Drought Assessment in São Francisco River Basin, Brazil: Characterization through SPI and Associated Anomalous Climate Patterns
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Identification of Dry Periods
2.4. Anomalous Atmospheric and Oceanic Patterns
3. Results and Discussion
3.1. Climatology of Precipitation in the SFRB
3.2. Identification of the Dry Periods
3.3. Anomalous Atmospheric and Oceanic Patterns
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WMO—World Meteorological Organization. Standardized Precipitation Index. User Guide. 2012. Available online: https://library.wmo.int/doc_num.php?explnum_id=7768 (accessed on 17 November 2020).
- Van Loon, A.F.; Gleeson, T.; Clark, J.; Van Dijk, A.I.J.M.; Stahl, K.; Hannaford, J.; Baldasarre, G.; Teuling, A.J.; Tallaksen, L.M.; Uijlenhoet, R.; et al. Drought in the Anthropocene. Nat. Geosci. 2016, 9, 89–91. [Google Scholar] [CrossRef] [Green Version]
- Wilhite, D.A.; Glantz, M.H. Understanding: The drought phenomenon: The role of definitions. Water Int. 1985, 10, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Yihdego, Y.; Vaheddoost, B.; Al-Weshah, R.A. Drought indices and indicators revisited. Arab. J. Geosci. 2019, 12, 69. [Google Scholar] [CrossRef]
- WMO—World Meteorological Organization; GWP—Global Water Partnership. Handbook of Drought Indicators and Indices; World Meteorological Organization: Geneva, Switzerland, 2016; Available online: https://public.wmo.int/en/resources/library/handbook-of-drought-indicators-and-indices (accessed on 5 November 2021).
- Mukherjee, S.; Mishra, A.; Trenberth, K.E. Climate change and drought: A perspective on drought indices. Curr. Clim. Chang. Rep. 2018, 4, 145–163. [Google Scholar] [CrossRef]
- Da Silva, D.F.; da Silva Lima, M.J.; de Souza Neto, P.F.; Gomes, H.B.; dos Santos Silva, F.D.; de Carvalho Almeida, H.R.R.; Pereira, M.P.S.; Costa, R.L. Caracterização de eventos extremos e de suas causas climáticas com base no índice Padronizado de Precipitação Para o Leste do Nordeste. RBGF 2020, 13, 449–464. [Google Scholar] [CrossRef]
- Rossato, L.; Marengo, J.A.; de Angelis, C.F.; Pires, L.B.M.; Mendiondo, E.M. Impact of soil moisture over Palmer Drought Severity Index and its future projections in Brazil. RBRH 2017, 22, e36. [Google Scholar] [CrossRef] [Green Version]
- Gozzo, L.F.; Palma, D.S.; Custodio, M.S.; Machado, J.P. Climatology and trend of severe drought events in the state of São Paulo, Brazil, during the 20th century. Atmosphere 2019, 10, 190. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, S.T.N.; das Chagas Vasconcelos Junior, F.; Sakamoto, M.S.; da Silva Silveira, C.; Martins, E.S.P.R. Índices e Metodologias de Monitoramento de Secas: Uma Revisão. Rev. Bras. Meteorol. 2021, 36, 495–511. [Google Scholar] [CrossRef]
- Morello, T.F.; Ramos, R.M.; Anderson, L.O.; Owen, N.; Rosan, T.M.; Steil, L. Predicting fires for policy making: Improving accuracy of fire brigade allocation in the Brazilian Amazon. Ecol. Econ. 2020, 169, 106501. [Google Scholar] [CrossRef]
- Martins, M.A.; Tomasella, J.; Rodriguez, D.A.; Alvalá, R.C.S.; Giarolla, A.; Garofolo, L.L.; Siqueira Júnior, J.L.; Paolicchi, L.T.L.C.; Pinto, G.L.N. Improving drought management in the Brazilian semiarid through crop forecasting. Agric. Syst. 2018, 160, 21–30. [Google Scholar] [CrossRef]
- Silva, S.M.; Souza Filho, F.A.; Araújo, L.M., Jr. Mecanismo financeiro projetado com índices de seca como instrumento de gestão de risco em recursos hídricos. Rev. Bras. Recur Hídricos 2015, 20, 320–330. [Google Scholar] [CrossRef]
- Cunha, A.P.M.A.; Zeri, M.; Leal, K.D.; Costa, L.; Cuartas, L.A.; Marengo, J.A.; Tomasella, J.; Vieira, R.M.; Barbosa, A.A.; Cunningham, C.; et al. Extreme drought events over Brazil from 2011 to 2019. Atmosphere 2019, 10, 642. [Google Scholar] [CrossRef] [Green Version]
- Brito, S.S.B.; Cunha, A.P.M.; Cunningham, C.C.; Alvalá, R.C.; Marengo, J.A.; Carvalho, M.A. Frequency, duration and severity of drought in the Semiarid Northeast Brazil region. Int. J. Climatol. 2017, 38, 517–529. [Google Scholar] [CrossRef]
- Xavier, L.C.P.; Silva, S.M.O.D.; Carvalho, T.M.N.; Pontes Filho, J.D.; Souza Filho, F.D.A.D. Use of Machine Learning in Evaluation of Drought Perception in Irrigated Agriculture: The Case of an Irrigated Perimeter in Brazil. Water 2020, 12, 1546. [Google Scholar] [CrossRef]
- Mckee, T.B.; Doesken, N.J.; Kleist, J. The Relationship of Drought Frequency and Duration to Time Scales. In Proceedings of the 8th Conference on Applied Climatology, Boston, MA, USA, 17–22 January 1993; pp. 179–183. Available online: https://climate.colostate.edu/pdfs/relationshipofdroughtfrequency.pdf (accessed on 10 November 2020).
- ANA—Agência Nacional De Águas E Saneamento Básico. Conjuntura dos Recursos Hídricos no Brasil: Regiões Hidrográficas Brasileiras—Edição Especial; ANA: Brasília, Brazil, 2015. Available online: https://www.snirh.gov.br/portal/centrais-de-conteudos/conjuntura-dos-recursos-hidricos/regioeshidrograficas2014.pdf (accessed on 3 August 2020).
- CODEVASF—Companhia de Desenvolvimento dos Vales do São Francisco e do Parnaíba. Plano Nascente: Plano de Preservação e Recuperação de Nascentes da Bacia do rio São Francisco; Editora IABS: Brasília Brasil, 2015; Available online: https://www.terrabrasilis.org.br/ecotecadigital/images/abook/pdf/2016/Marco/Mar.16.25.pdf (accessed on 15 March 2020).
- CBHSF—Comitê da Bacia do São Francisco. A Bacia. 2021. Available online: https://cbhsaofrancisco.org.br/a-bacia/ (accessed on 14 August 2021).
- Amorim, R.S.; De Souza, S.A.; Reis, D.S., Jr. Autocorrelation and Multiple Testing Procedures in Trend Detection Analysis: The Case Study of Hydrologic Extremes in São Francisco River Basin, Brazil. In Proceedings of the World Environmental and Water Resources Congress, Sacramento, CA, USA, 21–25 May 2017; pp. 134–148. Available online: https://ascelibrary.org/doi/abs/10.1061/9780784480601.013 (accessed on 22 October 2021).
- Marengo, J.A.; Cunha, A.P.; Alves, L.M. A Seca de 2012-15 no Semiárido do Nordeste do Brasil no Contexto Histórico. Climanálise 2016, 3, 1–6. Available online: http://climanalise.cptec.inpe.br/~rclimanl/revista/pdf/30anos/marengoetal.pdf (accessed on 22 June 2020).
- De Medeiros, F.J.; De Oliveira, C.P.; Silva, C.M.S.E.; De Araújo, J.M. Numerical simulation of the circulation and tropical teleconnection mechanisms of a severe drought event (2012–2016) in Northeastern Brazil. Clim. Dyn. 2020, 54, 4043–4057. [Google Scholar] [CrossRef]
- Paredes-Trejo, F.; Barbosa, H.A.; Giovannettone, J.; Kumar, T.V.; Thakur, M.K.; Buriti, C.D.O.; Uzcátegui-Briceño, C. Drought Assessment in the São Francisco River Basin Using Satellite-Based and Ground-Based Indices. Remote Sens. 2021, 13, 3921. [Google Scholar] [CrossRef]
- Coelho, C.A.S.; Cardoso, D.H.F.; Firpo, M.A. A seca de 2013 a 2015 na região sudeste do Brasil. Climanálise 2016, 30, 55–66. Available online: http://climanalise.cptec.inpe.br/~rclimanl/revista/pdf/30anos/Coelhoetal.pdf (accessed on 12 August 2021).
- Finke, K.; Jiménez-Esteve, B.; Taschetto, A.S.; Ummenhofer, C.C.; Bumke, K.; Domeisen, D.I.V. Revisiting remote drivers of the 2014 drought in South-Eastern Brazil. Clim. Dyn. 2020, 55, 3197–3211. [Google Scholar] [CrossRef]
- Geirinhas, J.L.; Russo, A.; Libonati, R.; Sousa, P.M.; Miralles, D.G.; Trigo, R.M. Recent increasing frequency of compound summer drought and heatwaves in Southeast Brazil. Environ. Res. Lett. 2021, 16, 034036. Available online: https://iopscience.iop.org/article/10.1088/1748-9326/abe0eb (accessed on 6 November 2021). [CrossRef]
- Munich, R.E. Natural Catastrophes 2014. Analyzes, Assessments, Positions. TOPICS-GEO 2014. 2015. Available online: https://www.munichre.com/content/dam/munichre/contentlounge/website-pieces/documents/302-08606_en.pdf/_jcr_content/renditions/original.media_file.download_attachment.file/302-08606_en.pdf (accessed on 8 November 2021).
- Reboita, M.S.; De Oliveira, D.D.; De Freitas, C.H.; De Oliveira, G.M.; Pereira, R.A.A. Anomalias dos Padrões Sinóticos da Atmosfera na América do Sul nos Meses de Janeiros de 2014 e 2015. Rev. Bras. Energ. Renov. 2015, 4, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Nobre, C.A.; Marengo, J.A.; Seluchi, M.E.; Cuartas, L.A.; Alves, L.M. Some characteristics and impacts of the drought and water crisis in Southeastern Brazil during 2014 and 2015. J. Water Resour. Prot. 2016, 8, 252–262. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez, A.P.A.; Engle, N.L.; De Nys, E.; Molejón, C.; Martins, E.S. Drought preparedness in Brazil. Weather Clim. Extrem. 2014, 3, 95–106. [Google Scholar] [CrossRef] [Green Version]
- Marengo, J.A.; Torres, R.R.; Alves, L.M. Drought in Northeast Brazil—Past, present, and future. Theor. Appl. Climatol. 2016, 129, 1189–1200. [Google Scholar] [CrossRef]
- Marengo, J.A.; Alves, L.M.; Beserra, E.A.; Lacerda, F.F. Variabilidade e Mudanças Climáticas no Semiárido Brasileiro. Recursos Hídricos em Regiões Áridas e Semiáridas. 2011. Volume 1. Available online: http://plutao.sid.inpe.br/col/dpi.inpe.br/plutao/2011/06.11.02.16/doc/Marengo_Variabilidade.pdf?languagebutton=en (accessed on 14 August 2020).
- SUDENE—Superintendência do Desenvolvimento do Nordeste. Nova Delimitação Semiárido. 2018. Available online: http://antigo.sudene.gov.br/images/arquivos/semiarido/arquivos/Rela%C3%A7%C3%A3o_de_Munic%C3%ADpios_Semi%C3%A1rido.pdf (accessed on 14 August 2020).
- Santana, M.O. Atlas das Áreas Susceptíveis a Desertificação do Brasil/MMA; Secretaria de Recursos Hídricos: Brasília, Brazil, 2007; Available online: http://repiica.iica.int/docs/B3826p/B3826p.pdf (accessed on 9 October 2020).
- Perez-Marin, A.M.; Cavalcante, A.D.M.B.; Medeiros, S.S.D.; Tinôco, L.B.D.M.; Salcedo, I.H. Núcleos de Desertificação do Semiárido Brasileiro: Ocorrência Natural ou Antrópica? Parcer. Estratégicas 2013, 17, 87–106. Available online: http://seer.cgee.org.br/index.php/parcerias_estrategicas/article/viewFile/671/615 (accessed on 9 October 2020).
- Tomasella, J.; Vieira, R.M.S.P.; Barbosa, A.A.; Rodriguez, D.A.; Santana, M.O.; Sestini, M.F. Desertification trends in the Northeast of Brazil over the period 2000–2016. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 197–206. [Google Scholar] [CrossRef]
- Vieira, R.M.S.P.; Tomasella, J.; Barbosa, A.A.; Martins, M.A.; Rodriguez, D.A.; De Rezende, F.S.; Carriello, F.; Santana, M.O. Desertification risk assessment in Northeast Brazil: Current trends and future scenarios. Land Degrad. Dev. 2021, 32, 224–240. [Google Scholar] [CrossRef]
- MMA—Ministério do Meio Ambiente. Programa de Ação Nacional de Combate à Desertificação e Mitigação dos Efeitos da Seca; Secretaria de Recursos Hídricos: Brasilia, Brazil, 2005. Available online: https://antigo.mma.gov.br/estruturas/sedr_desertif/_arquivos/pan_brasil_portugues.pdf (accessed on 9 June 2021).
- De Almeida, C.; Barbieri, A.F.; Rodrigues Filho, S. Linking migration, climate and social protection in Brazilian semiarid: Case studies of Submédio São Francisco and Seridó Potiguar. SiD 2020, 11, 238–251. [Google Scholar] [CrossRef]
- Nogués-Paegle, J.; Mo, K.C. Alternating wet and dry conditions over South America during summer. Mon. Weather Rev. 1997, 125, 279–291. [Google Scholar] [CrossRef]
- Ambrizzi, T.; De Souza, E.B.; Pulwarty, R.S. The Hadley and Walker Regional Circulations and Associated ENSO Impacts on South American Seasonal Rainfall. In The Hadley Circulation: Present, Past and Future; Springer: Dordrecht, The Netherlands, 2005; pp. 203–235. [Google Scholar] [CrossRef]
- Tedeschi, R.G.; Grimm, A.M.; Cavalcanti, I.F.A. Influence of Central and East ENSO on extreme events of precipitation in South America during austral spring and summer. Int. J. Climatol. 2015, 35, 2045–2064. [Google Scholar] [CrossRef]
- Cai, W.; Mcphaden, M.J.; Grimm, A.M.; Rodrigues, R.R.; Taschetto, A.S.; Garreaud, R.D.; Dewitte, B.; Poveda, G.; Ham, Y.; Santoso, A.; et al. Climate impacts of the El Niño–southern oscillation on South America. Nat. Rev. Earth Environ. 2020, 1, 215–231. [Google Scholar] [CrossRef]
- Reboita, M.S.; Ambrizzi, T.; Crespo, N.M.; Dutra, L.M.M.; de S Ferreira, G.W.; Rehbein, A.; Drumond, A.; Da Rocha, R.P.; De Souza, C.A.D. Impacts of teleconnection patterns on South America climate. Ann. N. Y. Acad. Sci. 2021, 1504, 1–38. [Google Scholar] [CrossRef] [PubMed]
- Moura, A.D.; Shukla, J. On the dynamics of droughts in northeast Brazil: Observations, theory and numerical experiments with a general circulation model. J. Atmos. Sci. 1981, 38, 2653–2675. [Google Scholar] [CrossRef] [Green Version]
- Hastenrath, S.; Greischar, L. Circulation mechanisms related to northeast Brazil rainfall anomalies. J. Geophys. Res. Atmos. 1993, 98, 5093–5102. [Google Scholar] [CrossRef]
- Nobre, P.; Shukla, J. Variations of sea surface temperature, wind stress, and rainfall over the tropical Atlantic and South America. J. Clim. 1996, 9, 2464–2479. [Google Scholar] [CrossRef]
- Andreoli, R.V.; Kayano, M.T. Tropical Pacific and South Atlantic effects on rainfall variability over Northeast Brazil. Int. J. Climatol. J. R. Meteorol. Soc. 2006, 26, 1895–1912. [Google Scholar] [CrossRef]
- Hastenrath, S. Exploring the climate problems of Brazil’s Nordeste: A review. Clim. Chang. 2012, 112, 243–251. [Google Scholar] [CrossRef]
- Foltz, G.R.; Brandt, P.; Richter, I.; Rodríguez-Fonseca, B.; Hernandez, F.; Dengler, M.; Rodrigues, R.R.; Schmidt, J.O.; Yu, L.; Lefevre, N.; et al. The tropical Atlantic observing system. Front. Mar. Sci. 2019, 6, 206. [Google Scholar] [CrossRef]
- Gozzo, L.F.; Palma, D.S.; Custódio, M.S.; Drumond, A. Padrões Climatológicos Associados a Eventos de Seca no Leste do Estado de São Paulo. Rev. Bras. Climatol. 2021, 28, 321–341. [Google Scholar] [CrossRef]
- Marengo, J.A.; Nobre, C.A.; Seluchi, M.E.; Cuartas, A.; Alves, L.M.; Mendiondo, E.M.; Obregón, G.; Sampaio, G. A seca e a crise hídrica de 2014–2015 em São Paulo. Rev. USP 2015, 106, 31–44. [Google Scholar] [CrossRef] [Green Version]
- Coelho, C.A.S.; De Oliveira, C.P.; Ambrizzi, T.; Reboita, M.S.; Carpenedo, C.B.; Campos, J.L.P.S.; Tomaziello, A.C.N.; Pampuch, L.A.; Custódio, M.S.; Dutra, L.M.M.; et al. The 2014 southeast Brazil austral summer drought: Regional scale mechanisms and teleconnections. Clim. Dyn. 2015, 46, 3737–3752. [Google Scholar] [CrossRef]
- Marengo, J.A. Mudanças Climáticas e Eventos Extremos no Brasil; FBDS: Rio de Janeiro, Brazil, 2009; Available online: http://www.fbds.org.br/cop15/FBDS_MudancasClimaticas.pdf (accessed on 14 August 2020).
- PBMC—Painel Brasileiro de Mudanças Climáticas. Base Científica das Mudanças Climáticas. Contribuição do Grupo de Trabalho 1 do Painel Brasileiro de Mudanças Climáticas ao Primeiro Relatório da Avaliação Nacional Sobre Mudanças Climáticas; Ambrizzi, T., Araujo, M., Eds.; COPPE. Universidade Federal do Rio de Janeiro: Rio de Janeiro, Brasil, 2014; p. 464. Available online: http://www.pbmc.coppe.ufrj.br/documentos/RAN1_completo_vol1.pdf (accessed on 14 August 2020).
- Reboita, M.S.; Kuki, C.A.C.; Marrafon, V.H.; De Souza, C.A.; Ferreira, G.W.S.; Teodoro, T.; Lima, J.W.M. South America climate change revealed through climate indices projected by GCMs and Eta-RCM ensembles. Clim. Dyn. 2021, 1–27. [Google Scholar] [CrossRef]
- Marengo, J.A.; Chou, S.C.; Kay, G.; Alves, L.M.; Pesquero, J.F.; Soares, W.R.; Santos, D.C.; Lyra, A.A.; Sueiro, G.; Betts, R.; et al. Development of regional future climate change scenarios in South America using the Eta CPTEC/HadCM3 climate change projections: Climatology and regional analyses for the Amazon, São Francisco and the Paraná River basins. Clim. Dyn. 2012, 38, 1829–1848. [Google Scholar] [CrossRef]
- Marengo, J.A.; Cunha, A.P.; Soares, W.R.; Torres, R.R.; Alves, L.M.; Brito, S.S.B.; Cuartas, L.A.; Leal, K.; Ribeiro Neto, G.; Alvalá, R.C.S.; et al. Increase risk of drought in the semiarid lands of Northeast Brazil due to regional warming above 4 °C. In Climate Change Risks in Brazil; Springer: Cham, Switzerland, 2019; pp. 181–200. [Google Scholar] [CrossRef]
- Marengo, J.A. O futuro clima do Brasil. Rev. USP 2014, 103, 25–32. [Google Scholar] [CrossRef] [Green Version]
- Lyra, A.; Tavares, P.; Chou, S.C.; Sueiro, G.; Dereczynski, C.; Sondermann, M.; Silva, A.; Marengo, J.; Giarolla, A. Climate change projections over three metropolitan regions in Southeast Brazil using the non-hydrostatic Eta regional climate model at 5-km resolution. Theor. Appl. Climatol. 2017, 132, 663–682. [Google Scholar] [CrossRef]
- Reboita, M.S.; Marrafon, V.H.A.; Llopart, M.; Da Rocha, R.P. Cenários de mudanças climáticas projetados para o estado de Minas Gerais. Rev. Bras. Climatol. 2018, 1, 110–128. [Google Scholar] [CrossRef] [Green Version]
- Silveira, C.S.; Souza Filho, F.A.; Martins, E.S.P.R.; Oliveira, J.L.; Costa, A.C.; Nobrega, M.T.; De Souza, S.A.; Silva, R.F.V. Mudanças climáticas na bacia do rio São Francisco: Uma análise para precipitação e temperatura. RBRH 2016, 21, 416–428. [Google Scholar] [CrossRef]
- De Jong, P.; Tanajura, C.A.S.; Sánchez, A.S.; Dargaville, R.; Kiperstok, A.; Torres, E.A. Hydroelectric production from Brazil’s São Francisco River could cease due to climate change and inter-annual variability. Sci. Total Environ. 2018, 634, 1540–1553. [Google Scholar] [CrossRef] [PubMed]
- Coutinho, P.E.; Cataldi, M. Assessment of water availability in the period of 100 years at the head of the São Francisco River basin, based on climate change scenarios. Reveng 2021, 29, 107–121. [Google Scholar] [CrossRef]
- Da Silva, M.V.M.; Silveira, C.D.S.; Costa, J.M.F.D.; Martins, E.S.P.R.; Vasconcelos Júnior, F.D.C. Projection of climate change and consumptive demands projections impacts on hydropower generation in the São Francisco River Basin, Brazil. Water 2021, 13, 332. [Google Scholar] [CrossRef]
- ANA—Agência Nacional De Águas E Saneamento Básico. Projeto de Gerenciamento Integrado das Atividades Desenvolvidas em Terra na Bacia do Rio São Francisco: Programa de Ações Estratégicas para o Gerenciamento Integrado da Bacia do Rio São Francisco e da Sua Zona Costeira; PAE: Brasilia, Brazil, 2004; Available online: https://www.terrabrasilis.org.br/ecotecadigital/pdf/programa-de-acoes-estrategicas-para-o-gerenciamento-integrado-da-bacia-do-rio-sao-francisco-e-da-sua-zona-costeira--pae--relatorio-final.pdf (accessed on 4 August 2020).
- IBGE—Instituto Brasileiro de Geografia e Estatística. Vetores Estruturantes da Dimensão Socioeconômica da Bacia Hidrográfica do Rio São Francisco. 2009. Available online: https://biblioteca.ibge.gov.br/visualizacao/livros/liv42291.pdf (accessed on 15 March 2020).
- IBGE—Instituto Brasileiro de Geografia e Estatística. Censo de 2010. 2010. Available online: http://www.ibge.gov.br/home/estatistica/populacao/censo2010/default.shtm (accessed on 9 October 2020).
- MMA—Ministério do Meio Ambiente. Caderno da Região Hidrográfica do São Francisco/Ministério do Meio Ambiente, Secretaria de Recursos Hídricos; MMA: Brasília, Brazil, 2006; Available online: https://www.academia.edu/29626622/S%C3%83O_FRANCISCO_CADERNO_DA_REGI%C3%83O_HIDROGR%C3%81FICA (accessed on 3 August 2020).
- CBHSF—Comitê da Bacia Hidrográfica do Rio São Francisco. Plano de Recursos Hídricos da Bacia Hidrográfica do Rio São Francisco 2016–2025; CBHSF: Alagoas, Brazil, 2016; Available online: https://cbhsaofrancisco.org.br/documentacao/plano-de-recursos-hidricos-2016-2025/ (accessed on 14 September 2021).
- Pruski, F.F.; Pereira, S.B.; Novaes, L.F.D.; Silva, D.D.D.; Ramos, M.M. Precipitação média anual e vazão específica média de longa duração, na Bacia do São Francisco. Rev. Bras. Eng. Agric. Ambient. 2004, 8, 247–253. [Google Scholar] [CrossRef]
- Da Silva, D.F.; Brito, J.I.B. Variabilidade do Vento na Bacia Hidrográfica do Rio São Francisco Durante a Ocorrência da ZCAS. AMBIÊNCIA 2008, 4, 221–235. Available online: https://revistas.unicentro.br/index.php/ambiencia/article/view/164 (accessed on 13 October 2020).
- Reboita, M.S.; Marietto, D.M.G.; Souza, A.; Barbosa, M. Caracterização atmosférica quando da ocorrência de eventos extremos de chuva na região sul de Minas Gerais. Rev. Bras. Climatol. 2017, 21, 20–37. [Google Scholar] [CrossRef] [Green Version]
- Escobar, G.C.J.; Reboita, M.S. Relationship between Daily Atmospheric Circulation Patterns and South Atlantic Convergence Zone (SACZ) Events. Atmósfera 2020, 35, 1–25. Available online: https://www.revistascca.unam.mx/atm/index.php/atm/article/view/52936 (accessed on 10 November 2020). [CrossRef]
- Utida, G.; Cruz, F.W.; Etourneau, J.; Bouloubassi, I.; Schefuß, E.; Vuille, M.; Novello, V.F.; Prado, L.F.; Sifeddine, A.; Klein, V.; et al. Tropical South Atlantic influence on Northeastern Brazil precipitation and ITCZ displacement during the past 2300 years. Sci. Rep. 2019, 9, 1698. [Google Scholar] [CrossRef]
- Chen, M.; Shi, W.; Xie, P.; Silva, V.B.S.; Kousky, V.E.; Higgins, R.W.; Janowiak, J.E. Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res. Atmos. 2008, 113, 1–13. [Google Scholar] [CrossRef]
- Sun, Q.; Miao, C.; Duan, Q.; Ashouri, H.; Sorooshian, S.; Hsu, K. A review of global precipitation data sets: Data sources, estimation, and intercomparisons. Rev. Geophys. 2018, 56, 79–107. [Google Scholar] [CrossRef] [Green Version]
- Torres, F.L.R.; Ferreira, G.W.S.; Kuki, C.A.C.; De Vasconcellos, B.T.C.; De Freitas, A.A.; Silva, P.N.; Souza, C.A.; Reboita, M.S. Validação de Diferentes Bases de Dados de Precipitação nas Bacias Hidrográficas do Sapucaí e São Francisco. Rev. Bras. Climatol. 2020, 27, 368–404. [Google Scholar] [CrossRef]
- Hersbach, H.; Dee, D. ERA-5 Reanalysis is in Production; ECMWF Newsletter, Number 147; Spring: Berkshire, UK, 2016; p. 7. Available online: https://www.ecmwf.int/sites/default/files/elibrary/2016/16299-newsletter-no147-spring-2016.pdf (accessed on 13 May 2021).
- Vasquez, T. Weather Analysis & Forecasting Handbook, 5th ed.; Weather Graphics Technologies: Garland, TX, USA, 2002. [Google Scholar]
- Reboita, M.S.; Gan, M.A.; Da Rocha, R.P.D.; Ambrizzi, T. Regimes de precipitação na América do Sul: Uma revisão bibliográfica. Rev. Bras. Meteorol. 2010, 25, 185–204. [Google Scholar] [CrossRef]
- Enfield, D.B.; Mestas-Nuñez, A.M.; Mayer, D.A.; Cid-Serrano, L. How ubiquitous is the dipole relationship in tropical Atlantic Sea surface temperatures? J. Geophys. Res. Ocean. 1999, 104, 7841–7848. [Google Scholar] [CrossRef]
- De Souza, C.A.; Reboita, M.S. Ferramenta para o monitoramento dos padrões de teleconexão na América do Sul. TerraE Didat. 2021, 17, e02109. [Google Scholar] [CrossRef]
- Santos, E.A.B.D.; Stosic, T.; Barreto, I.D.D.C.; Campos, L.; Silva, A.S.A.D. Application of Markov chains to Standardized Precipitation Index (SPI) in São Francisco River Basin. Rev. Ambiente Agua 2019, 14, e2311. [Google Scholar] [CrossRef]
- Fernandes, D.S.; Heinemann, A.B.; Da Paz, R.L.; Amorim, A.O.; Cardoso, A.S. Índices Para a Quantificação da Seca. Embrapa Arroz e Feijão-Documentos (INFOTECA-E). 2009. Available online: https://www.infoteca.cnptia.embrapa.br/bitstream/doc/663874/1/doc244.pdf (accessed on 10 November 2020).
- Guttman, N.B. Comparing the palmer drought index and the standardized precipitation index 1. J. Am. Water Resour. Assoc. 1998, 34, 113–121. [Google Scholar] [CrossRef]
- Stojanovic, M.; Drumond, A.; Nieto, R.; Gimeno, L. Variations in moisture supply from the Mediterranean Sea during meteorological drought episodes over central Europe. Atmosphere 2018, 9, 278. [Google Scholar] [CrossRef] [Green Version]
- Drumond, A.; Stojanovic, M.; Nieto, R.; Gimeno, L.; Liberato, M.L.R.; Pauliquevis, T.; Oliveira, M.; Ambrizzi, T. Dry and Wet Climate Periods over Eastern South America: Identification and Characterization through the SPEI Index. Atmosphere 2021, 12, 155. [Google Scholar] [CrossRef]
- Cruz, M.A.S.; De Aragao, R.; Almeida, A.Q. Evaluation of the Rainfall Estimation for Different Global Climate Models (GCMs) in the São Francisco River Basin, Brazil. In Proceedings of the Simpósio De Recursos Hídricos Do Nordeste, Aracaju, Brazil, 3–6 June 2018; Available online: https://www.alice.cnptia.embrapa.br/bitstream/doc/1104999/1/Artigo5.pdf (accessed on 22 June 2020).
- Drumond, A.R.M.; Ambrizzi, T. The role of SST on the South American atmospheric circulation during January, February and March 2001. Clim. Dyn. 2005, 24, 781–791. [Google Scholar] [CrossRef]
- Vera, C.S.; Alvarez, M.S.; Gonzalez, P.L.M.; Liebmann, B.; Kiladis, G.N. Seasonal cycle of precipitation variability in South America on intraseasonal timescales. Clim. Dyn. 2017, 51, 1991–2001. [Google Scholar] [CrossRef]
- Grimm, A.M. Madden–Julian Oscillation impacts on South American summer monsoon season: Precipitation anomalies, extreme events, teleconnections, and role in the MJO cycle. Clim. Dyn. 2019, 53, 907–932. [Google Scholar] [CrossRef]
- Drumond, A.; Stojanovic, M.; Nieto, R.; Vicente-Serrano, S.M.; Gimeno, L. Linking Anomalous Moisture Transport and Drought Episodes in the IPCC Reference Regions. BAMS 2019, 100, 1481–1498. [Google Scholar] [CrossRef]
- Drumond, A.; Nieto, R.; Gimeno, L.; Ambrizzi, T. A Lagrangian identification of major sources of moisture over Central Brazil and La Plata Basin. J. Geophys. Res. 2008, 113, D14128. [Google Scholar] [CrossRef] [Green Version]
- Drumond, A.; Nieto, R.; Trigo, R.; Ambrizzi, T.; Souza, E.; Gimeno, L. A Lagrangian Identification of the Main Sources of Moisture Affecting Northeastern Brazil during Its Pre-Rainy and Rainy Seasons. PLoS ONE 2010, 5, e11205. [Google Scholar] [CrossRef] [PubMed]
SPI | Classification |
---|---|
≥2.00 | Extremely wet |
1.50 to 1.99 | Very wet |
1.00 to 1.49 | Moderately wet |
−0.99 to 0.99 | Near normal |
−1.00 to −1.49 | Moderately dry |
−1.50 to −1.99 | Severely dry |
≤−2.00 | Extremely dry |
Regions | Start Data | End Data | Severity | Duration (Months) | Intensity | Peak |
---|---|---|---|---|---|---|
Upper SF | 06/1990 | 12/1990 | 2.41 | 7 | 0.34 | 1.34 |
03/2007 | 11/2008 | 15.57 | 21 | 0.74 | 2.05 | |
01/2010 | 02/2011 | 11.00 | 14 | 0.79 | 1.47 | |
03/2012 | 09/2020 | 126.47 | 103 | 1.23 | 3.08 | |
Middle SF | 12/1986 | 11/1987 | 11.98 | 12 | 1.00 | 1.58 |
12/1990 | 02/1991 | 2.19 | 3 | 0.73 | 1.23 | |
10/1993 | 02/1994 | 4.78 | 5 | 0.96 | 1.43 | |
03/1998 | 02/1999 | 11.86 | 12 | 0.99 | 1.57 | |
10/2007 | 11/2008 | 15.40 | 14 | 1.10 | 1.97 | |
01/2012 | 11/2013 | 25.04 | 23 | 1.09 | 1.85 | |
02/2014 | 12/2015 | 28.31 | 24 | 1.18 | 1.88 | |
02/2016 | 10/2020 | 63.67 | 57 | 1.12 | 3.14 | |
Sub-Middle SF | 01/1981 | 02/1981 | 1.50 | 2 | 0.75 | 1.49 |
03/1982 | 09/1984 | 26.78 | 31 | 0.86 | 1.66 | |
12/1990 | 12/1991 | 5.87 | 13 | 0.45 | 1.33 | |
01/1993 | 10/1995 | 32.31 | 34 | 0.95 | 2.48 | |
03/1998 | 10/1999 | 18.83 | 20 | 0.94 | 1.65 | |
01/2012 | 12/2015 | 61.41 | 48 | 1.28 | 2.64 | |
03/2016 | 02/2018 | 30.52 | 24 | 1.27 | 2.67 | |
Lower SF | 05/1980 | 02/1981 | 5.05 | 10 | 0.50 | 1.12 |
06/1981 | 02/1983 | 12.39 | 21 | 0.59 | 1.98 | |
04/1983 | 08/1984 | 16.00 | 17 | 0.94 | 1.97 | |
07/1990 | 12/1991 | 12.73 | 18 | 0.71 | 1.28 | |
01/1993 | 05/1994 | 32.26 | 17 | 1.90 | 2.77 | |
03/1998 | 03/2000 | 37.88 | 25 | 1.52 | 2.43 | |
01/2003 | 12/2003 | 10.33 | 12 | 0.86 | 1.44 | |
04/2012 | 01/2014 | 23.02 | 22 | 1.05 | 1.85 | |
04/2015 | 08/2017 | 25.99 | 29 | 0.90 | 2.25 | |
07/2018 | 07/2019 | 9.86 | 13 | 0.76 | 1.15 |
Months | Number of Months between the Period 2012 to 2020 with Dry Conditions Classified as | Number of Months Classified as Normal between | ||
---|---|---|---|---|
Moderately | Severely | Extremely | 1979 and 2020 | |
November | 29 | |||
December | 2016 | 2015 | 2012 | 29 |
2014 | ||||
January | 2017 | 2015 | 2014 | 26 |
2019 | ||||
February | 2012 | 2014 | 25 | |
2013 | ||||
2016 | ||||
March | 2014 | 30 | ||
2017 |
Months | Regions | |||
---|---|---|---|---|
Upper | Middle | Sub-Middle | Lower | |
November | 2019 | 2015 | 2015 | |
2016 | ||||
December | 2012 | 2012 | 2012 | |
2014 | 2015 | |||
2015 | 2016 | |||
2016 | 2019 | |||
January | 2014 | 2015 | 2014 | 2017 |
2015 | 2017 | 2015 | ||
2017 | 2019 | 2017 | ||
2019 | ||||
February | 2012 | 2013 | 2013 | 2013 |
2013 | 2016 | 2017 | ||
2016 | ||||
March | 2014 | 2012 | 2012 | 2013 |
2017 | 2016 | 2013 | ||
2016 |
Month | Year | Index | Correlation (1979–2020) of SPI-1 with | |||||
---|---|---|---|---|---|---|---|---|
SPI-1 | IASAS | TSA | ONI | IASAS | TSA | ONI | ||
DEC | 2012 | −2.47 | 2.51 | 0.18 | −0.21 | −0.43 | −0.18 | 0.03 |
2014 | −2.82 | 0.89 | −0.12 | 0.66 | ||||
2015 | −1.58 | 1.69 | 0.70 | 2.64 | ||||
2016 | −1.27 | 1.29 | 0.67 | −0.56 | ||||
JAN | 2014 | −2.01 | 2.01 | 0.11 | −0.42 | −0.65 | −0.25 | 0.12 |
2015 | −1.78 | 0.29 | 0.43 | 0.55 | ||||
2017 | −1.29 | 0.33 | 0.58 | −0.34 | ||||
2019 | −1.90 | 1.42 | 0.75 | 0.75 | ||||
FEB | 2012 | −1.24 | 2.25 | −0.51 | −0.72 | −0.46 | 0.03 | 0.16 |
2013 | −1.22 | 0.37 | 0.25 | −0.43 | ||||
2014 | −2.07 | 0.02 | 0.22 | −0.46 | ||||
2016 | −1.03 | 1.28 | 0.59 | 2.14 | ||||
MAR | 2014 | −1.15 | 0.94 | 0.22 | −0.27 | −0.47 | 0.00 | −0.27 |
2017 | −1.23 | −0.78 | 0.29 | 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Freitas, A.A.; Drumond, A.; Carvalho, V.S.B.; Reboita, M.S.; Silva, B.C.; Uvo, C.B. Drought Assessment in São Francisco River Basin, Brazil: Characterization through SPI and Associated Anomalous Climate Patterns. Atmosphere 2022, 13, 41. https://doi.org/10.3390/atmos13010041
Freitas AA, Drumond A, Carvalho VSB, Reboita MS, Silva BC, Uvo CB. Drought Assessment in São Francisco River Basin, Brazil: Characterization through SPI and Associated Anomalous Climate Patterns. Atmosphere. 2022; 13(1):41. https://doi.org/10.3390/atmos13010041
Chicago/Turabian StyleFreitas, Aline A., Anita Drumond, Vanessa S. B. Carvalho, Michelle S. Reboita, Benedito C. Silva, and Cintia B. Uvo. 2022. "Drought Assessment in São Francisco River Basin, Brazil: Characterization through SPI and Associated Anomalous Climate Patterns" Atmosphere 13, no. 1: 41. https://doi.org/10.3390/atmos13010041
APA StyleFreitas, A. A., Drumond, A., Carvalho, V. S. B., Reboita, M. S., Silva, B. C., & Uvo, C. B. (2022). Drought Assessment in São Francisco River Basin, Brazil: Characterization through SPI and Associated Anomalous Climate Patterns. Atmosphere, 13(1), 41. https://doi.org/10.3390/atmos13010041