Cycles 2005, 19. [Google Scholar] [CrossRef]
- Parton, W.J.; Holland, E.A.; Del Grosso, S.J.; Hartman, M.D.; Martin, R.E.; Mosier, A.R.; Ojima, D.S.; Schimel, D.S. Generalized model for NOx and N2O emissions from soils. J. Geophys. Res. Atmos. 2001, 106, 17403–17419. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part I: Model development 1. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Gao, X.; Ouyang, W.; Hao, Z.; Xie, X.; Lian, Z.; Hao, X.; Wang, X. SWAT-N2O coupler: An integration tool for soil N2O emission modeling. Environ. Model. Softw. 2019, 115, 86–97. [Google Scholar] [CrossRef]
- Ghimire, U.; Shrestha, N.K.; Biswas, A.; Wagner-Riddle, C.; Yang, W.; Prasher, S.; Rudra, R.; Daggupati, P. A Review of Ongoing Advancements in Soil and Water Assessment Tool (SWAT) for Nitrous Oxide (N2O) Modeling. Atmosphere 2020, 11, 450. [Google Scholar] [CrossRef]
- Yang, Q.; Zhang, X.; Abraha, M.; Del Grosso, S.; Robertson, G.P.; Chen, J. Enhancing the soil and water assessment tool model for simulating N2O emissions of three agricultural systems. Ecosyst. Health Sustain. 2017, 3, e01259. [Google Scholar] [CrossRef] [Green Version]
- Wagena, M.B.; Bock, E.M.; Sommerlot, A.R.; Fuka, D.R.; Easton, Z.M. Development of a nitrous oxide routine for the SWAT model to assess greenhouse gas emissions from agroecosystems. Environ. Model. Softw. 2017, 89, 131–143. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, N.K.; Thomas, B.W.; Du, X.; Hao, X.; Wang, J. Modeling nitrous oxide emissions from rough fescue grassland soils subjected to long-term grazing of different intensities using the Soil and Water Assessment Tool (SWAT). Environ. Sci. Pollut. Res. 2018, 25, 27362–27377. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, N.K.; Wang, J. Current and future hot-spots and hot-moments of nitrous oxide emission in a cold climate river basin. Environ. Pollut. 2018, 239, 648–660. [Google Scholar] [CrossRef]
- Parton, W.J.; Mosier, A.R.; Ojima, D.S.; Valentine, D.W.; Schimel, D.S.; Weier, K.; Kulmala, A.E. Generalized model for N2 and N2O production from nitrification and denitrification. Glob. Biogeochem. Cycles 1996, 10, 401–412. [Google Scholar] [CrossRef]
- Li, C. User’s Guide for the DNDC Model (Version 9.5) 2017. University of New Hampshire. 2017. Available online: http://www.dndc.sr.unh.edu/model/GuideDNDC95.pdf (accessed on 25 November 2020).
- David, M.B.; Del Grosso, S.J.; Hu, X.; Marshall, E.P.; McIsaac, G.F.; Parton, W.J.; Tonitto, C.; Youssef, M.A. Modeling denitrification in a tile-drained, corn and soybean agroecosystem of Illinois, USA. Biogeochemistry 2009, 93, 7–30. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation version 2009. Texas Water Resources Institute. 2009. Available online: https://swat.tamu.edu/media/99192/swat2009-theory.pdf (accessed on 9 March 2018).
- Del Grosso, S.J.; Parton, W.J.; Mosier, A.R.; Ojima, D.S.; Kulmala, A.E.; Phongpan, S. General model for N2O and N2 gas emissions from soils due to dentrification. Glob. Biogeochem. Cycles 2000, 14, 1045–1060. [Google Scholar] [CrossRef]
- Weier, K.L.; Doran, J.W.; Power, J.F.; Walters, D.T. Denitrification and the dinitrogen/nitrous oxide ratio as affected by soil water, available carbon, and nitrate. Soil Sci. Soc. Am. J. 1993, 57, 66–72. [Google Scholar] [CrossRef] [Green Version]
- Umweltbundesamt (Austria’s National Inventory Report). 2020. Available online: https://www.umweltbundesamt.at/fileadmin/site/publikationen/rep0724.pdf. (accessed on 12 October 2020).
- Petersen, S.O.; Regina, K.; Pöllinger, A.; Rigler, E.; Valli, L.; Yamulki, S.; Esala, M.; Fabbri, C.; Syväsalo, E.; Vinther, F.P. Nitrous oxide emissions from organic and conventional crop rotations in five European countries. Agric. Ecosyst. Environ. 2006, 112, 200–206. [Google Scholar] [CrossRef]
- Eder, A.; Blöschl, G.; Feichtinger, F.; Herndl, M.; Klammler, G.; Hösch, J.; Erhart, E.; Strauss, P. Indirect nitrogen losses of managed soils contributing to greenhouse emissions of agricultural areas in Austria: Results from lysimeter studies. Nutr. Cycl. Agroecosystems 2015, 101, 351–364. [Google Scholar] [CrossRef] [Green Version]
- Bodner, G.; Mentler, A.; Klik, A.; Kaul, H.P.; Zechmeister-Boltenstern, S. Do cover crops enhance soil greenhouse gas losses during high emission moments under temperate Central Europe conditions? Die Bodenkultur: J. Land Manag. Food Environ. 2018, 68, 171–187. [Google Scholar] [CrossRef] [Green Version]
- Kasper, M.; Foldal, C.; Kitzler, B.; Haas, E.; Strauss, P.; Eder, A.; Zechmeister-Boltenstern, S.; Amon, B. N2O emissions and NO3− leaching from two contrasting regions in Austria and influence of soil, crops and climate: A modelling approach. Nutr. Cycl. Agroecosystems 2019, 113, 95–111. [Google Scholar] [CrossRef] [Green Version]
- Schürz, C. SWATplusR Package. 2019. Available online: https://chrisschuerz.github.io/SWATplusR/articles/SWATplusR.html. (accessed on 12 March 2019).
- Shields, M.D.; Zhang, J. The generalization of Latin hypercube sampling. Reliab. Eng. Syst. Saf. 2016, 148, 96–108. [Google Scholar] [CrossRef] [Green Version]
- Pianosi, F.; Wagener, T. A simple and efficient method for global sensitivity analysis based on cumulative distribution functions. Environ. Model. Softw. 2015, 67, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Gupta, H.V.; Sorooshian, S.; Yapo, P.O. Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration. J. Hydrol. Eng. 1999, 4, 135–143. [Google Scholar] [CrossRef]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef] [Green Version]
- Anderson, M.C.; Kustas, W.P.; Norman, J.M.; Hain, C.R.; Mecikalski, J.R.; Schultz, L.; Gonz’alez-Dugo, M.P.; Cammalleri, C.; d’Urso, G.; Pimstein, A.; et al. Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery. Hydrol. Earth Syst. Sci. 2011, 15, 223–239. [Google Scholar] [CrossRef] [Green Version]
- Anderson, M.C. Level-3 Evapotranspiration(ET_ALEXI)Algorithm Theoretical Basis Document. 2018. Available online: https://lpdaac.usgs.gov/documents/332/ECO3ETALEXIU_ATBD_V1.pdf. (accessed on 27 May 2021).
- Mecikalski, J.R.; Mackaro, S.M.; Anderson, M.C.; Norman, J.M.; Basara, J.B. Evaluating the use of the Atmospheric Land Exchange Inverse (ALEXI) model in short-term prediction and mesoscale diagnosis. In Proceedings of the Conference on Hydrology, San Diego, CA, USA, 12 January 2005; pp. 8–13. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.553.1402&rep=rep1&type=pdf (accessed on 27 May 2021).
- Cawse-Nicholson, K.; Braverman, A.; Kang, E.L.; Li, M.; Johnson, M.; Halverson, G.; Anderson, M.; Hain, C.; Gunson, M.; Hook, S. Sensitivity and uncertainty quantification for the ECOSTRESS evapotranspiration algorithm–DisALEXI. Int. J. Appl. Earth Obs. Geoinf. 2020, 89, 102088. [Google Scholar] [CrossRef]
- Parkin, T.B. Effect of sampling frequency on estimates of cumulative nitrous oxide emissions. J. Environ. Qual. 2008, 37, 1390–1395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, J.P.; Lasso, A.; Lubberding, H.J.; Peña, M.R.; Gijzen, H.J. Biases in greenhouse gases static chambers measurements in stabilization ponds: Comparison of flux estimation using linear and non-linear models. Atmos. Environ. 2015, 109, 130–138. [Google Scholar] [CrossRef]
- Foltz, M.E.; Zilles, J.L.; Koloutsou-Vakakis, S. Prediction of N2O emissions under different field management practices and climate conditions. Sci. Total Environ. 2019, 646, 872–879. [Google Scholar] [CrossRef]
- Gungor, K.; Karakaya, N.; Evrendilek, F.; Akgul, S.; Baskan, O.; Cebel, H.; Farhoud, H.J.; Turkecan, O.; Yasar, S.; Gumus, O. Spatiotemporal modeling of watershed nutrient transport dynamics: Implications for eutrophication abatement. Ecol. Inform. 2016, 34, 52–69. [Google Scholar] [CrossRef]
- Ikenberry, C.D.; Crumpton, W.G.; Arnold, J.G.; Soupir, M.L.; Gassman, P.W. Evaluation of existing and modified wetland equations in the SWAT model. JAWRA J. Am. Water Resour. Assoc. 2017, 53, 1267–1280. [Google Scholar] [CrossRef]
- Pott, C.A.; Fohrer, N. Best management practices to reduce nitrate pollution in a rural watershed in Germany. Rev. Ambiente Água 2017, 12, 888–901. [Google Scholar] [CrossRef] [Green Version]
- Bremner, J.M.; Blackmer, A.M. Effects of acetylene and soil water content on emission of nitrous oxide from soils. Nature 1979, 280, 380–381. [Google Scholar] [CrossRef]
- Lipschultz, F.; Zafiriou, O.C.; Wofsy, S.C.; McElroy, M.B.; Valois, F.W.; Watson, S.W. Production of NO and N2O by soil nitrifying bacteria. Nature 1981, 294, 641–643. [Google Scholar] [CrossRef]
- Goodroad, L.L.; Keeney, D.R. Nitrous oxide production in aerobic soils under varying pH, temperature and water content. Soil Biol. Biochem. 1984, 16, 39–43. [Google Scholar] [CrossRef]
- Remde, A.; Conrad, R. Production of nitric oxide in Nitrosomonas europaea by reduction of nitrite. Arch. Microbiol. 1990, 154, 187–191. [Google Scholar] [CrossRef]
- Garrido, F.; Hénault, C.; Gaillard, H.; Pérez, S.; Germon, J.C. N2O and NO emissions by agricultural soils with low hydraulic potentials. Soil Biol. Biochem. 2002, 34, 559–575. [Google Scholar] [CrossRef]
- Khalil, K.; Mary, B.; Renault, P. Nitrous oxide production by nitrification and denitrification in soil aggregates as affected by O2 concentration. Soil Biol. Biochem. 2004, 36, 687–699. [Google Scholar] [CrossRef]
- Bateman, E.J.; Baggs, E.M. Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space. Biol. Fertil. Soils 2005, 41, 379–388. [Google Scholar] [CrossRef]
- Mathieu, O.; Hénault, C.; Lévêque, J.; Baujard, E.; Milloux, M.J.; Andreux, F. Quantifying the contribution of nitrification and denitrification to the nitrous oxide flux using 15N tracers. Environ. Pollut. 2006, 144, 933–940. [Google Scholar] [CrossRef]
- Mørkved, P.T.; Dörsch, P.; Henriksen, T.M.; Bakken, L.R. N2O emissions and product ratios of nitrification and denitrification as affected by freezing and thawing. Soil Biol. Biochem. 2006, 38, 3411–3420. [Google Scholar] [CrossRef]
- Mørkved, P.T.; Dörsch, P.; Bakken, L.R. The N2O product ratio of nitrification and its dependence on long-term changes in soil pH. Soil Biol. Biochem. 2007, 39, 2048–2057. [Google Scholar] [CrossRef]
- Frame, C.H.; Casciotti, K.L. Biogeochemical controls and isotopic signatures of nitrous oxide production by a marine ammonia-oxidizing bacterium. Biogeosciences 2010, 7, 2695–2709. [Google Scholar] [CrossRef] [Green Version]
- Leitner, S.; Spiridon, A.; Hood-Nowotny, R.; Heiling, M.; Resch, C.; Berthold, H.; Hösch, J.; Murer, E.; Wagenhofer, J.; Formayer, H.; et al. Impact of Future Precipitation Patterns in Agroecosystems on CO2 and N2O Emissions—A Green Manure Stable Isotope Labelling Study; EGU General Assembly. 2019. Available online: https://meetingorganizer.copernicus.org/EGU2019/2019-17269.pdf (accessed on 14 April 2021).
- Spiridon, A.; Hood-Nowotny, R.; Leitner, S.; Berthold, H.; Hösch, J.; Murer, E.; Wagenhofer, J.; Formayer, H.; Bruckner, A.; Wanek, W.; et al. Consequences of Climate Change for Agroecosystem Carbon and Nitrogen Cycling—A Stable Isotope Labelling Study; 16th Stable Isotope Network Austria Meeting. 2018. Available online: https://meeting.sina.or.at/sites/default/files/16th_SINA_ProgramAbstracts_2018.pdf (accessed on 14 April 2021).
- Schäfer, K.; Böttcher, J.; Weymann, D.; von der Heide, C.; Duijnisveld, W.H. Evaluation of a Closed Tunnel for Field-Scale Measurements of Nitrous Oxide Fluxes from an Unfertilized Grassland Soil. J. Environ. Qual. 2012, 41, 1383–1392. [Google Scholar] [CrossRef]
- Schwenke, G.D.; Haigh, B.M. Can split or delayed application of N fertiliser to grain sorghum reduce soil N2O emissions from sub-tropical Vertosols and maintain grain yields? Soil Res. 2019, 57, 859–874. [Google Scholar] [CrossRef]
- Choudhary, M.A.; Akramkhanov, A.; Saggar, S. Nitrous oxide emissions in soils cropped with maize under long-term tillage and under permanent pasture in New Zealand. Soil Tillage Res. 2001, 62, 61–71. [Google Scholar] [CrossRef]
- Yoshida, T.; Alexander, M. Nitrous Oxide Formation by Nitrosomonas Europaea and Heterotrophie Microorganisms. Soil Sci. Soc. Am. J. 1970, 34, 880–882. [Google Scholar] [CrossRef]
- Bremner, J.M. Sources of nitrous oxide in soils. Nutr. Cycl. Agroecosystems 1997, 49, 7–16. [Google Scholar] [CrossRef]
- Freney, J.; Denmead, O.; Simpson, J. Nitrous oxide emission from soils at low moisture contents. Soil Biol. Biochem. 1979, 11, 167–173. [Google Scholar] [CrossRef]
- Goreau, T.J.; Kaplan, W.A.; Wofsy, S.C.; McElroy, M.B.; Valois, F.W.; Watson, S.W. Production of NO2-and N2O by Nitrifying Bacteria at Reduced Concentrations of Oxygen. Appl. Environ. Microbiol. 1980, 40, 526–532. [Google Scholar] [CrossRef] [Green Version]
- Hynes, R.K.; Knowles, R. Production of nitrous oxide by Nitrosomonas europaea: Effects of acetylene, pH, and oxygen. Can. J. Microbiol. 1984, 30, 1397–1404. [Google Scholar] [CrossRef]
- Martikainen, P.J. Nitrous Oxide Emission Associated with Autotrophic Ammonium Oxidation in Acid Coniferous Forest Soil. Appl. Environ. Microbiol. 1985, 50, 1519–1525. [Google Scholar] [CrossRef] [Green Version]
- Tortoso, A.C.; Hutchinson, G.L. Contributions of Autotrophic and Heterotrophic Nitrifiers to Soil NO and N2O Emissions. Appl. Environ. Microbiol. 1990, 56, 1799–1805. [Google Scholar] [CrossRef] [Green Version]
- Martikainen, P.; De Boer, W. Nitrous oxide production and nitrification in acidic soil from a dutch coniferous forest. Soil Biol. Biochem. 1993, 25, 343–347. [Google Scholar] [CrossRef]
- Maag, M.; Vinther, F. Nitrous oxide emission by nitrification and denitrification in different soil types and at different soil moisture contents and temperatures. Appl. Soil Ecol. 1996, 4, 5–14. [Google Scholar] [CrossRef]
- A Kester, R.; De Boer, W.; Laanbroek, H.J. Production of NO and N(inf2)O by Pure Cultures of Nitrifying and Denitrifying Bacteria during Changes in Aeration. Appl. Environ. Microbiol. 1997, 63, 3872–3877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Q.-Q.; Bakken, L.R. Nitrous Oxide Production and Methane Oxidation by Different Ammonia-Oxidizing Bacteria. Appl. Environ. Microbiol. 1999, 65, 2679–2684. [Google Scholar] [CrossRef] [Green Version]
- Ingwersen, J.; Butterbach-Bahl, K.; Gasche, R.; Richter, O.; Papen, H. Barometric Process Separation: New Method for Quantifying Nitrification, Denitrification, and Nitrous Oxide Sources in Soils. Soil Sci. Soc. Am. J. 1999, 63, 117–128. [Google Scholar] [CrossRef]
- Cheng, W.; Tsuruta, H.; Chen, G.; Yagi, K. N2O and NO production in various Chinese agricultural soils by nitrification. Soil Biol. Biochem. 2004, 36, 953–963. [Google Scholar] [CrossRef]
- Carter, M.S. Contribution of nitrification and denitrification to N2O emissions from urine patches. Soil Biol. Biochem. 2007, 39, 2091–2102. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Suter, H.; Islam, A.; Edis, R. Influence of nitrification inhibitors on nitrification and nitrous oxide (N2O) emission from a clay loam soil fertilized with urea. Soil Biol. Biochem. 2010, 42, 660–664. [Google Scholar] [CrossRef]
- Galbally, I.E.; Meyer, M.C.; Wang, Y.-P.; Smith, C.J.; Weeks, I.A. Nitrous oxide emissions from a legume pasture and the influences of liming and urine addition. Agric. Ecosyst. Environ. 2010, 136, 262–272. [Google Scholar] [CrossRef]
- Zhu-Barker, X.; Silva, L.; Doane, T.A.; Horwath, W.R. Iron: The Forgotten Driver of Nitrous Oxide Production in Agricultural Soil. PLoS ONE 2013, 8, e60146. [Google Scholar] [CrossRef] [Green Version]
- Paul, J.W.; Beauchamp, E.G.; Zhang, X. Nitrous and nitric oxide emissions during nitrification and denitrification from manure-amended soil in the laboratory. Can. J. Soil Sci. 1993, 73, 539–553. [Google Scholar] [CrossRef]
Catchment Characteristics | Unit | Melk | Zaya |
---|---|---|---|
Elevation range | m | 201–1050 | 153–490 |
Mean annual rainfall | mm | 794 | 553 |
Mean maximum temperature | °C | 14.4 | 13.4 |
Mean minimum temperature | °C | 5.3 | 5.4 |
Average clay | % | 23.39 | 28.18 |
Average silt | % | 44.5 | 49.03 |
Average sand | % | 32.14 | 22.79 |
Average rock fragment content | % | 9.81 | 10.33 |
Average organic carbon content | % | 3.36 | 2.2 |
Dominant texture | Silt-loam | Clay loam | |
Average moist bulk density | [g cm−3] | 1.32 | 1.34 |
Average available water content of the soil layer | [mm mm−1] | 0.18 | 0.16 |
M1 | Crop | PAST | WWHT | CORN | SOYB | BARL |
Area (%) | 44.9 | 22.8 | 11.6 | 3.9 | 2 | |
Min N (kg ha−1) | 140 | 170 | 197.6 | 0 | 130 | |
M2 | Crop | FESI | WWHT | CORN | SOYB | FESE |
Area (%) | 32.1 | 22.8 | 11.6 | 3.9 | 3.6 | |
Org N (kg ha−1) | 136 | 4.7 | 102 | 4.7 | 10.8 | |
Min N (kg ha−1) | 35 | 130.1 | 58.3 | 28.2 | 64.8 | |
Zaya | Crop | WWHT | BARL | SGBT | CORN | FESI |
Area (%) | 45.1 | 14.2 | 8.9 | 8.7 | 0.6 | |
Org N (kg ha−1) | 4.8 | 5.6 | 4.7 | 38.8 | 127 | |
Min N (kg ha−1) | 139.7 | 92 | 108.9 | 106.2 | 5.9 |
Site | Soil Texture | Rainfall (mm) a | Crop b | N Fertilizer (kg N ha−1) | Fertilizer Type | Days in Growing Season | Irrigation |
---|---|---|---|---|---|---|---|
Pötting | Silty loam | 891 | Grain corn | 162 | Slurry & Urea | 158 | No |
M1 | Silty loam | 976 | CORN | 197.6 | NH4NO3 | 157 | No |
WWHT | 170 | 266 | |||||
BARL | 130 | 128 | |||||
M2 | CORN | 160.3 | NO3 & Organic N | 188 c | No | ||
WWHT | 134.8 | 362 c | |||||
Zaya | Clay loam | 583 | CORN | 145 | NO3 & Organic N | 188 c | Real: yes; Model setup: no |
WWHT | 144.5 | 291 c | |||||
BARL | 97.6 | 133 c | |||||
SGBT | 113.6 | 215 c | |||||
Hirschstetten | Loamy sand | 433 | Spring barley | 50 | NH4NO3 | 106 | No |
Winter wheat | 120 | 265 | |||||
MF3 | Loam | 650 | Grain corn | 150 | NH4NO3 | Yes | |
Winter wheat | 116 | ||||||
Spring barley | 55 | ||||||
Sugar beet | 110 |
Setup | Process | KGE_Q | PBIAS_Q | KGE_N | PBIAS_N | Period_Q | Period_N |
---|---|---|---|---|---|---|---|
M1 | Calibration | 0.56 | 2.7 | 0.33 | −4.5 | 1985–1999 | 1993–1999 |
Validation | 0.57 | 8.4 | 0.11 | −30 | 2000–2015 | 2000–2008 | |
M2 | Calibration | 0.71 | 7 | 0.64 | −16 | 1981–2002 | 1994–2002 |
Validation | 0.71 | −12 | 0.54 | −23 | 2003–2016 | 2003–2008 | |
Zaya | Calibration | 0.51 | −7 | 0.67 | −27 | 1981–2010 | 2003–2010 |
Validation | 0.51 | −16 | 0.43 | −36 | 2010–2016 | 2010–2016 |
Reference | K2 (%) | Clay (%) | Silt (%) | Sand (%) |
---|---|---|---|---|
Bremner and Blackmer [52] | 3.5 | 25–27 | 36–47 | 28–37 |
Lipschultz et al. [53] | 0.15–2.5 | Average value | ||
Goodroad and Keeney [54] | 0.1–1.1 | 19 | 50 | 31 |
Remde and Conrad [55] | 0.1–3.9 | Average value | ||
Garrido et al. [56] | <−0.001–1 | 20–32 | ||
Khalil et al. [57] | 0.16–1.48 | 20 | 73 | 7 |
Bateman and Baggs [58] | 0.17–0.53 | 15 | 68 | 17 |
Mathieu et al. [59] | 0.13–2.32 | 14 | 52 | 35 |
Mørkved et al. [60] | <0.1–27 | 13 | 68 | 19 |
Mørkved et al. [61] | 0.02–7.6 | 21 | 40 | 39 |
Frame and Casciotti [62] | 0.4–2.2 | Average value |
Setup | Variable | Function | CORN | WWHT | SOYB | PAST | BARL | SGBT |
---|---|---|---|---|---|---|---|---|
M1 | N2O (N kg ha−1) | Maximum | 8.59 | 11.25 | 12 | 5.46 | ||
Median | 1.35 | 1.29 | 1.03 | 1.11 | ||||
Minimum | 0.58 | 0.67 | 0 | 0.89 | ||||
N2O EF (%) | Maximum | 4.34 | 6.62 | 8.57 | 4.2 | |||
Median | 0.68 | 0.76 | 0.74 | 0.85 | ||||
Minimum | 0.29 | 0.4 | 0 | 0.68 | ||||
M2 | N2O (N kg ha−1) | Maximum | 3.95 | 2.47 | 2.56 | 0.09 | ||
Median | 0.13 | 0.03 | 0.18 | 0.01 | ||||
Minimum | 0.03 | 0.01 | 0.04 | 0 | ||||
N2O EF (%) | Maximum | 2.47 | 1.83 | 7.74 | 0.05 | |||
Median | 0.08 | 0.02 | 0.55 | 0.006 | ||||
Minimum | 0.02 | 0.007 | 0.09 | 0 | ||||
Zaya | N2O (N kg ha−1) | Maximum | 18.63 | 8.06 | 19.56 | 12.99 | ||
Median | 0.85 | 0.51 | 0.62 | 1.94 | ||||
Minimum | 0 | 0 | 0 | 0 | ||||
N2O EF (%) | Maximum | 12.85 | 5.58 | 20.06 | 11.43 | |||
Median | 0.59 | 0.35 | 0.63 | 1.7 | ||||
Minimum | 0 | 0 | 0 | 0 |
Sources of Uncertainty | Description |
---|---|
The SWAT model | 1. The SWAT model includes a number of parameters. The measured values for parameters in Table S5 are not available. |
2. The SWAT model cannot account for the changes in soil pH, which is influenced by the amount of rainfall, the soil texture, crop residue, commercial fertilizer application, and different management practices. | |
Input data | 1. The soil data from SoilGrids and European soil data center have low resolution 250 m and 1 km, respectively. |
2. For the land use map, we grouped in the INSPIRE databased into similar categories for SWAT. The simulated N2O emissions were therefore not only from one crop type, but from crops included within each group. | |
3. Irrigation data was not available. | |
The fraction K2 | The fraction K2 used to partition N2O emissions from nitrification was not measured in the Melk catchment, bur collected from literature. The fraction K2 varies with soil texture and climate. |
Semi-empirical equations | The semi-empirical equations used in this study to calculate the ratio N2/N2O are from Parton et al. [26], which were developed based on laboratory data and the data in Weier et al. [31]. In fact, the impacts of soil NO3−, SOC, and soil moisture on the N2/N2O ratio are highly variable spatially. |
Measured N2O data | For the Melk catchment and Zaya catchment, no measured N2O data is available. We have used available measured data from proximate regions with similar crops, soil types, and climates. |
NOx | NOx is also the obligate intermediate in the denitrification process. In this study, we did not partition NOx from the denitrification process, which may overestimate N2O emissions. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Schürz, C.; Zoboli, O.; Zessner, M.; Schulz, K.; Watzinger, A.; Bodner, G.; Mehdi-Schulz, B. N2O Emissions from Two Austrian Agricultural Catchments Simulated with an N2O Submodule Developed for the SWAT Model. Atmosphere 2022, 13, 50. https://doi.org/10.3390/atmos13010050
Wang C, Schürz C, Zoboli O, Zessner M, Schulz K, Watzinger A, Bodner G, Mehdi-Schulz B. N2O Emissions from Two Austrian Agricultural Catchments Simulated with an N2O Submodule Developed for the SWAT Model. Atmosphere. 2022; 13(1):50. https://doi.org/10.3390/atmos13010050
Chicago/Turabian StyleWang, Cong, Christoph Schürz, Ottavia Zoboli, Matthias Zessner, Karsten Schulz, Andrea Watzinger, Gernot Bodner, and Bano Mehdi-Schulz. 2022. "N2O Emissions from Two Austrian Agricultural Catchments Simulated with an N2O Submodule Developed for the SWAT Model" Atmosphere 13, no. 1: 50. https://doi.org/10.3390/atmos13010050
APA StyleWang, C., Schürz, C., Zoboli, O., Zessner, M., Schulz, K., Watzinger, A., Bodner, G., & Mehdi-Schulz, B. (2022). N2O Emissions from Two Austrian Agricultural Catchments Simulated with an N2O Submodule Developed for the SWAT Model. Atmosphere, 13(1), 50. https://doi.org/10.3390/atmos13010050