Suitability of Different Methods for Measuring Black Carbon Emissions from Marine Engines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measurement Campaigns
2.2. Instrumentation
2.2.1. Light Absorption Smoke Meters (FSN Method) and Calculated MACBC
2.2.2. AVL Micro Soot Sensor
2.2.3. LII instrument Artium 300
2.2.4. MAAP and Aethalometers
2.2.5. Thermal-Optical Analysis
2.2.6. Dilution, Particulate Matter (PM) Samples for TOA, and PM Characterisation
3. Results and Discussion
3.1. Statistical Analysis of BC Results from Different Instruments
3.1.1. Baseline for Analysis
3.1.2. Overview of BC Results in Three Measurement Campaigns
3.1.3. Statistical Analysis
3.2. The Effect of PM Composition on Instrument Behaviour
3.2.1. Sulphates, Metals, Organic Carbon, and Equivalent Light Absorbing Carbon of PM
3.2.2. Analysis of the Effect of Exhaust Properties in the BC Results Obtained with Different Instruments
- SM(FSN) showed positive or neutral ΔBC in all cases.
- EC(TOA) showed negative or neutral ΔBC in all cases.
- MSS(PAS) showed negative or neutral ΔBC in most cases. Exceptions are positive ΔBC for 0.1%S and 0.5%S fuels at 25% load (campaign A) and for 0.1%S fuel in on-board tests (campaign B) (Figure 6f,g). In these cases, AAExBC was elevated, while SO42− level was low. Notable also is the very low BC level at the highest SO42− level, even lower than that for EC(TOA) (Figure 6a).
- MAAP showed higher BC concentrations than the MSS(PAS) and EC(TOA) in most cases (7abce). Exceptions with negative ΔBC were observed in the same cases as exceptions for MSS(PAS) in Figure 6f,g.
3.3. Other Factors Affecting Comparability of the BC Results
3.3.1. Correction Factors Used for BC Measurement Instruments
3.3.2. Measurement Range of Instrument, Pre-Treatment, and Necessity of Dilution
3.3.3. Sampling
- A sampling probe (stainless steel) should be located in the centre of an exhaust duct, in a straight section to avoid pressure fluctuations. A 45° bevelled probe should have an opening facing the flow of the exhaust stream. This setting is less significant for particles <200 nm than for those >400 nm, which escape sampling if the cap is used.
- The transfer and sampling lines should be as straight and as short as possible, preferably maximum 3 m. For high-sulphur fuels, recommended SM (AVL) sampling lines are from 4–8 m and are in an ascending layout from sampling that point to the device.
- Sampling lines should have a smooth inner surface to lower the contamination effect. Bends and edges should be avoided to minimise particulate (turbulent) deposition. Fast dilution reduces thermophoretic losses, for which correction factors can be calculated (ISO 8178-1 Annex, 2017), if not applied automatically by instruments.
- Heated sampling lines are needed to avoid condensation, which occurs depending on the dew point of the water and sulphuric acid, and heat transfer through the line walls. Diluters also need heating. The sampling probe may need heating when measuring exhaust after a scrubber to avoid droplets in instruments (applied in the on-board campaign of this study).
- The sampling line purging with compressed air lessens condensation and contamination during measurements (some instruments have this option).
3.3.4. Thermophoretic Losses
3.3.5. Data Processing
3.3.6. Calibration and Traceability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
LoD/Range (mg Sm−3) | DR | Sample Concentrations (mg Sm−3) | Raw Exhaust Concentrations (mg Sm−3) | Raw Exhaust Concentrations (mg Sm−3) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A.MSD laboratory | Min. | Aver. | Max. | 75% engine load | 25% engine load | |||||||||
Bio30 | 0.1%S | 0.5%S | 2.5%S | Bio30 | 0.1%S | 0.5%S | 2.5%S | |||||||
BC, FSN principle | 0.02/32,000 | 1 | 1.4 | 8.7 | 25.9 | 1.4 | 2.0 | 2.4 | 5.8 | 6.4 | 12.1 | 25.9 | 13.6 | |
BC, PAS principle | 0.005/1000 | 7 | 0.2 | 1.1 | 3.7 | 1.3 | 1.9 | 1.8 | 3.8 | 6.5 | 13.1 | 25.8 | 9.0 | |
BC, MAAP | 0.0001/0.06 * | ~200/>600 | 0.003 | 0.011 | 0.06 | 1.5 | 2.2 | 2.4 | 5.8 | 7.4 | 9.1 | * | 11.1 | |
BC, AE33 | 0.00003/0.1 | ~200/>600 | 0.002 | 0.019 | 0.16 | 1.3 | 1.9 | 1.7 | 4.4 | 11.0 | 16.2 | 31.1 | 9.6 | |
EC | 0.2/1–15 ** | 8 | 0.2 | 0.9 | 2.8 | 1.3 | 2.0 | 2.1 | 4.6 | 5.5 | 10.7 | 22.8 | 10.7 | |
OC:EC diluted | 8 | 8.3 | 7.2 | 11.4 | 3.9 | 6.7 | 4.3 | 3.1 | 4.9 | |||||
OC:EC raw exh. | 1 | 0.70 | 0.51 | 0.62 | 1.31 | 0.72 | 0.40 | 0.34 | 1.28 | |||||
AAE470/950 | 1 | 0.9 | 1.3 | 2 | 1.1 | 1 | 1.1 | 1.6 | ||||||
PM | 8 | 2.2 | 9.2 | 19.1 | 17.9 | 20.5 | 43.7 | 152.9 | 52.5 | 63.5 | 102.9 | 134.2 | ||
Average BC, EC | 1.3 | 2.0 | 2.1 | 4.9 | 7.4 | 12.3 | 26.4 | 10.8 | ||||||
BC,EC, st.dev. per instrument | 6.7% | 3.1% | 3.7% | 8.5% | 1.8% | 4.3% | 2.0% | 6.1% | ||||||
BC,EC st.dev. over instruments | 8.2% | 4.9% | 11.9% | 17.7% | 9.2% | 12.5% | 5.5% | 15.3% | ||||||
B.MSD, on-board | MSD1, pre-scrub. | after scrubber | MSD2, pre-scrub., after SCR | after scrubber and SCR | ||||||||||
Engine load | 75% | 40% | 75% | 40% | 75% | 40% | 40% | 75% | 40% | |||||
Fuel sulphur content | 0.6%S | 0.6%S | 0.6%S | 0.6%S | 0.6%S | 0.6%S | 0.1%S | 0.6%S | 0.6%S | |||||
BC, FSN principle | *** | 1 | 3.3 | 3.8 | 5.2 | 3.7 | 4.0 | 3.6 | 3.6 | 3.7 | 3.3 | 5.2 | 3.3 | 3.0 |
BC, PAS principle | *** | 7 | 0.2 | 0.4 | 0.8 | 2.8 | 3.4 | 2.4 | 2.6 | 2.2 | 2.8 | 5.6 | 1.5 | 2.1 |
BC, MAAP | *** | 125–211 | 0.01 | 0.02 | 0.03 | 3.0 | 3.2 | 3.5 | 3.2 | 2.0 | 2.8 | 3.8 | 2.1 | 2.2 |
BC, AE33 | *** | 125–211 | 0.01 | 0.02 | 0.04 | 3.2 | 3.8 | 4.0 | 4.5 | 2.3 | 3.2 | 4.0 | 2.9 | 2.5 |
EC | *** | 10 | 1.4 | 2.4 | 3.2 | 3.2 | 3.1 | 1.9 | 2.1 | 2.1 | 2.3 | 2.9 | 1.4 | 1.5 |
OC:EC diluted | 8.2 | 8.0 | 7.3 | 7.9 | 5.2 | 2.7 | 1.6 | 5.1 | 3.1 | |||||
AAE470/950 | 2.0 | 1.7 | 2.2 | 1.8 | 1.8 | 1.5 | 0.9 | 1.6 | 1.5 | |||||
PM | 10 | 52.2 | 47.2 | 29.9 | 38.1 | 27.5 | 20.5 | 14.2 | 21.7 | 16.9 | ||||
Average BC, EC | 3.2 | 3.5 | 3.1 | 3.2 | 2.5 | 2.9 | 4.3 | 2.2 | 2.2 | |||||
BC,EC, st.dev. per instrument | 2.8% | 2.6% | 3.7% | 3.9% | 2.3% | 2.3% | 4.9% | 4.4% | 4.1% | |||||
BC,EC st.dev. over instruments | 10.4% | 9.2% | 23.8% | 18.9% | 27.8% | 12.8% | 25.3% | 32.8% | 24.5% | |||||
C.HSD laboraory | Ar-0 | Ar-0 | Ar-20 | Ar-20 | Aver. Ar-0 | Aver. Ar-20 | ||||||||
Low DR | High DR | High DR | ||||||||||||
BC, FSN principle | *** | 1 | 0.12 | 0.55 | 1.2 | 0.37 | - | 0.75 | - | 0.37 | 0.75 | |||
BC, PAS principle | *** | 1–400 | -0 | 0.12 | 1.25 | 0.35 | 0.39 | 0.62 | 0.73 | 0.37 | 0.67 | |||
BC, LII principle | 0.002 | 270–400 | 0 | 0 | 0.01 | - | - | - | 0.88 | 0.88 | ||||
EC | *** | 8 | - | - | - | 0.31 | - | 0.64 | - | 0.31 | 0.64 | |||
OC:EC diluted | 2.69 | 1.54 | ||||||||||||
AAE470/950 | ||||||||||||||
PM | - | - | - | - | 1.00 | - | 1.83 | - | 1.0 | 1.8 | ||||
Average BC, EC | 0.35 | 0.73 | ||||||||||||
BC,EC, st.dev. per instrument | 6.4% | 4.7% | ||||||||||||
BC, EC st.dev. over instruments | 7.7% | 12.5% |
Squared Pearson’s Correlation Coefficients (R2) | ||||
---|---|---|---|---|
Variable 1 | Variable 2 | Camp. A | Camp. B | All |
AAExBC | SO42− | 0.03 | 0.19 | 0.12 |
AAE | SO42− | 0.94 | 0.74 | 0.07 |
Metals | SO42− | 0.81 | 0.49 | 0.75 |
AAE470/950 | Metals | 0.76 | 0.15 | 0.23 |
ΔBC, MSS | AAE470/950 | 0.48 | 0.77 | 0.26 |
AAExBC | 0.01 | 0.08 | 0.00 | |
SO42− | 0.48 | 0.76 | 0.37 | |
Metals | 0.59 | 0.28 | 0.50 | |
CO | 0.06 | 0.82 | 0.02 | |
NOx | 0.09 | 0.06 | 0.04 | |
ΔBC, FSN | AAE470/950 | 0.19 | 0.00 | 0.01 |
AAExBC | 0.59 | 0.23 | 0.30 | |
SO42− | 0.19 | 0.01 | 0.12 | |
Metals | 0.53 | 0.03 | 0.36 | |
CO | 0.86 | 0.02 | 0.43 | |
NOx | 0.37 | 0.31 | 0.08 | |
ΔBC, MAAP | AAE470/950 | 0.16 | 0.41 | 0.12 |
AAExBC | 0.05 | 0.07 | 0.01 | |
SO42− | 0.13 | 0.39 | 0.13 | |
Metals | 0.06 | 0.11 | 0.07 | |
CO | 0.01 | 0.45 | 0.06 | |
NOx | 0.14 | 0.14 | 0.06 | |
ΔEC, TOA | AAE470/950 | 0.02 | 0.37 | 0.13 |
AAExBC | 0.67 | 0.17 | 0.24 | |
SO42− | 0.04 | 0.34 | 0.03 | |
Metals | 0.02 | 0.24 | 0.04 | |
CO | 0.24 | 0.29 | 0.33 | |
NOx | 0.49 | 0.13 | 0.10 |
Appendix B
Ambient | Ship Exhaust | MAAP | AE33 | SM(FSN) AVL 415S | MSS(PAS) AVL MSS | LII Artium 300 | EC(TOA) Sunset 4L | |
---|---|---|---|---|---|---|---|---|
Standardised | No | No | Yes (marine) ISO 10054, ISO 8178-3 | Yes (road, aviation) | Yes (aviation) | Yes (not for marine) | ||
Design for | Ambient | Ambient | Exhaust | Exhaust | Exhaust | Ambient | ||
Filter-based | Yes | Yes | Yes | No | No | Yes | ||
Wavelength for BC | 670nm | 880nm | 550–570nm peak | 808nm | 1064nm 532nm | |||
MAC, m2 g−1 | 6.6 | 7.77 | 6.4–7.1 (at BC <30 mg Sm−3) | |||||
BC range, mg m−3 | 0.001–0.020 | 1–>15 | 0.0001–0.06 | 0.00001–0.1 | 0.02–32,000 | 0.001–1000 | 0.001–20,000 | EC: 1–15 µgC cm−2 filter |
Time basis | 2 min basis or longer | 1 s or 1 min | 3 replicates in 1 min | On-line ≤ 10 Hz, Rise <1 s | On-line ≤ 10 Hz | Vary, e.g., <10 min | ||
Sample/Dilution | Diluted 6/16.7 L min−1 PM1 inlet | Diluted. 2–5 L min−1 PM1 inlet. | Raw exhaust. 10 L min−1 | OEM diluter DR 2–20, 3.8 L min−1 | Yes | Sampling varies | ||
Compressed air or nitrogen. | Yes, dilution in engine tests. | Yes, dilution in engine tests. | No | No (internal pump) | Yes | Yes, filter sampling. | ||
Condensation | Low risk (dil.) | Low risk (dil.) | Low risk (temp.) | Low risk (dil.) | Low risk (dil.) | Vary by sampling | ||
Temperature, °C | −0–+30 | >200 | Ambient | Ambient | OEM sample line conditioned, 70 °C | OEM sample line conditioned | OEM sample line, not conditioned. Max 150 °C. | Sampling varies. E.g., ISO 8178. |
System complexity for diesel exhaust | Very complex if high DR needed. | Very complex if high DR needed. | Very simple | Simple | Quite simple | Complex. Experienced operators needed | ||
Durability | Not known for ship exhaust | Not known for ship exhaust | Good | Not known for ship exhaust | Not known for ship exhaust | Not known for ship exhaust | ||
Maintenance | Not known for ship exhaust | Not known for ship exhaust | Low maintenance needs | Not known for ship exhaust | Not known for ship exhaust | Not known for ship exhaust | ||
Interferences | ** | Absorption and scattering: Lower interferences than for aethalo-meters to, e.g., humidity, O3, NO2 and SOx, | Absorption: sensitive to many interfering compounds. E.g., humidity, O3, NO2, SOx, metals, heavy organics. | Absorption: May be sensitive to exhaust properties, e.g., metals and heavy organics. | Not significant, e.g., humidity, NO2 in BC unit <5µg/m3. [43] * see TOA | Low risk of interfering compounds. OC and particle size may have an impact. | Metals, heavy organics may interfere when using residual fuels. * | |
Water vapour, % | 0–100 | ~10 | ||||||
NOx, µg m−3 | <500 | 2,000,000 | ||||||
SO2 µg m−3 | <50 | 300,000 | ||||||
PM µg m−3 | <1000 | 45,000 | ||||||
H2SO4 µg m−3 | <20 | 4000 | ||||||
Metals, e.g., V, Ni µg m−3 | <10 | 1000 | ||||||
Calibration, relation to BC | Conversion factors of measured absorption to BC by calibration with artificial (surrogate) particles | Conversion factors to BC by calibration with artificial (surrogate) particles | Measured reflectance and BC mass concentration empirically determined on exhaust gas. Correlation in ISO 8178-1 (eq. A. 16) | Calibration factors achieved by calibration with artificial (surrogate) particles with EC(TOA) | ||||
Corrections, (MAC et al.) | Corrections (MAC) | Options to be chosen (MAC+c) | Automatic | Automatic | Options to be chosen | |||
Concentration TP correction, thermophoretic loss | Manual T, P correction. Manual therm. loss correction. | Manual T, P correction. Manual therm. loss correction. | Automatic T, P and thermoph. loss correction (firmware) | Automatic T, P correction. Manual thermoph. Loss loss corr. | Manual thermoph. loss correction | Depends on sampling | ||
Quality control | OEM procedures, but not for dilution | OEM procedures, but not for dilution | OEM procedures | OEM procedures | OEM procedures, but not for dilution | OEM procedures, but not for sampling | ||
Uncertainty | Dilution, interfering compounds | Dilution, interfering compounds | Interfering compounds | Interfering compounds | Interfering compounds | Sampling, interfering compounds | ||
Data processing | Easy access | Easy access | Easy access | Easy access | Restricted, special software | Easy access | ||
Overall | Not for regular ship BC measurements. Good for ambient, plume and research. | Not for regular ship BC measurements. Good for ambient, plume and research | Standard for ship exhaust, robust, no need for pressurised air, filtration, drying, simple installation, no dilution. | Feasible for ship exhaust, but durability/maintenance with residual fuel use are to be proven | Feasible for ship exhaust, but durability/maintenance with residual fuel use are to be proven | Not for regular ship measurement due to challenging sampling of proper filter darkness. |
References
- IMO—Marine Environment Protection Committee. Reduction of GHG Emissions from Ships. Fourth IMO GHG Study 2020; MEPC 75/7/15; International Maritime Organization: London, UK, 2020; pp. 1689–1699.
- Corbett, J.J.; Lack, D.A.; Winebrake, J.J.; Harder, S.; Silberman, J.A.; Gold, M. Arctic shipping emissions inventories and future scenarios. Atmos. Chem. Phys. 2010, 10, 9689–9704. [Google Scholar] [CrossRef] [Green Version]
- Winther, M.; Christensen, J.H.; Angelidis, I.; Ravn, E.S. Emissions from Shipping in the Arctic from 2012–2016 and Emission projections for 2020, 2030 and 2050; Aarhus University: Aarhus, Denmark, 2017; ISBN 9788771563023. [Google Scholar]
- Andreae, M.O. The dark side of aerosols. Nature 2001, 409, 671–672. [Google Scholar] [CrossRef] [PubMed]
- Olmer, N.; Comer, B.; Roy, B.; Mao, X.; Rutherford, D.; Smith, T.; Faber, J.; Schuitmaker, R.; Holskotte, J.; Fela, J.; et al. Greenhouse gas Emissions from Global Shipping, 2013–2015; International Council on Clean Transportation: Washington, DC, USA, 2017. [Google Scholar]
- Comer, B.; Olmer, N.; Mao, X.; Roy, B.; Rutherford, D. Black Carbon Emissions and Fuel Use in Global Shipping, 2015; International Council on Clean Transportation: Washington, DC, USA, 2017. [Google Scholar]
- Oudin, A.; Forsberg, B.; Adolfsson, A.N.; Lind, N.; Modig, L.; Nordin, M.; Nordin, S.; Adolfsson, R.; Nilsson, L.G. Traffic-related air pollution and dementia incidence in Northern Sweden: A longitudinal study. Environ. Health Perspect. 2016, 124, 306–312. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Georas, S.; Alexis, N.; Fritz, P.; Xia, T.; Williams, M.A.; Horner, E.; Nel, A. A work group report on ultrafine particles (American Academy of Allergy, Asthma & Immunology): Why ambient ultrafine and engineered nanoparticles should receive special attention for possible adverse health outcomes in human subjects. J. Allergy Clin. Immunol. 2016, 138, 386–396. [Google Scholar] [CrossRef] [Green Version]
- Bond, T.C.; Doherty, S.J.; Fahey, D.W.; Forster, P.M.; Berntsen, T.; Deangelo, B.J.; Flanner, M.G.; Ghan, S.; Kärcher, B.; Koch, D.; et al. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 2013, 118, 5380–5552. [Google Scholar] [CrossRef]
- Lim, S.; Lee, M.; Kim, S.-W.; Yoon, S.-C.; Lee, G.; Lee, Y.J. Absorption and scattering properties of organic carbon versus sulfate dominant aerosols at Gosan climate observatory in Northeast Asia. Atmos. Chem. Phys. 2014, 14, 7781–7793. [Google Scholar] [CrossRef] [Green Version]
- Collaud Coen, M.; Weingartner, E.; Apituley, A.; Ceburnis, D.; Fierz-Schmidhauser, R.; Flentje, H.; Henzing, J.S.; Jennings, S.G.; Moerman, M.; Petzold, A.; et al. Minimizing light absorption measurement artifacts of the Aethalometer: Evaluation of five correction algorithms. Atmos. Meas. Tech. 2010, 3, 457–474. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Howell, S.G.; Zhuang, J.; Huebert, B.J. Attribution of aerosol light absorption to black carbon, brown carbon, and dust in China—Interpretations of atmospheric measurements during EAST-AIRE. Atmos. Chem. Phys. Discuss. 2009, 8, 10913–10954. [Google Scholar] [CrossRef] [Green Version]
- Lack, D.A.; Moosmüller, H.; McMeeking, G.R.; Chakrabarty, R.K.; Baumgardner, D. Characterizing elemental, equivalent black, and refractory black carbon aerosol particles: A review of techniques, their limitations and uncertainties. Anal. Bioanal. Chem. 2014, 406, 99–122. [Google Scholar] [CrossRef] [Green Version]
- Petzold, A.; Ogren, J.A.; Fiebig, M.; Laj, P.; Li, S.M.; Baltensperger, U.; Holzer-Popp, T.; Kinne, S.; Pappalardo, G.; Sugimoto, N.; et al. Recommendations for reporting black carbon measurements. Atmos. Chem. Phys. 2013, 13, 8365–8379. [Google Scholar] [CrossRef] [Green Version]
- Aakko-Saksa, P.; Koponen, P.; Aurela, M.; Vesala, H.; Piimäkorpi, P.; Murtonen, T.; Sippula, O.; Koponen, H.; Karjalainen, P.; Kuittinen, N.; et al. Considerations in analysing elemental carbon from marine engine exhaust using residual, distillate and biofuels. J. Aerosol Sci. 2018, 126, 191–204. [Google Scholar] [CrossRef]
- Pöschl, U. Aerosol particle analysis: Challenges and progress. Anal. Bioanal. Chem. 2003, 375, 30–32. [Google Scholar] [CrossRef]
- Andreae, M.O.; Gelencsér, A. Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmos. Chem. Phys 2006, 6, 3131–3148. [Google Scholar] [CrossRef] [Green Version]
- Hyvärinen, A.P.; Vakkari, V.; Laakso, L.; Hooda, R.K.; Sharma, V.P.; Panwar, T.S.; Beukes, J.P.; Van Zyl, P.G.; Josipovic, M.; Garland, R.M.; et al. Correction for a measurement artifact of the Multi-Angle Absorption Photometer (MAAP) at high black carbon mass concentration levels. Atmos. Meas. Tech. 2013, 8, 81–90. [Google Scholar] [CrossRef] [Green Version]
- Timonen, H.; Aakko-Saksa, P.; Asmi, E. Traceability of BC measurements. Presented at the ICCT 6th Workshop on Marine Black Carbon Emissions, Helsinki, Finland, 18–19 September 2019. [Google Scholar]
- Kirchstetter, T.W.; Novakov, T.; Hobbs, P.V. Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon. J. Geophys. Res. D Atmos. 2004, 109, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Bond, T.C. Light absorption by organic carbon from wood combustion. Atmos. Chem. Phys. 2010, 10, 1773–1787. [Google Scholar] [CrossRef] [Green Version]
- Petzold, A.; Rasp, K.; Weinzierl, B.; Esselborn, M.; Hamburger, T.; Dörnbrack, A.; Kandler, K.; Schütz, L.; Knippertz, P.; Fiebig, M.; et al. Saharan dust absorption and refractive index from aircraft-based observations during SAMUM 2006. Tellus Ser. B Chem. Phys. Meteorol. 2009, 61, 118–130. [Google Scholar] [CrossRef] [Green Version]
- Petzold, A.; Lauer, P.; Fritsche, U.; Hasselbach, J.; Lichtenstern, M.; Schlager, H.; Fleischer, F. Operation of marine diesel engines on biogenic fuels: Modification of emissions and resulting climate effects. Environ. Sci. Technol. 2011, 45, 10394–10400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ajtai, T.; Utry, N.; Pintér, M.; Major, B.; Bozóki, Z.; Szabó, G. A method for segregating the optical absorption properties and the mass concentration of winter time urban aerosol. Atmos. Environ. 2015, 122, 313–320. [Google Scholar] [CrossRef]
- Feng, Y.; Ramanathan, V.; Kotamarthi, V.R. Brown carbon: A significant atmospheric absorber of solar radiation. Atmos. Chem. Phys. 2013, 13, 8607–8621. [Google Scholar] [CrossRef] [Green Version]
- Corbin, J.C.; Gysel-Beer, M. Detection of tar brown carbon with a single particle soot photometer (SP2). Atmos. Chem. Phys. 2019, 19, 15673–15690. [Google Scholar] [CrossRef] [Green Version]
- Massabò, D.; Caponi, L.; Bernardoni, V.; Bove, M.C.; Brotto, P.; Calzolai, G.; Cassola, F.; Chiari, M.; Fedi, M.E.; Fermo, P.; et al. Multi-wavelength optical determination of black and brown carbon in atmospheric aerosols. Atmos. Environ. 2015, 108, 1–12. [Google Scholar] [CrossRef]
- Sandradewi, J.; Prévôt, A.S.H.; Szidat, S.; Perron, N.; Alfarra, R.; Lanz, V.A.; Weingartner, E.; Baltensperger, U. Using Aerosol Light Absorption Measurements for the Quantitative Determination of Wood Burning and Traffic Emission Contributions to Particulate Matter Using Aerosol Light Absorption Measurements for the Quantitative Determination of Wood Burning and Traf. Environ. Sci. Technol. 2008, 42, 3316–3323. [Google Scholar] [CrossRef] [PubMed]
- Helin, A.; Virkkula, A.; Backman, J.; Pirjola, L.; Sippula, O.; Aakko-Saksa, P.; Väätäinen, S.; Mylläri, F.; Järvinen, A.; Bloss, M.; et al. Variation of Absorption Ångström Exponent in Aerosols From Different Emission Sources. J. Geophys. Res. Atmos. 2021, 126, 1–21. [Google Scholar] [CrossRef]
- Weingartner, E.; Saathoff, H.; Schnaiter, M.; Streit, N.; Bitnar, B.; Baltensperger, U. Absorption of light by soot particles: Determination of the absorption coefficient by means of aethalometers. J. Aerosol Sci. 2003, 34, 1445–1463. [Google Scholar] [CrossRef]
- Lewis, K.; Arnott, W.P.; Moosmüller, H.; Wold, C.E. Strong spectral variation of biomass smoke light absorption and single scattering albedo observed with a novel dual-wavelength photoacoustic instrument. J. Geophys. Res. Atmos. 2008, 113, D16203. [Google Scholar] [CrossRef] [Green Version]
- Pintér, M.; Ajtai, T.; Kiss-Albert, G.; Utry, N.; Kiss, D.; Smausz, T.; Kohut, A.; Hopp, B.; Galbács, G.; Kukovecz, Á.; et al. Thermo-optical properties of residential coals and combustion aerosols. Atmos. Environ. 2018, 178, 118–128. [Google Scholar] [CrossRef]
- Lack, D.A.; Langridge, J.M. On the attribution of black and brown carbon light absorption using the Ångström exponent. Atmos. Chem. Phys. 2013, 13, 10535–10543. [Google Scholar] [CrossRef] [Green Version]
- Schnaiter, M.; Linke, C.; Möhler, O.; Naumann, K.H.; Saathoff, H.; Wagner, R.; Schurath, U.; Wehner, B. Absorption amplification of black carbon internally mixed with secondary organic aerosol. J. Geophys. Res. D Atmos. 2005, 110, D19204. [Google Scholar] [CrossRef]
- Kanaya, Y.; Komazaki, Y.; Pochanart, P.; Liu, Y.; Akimoto, H.; Gao, J.; Wang, T.; Wang, Z. Mass concentrations of black carbon measured by four instruments in the middle of Central East China in June 2006. Atmos. Chem. Phys. Discuss. 2008, 8, 14957–14990. [Google Scholar] [CrossRef] [Green Version]
- Petzold, A.; Schönlinner, M. Multi-angle absorption photometry—A new method for the measurement of aerosol light absorption and atmospheric black carbon. J. Aerosol Sci. 2004, 35, 421–441. [Google Scholar] [CrossRef]
- Drinovec, L.; Močnik, G.; Zotter, P.; Prévôt, A.S.H.; Ruckstuhl, C.; Coz, E.; Rupakheti, M.; Sciare, J.; Müller, T.; Wiedensohler, A.; et al. The “dual-spot” Aethalometer: An improved measurement of aerosol black carbon with real-time loading compensation. Atmos. Meas. Tech. 2015, 8, 1965–1979. [Google Scholar] [CrossRef] [Green Version]
- Arnott, W.P.; Hamasha, K.; Moosmüller, H.; Sheridan, P.J.; Ogren, J.A. Towards aerosol light-absorption measurements with a 7-wavelength aethalometer: Evaluation with a photoacoustic instrument and 3-wavelength nephelometer. Aerosol Sci. Technol. 2005, 39, 17–29. [Google Scholar] [CrossRef]
- Ajtai, T.; Filep, Á.; Schnaiter, M.; Linke, C.; Vragel, M.; Bozóki, Z.Á.; Szabó, G.; Leisner, T. A novel multii-wavelength photoacoustic spectrometer for the measurement of the UV-vis-NIR spectral absorption coefficient of atmospheric aerosols. J. Aerosol Sci. 2010, 41, 1020–1029. [Google Scholar] [CrossRef]
- Utry, N.; Ajtai, T.; Filep, Á.; Pintér, M.; Török, Z.; Bozóki, Z.; Szabó, G. Correlations between absorption Angström exponent (AAE) of wintertime ambient urban aerosol and its physical and chemical properties. Atmos. Environ. 2014, 91, 52–59. [Google Scholar] [CrossRef]
- Arnott, W.P.; Moosmüller, H.; Rogers, C.F.; Jin, T.; Bruch, R. Photoacoustic spectrometer for measuring light absorption by aerosol: Instrument description. Atmos. Environ. 1999, 33, 2845–2852. [Google Scholar] [CrossRef]
- Monica Tutuianu AVL Technical Expertise on Black Carbon Measurement. Presented at the ICCT 6th Workshop on Marine Black Carbon Emissions, Helsinki, Finland, 18–19 September 2019.
- Schindler, W.; Haisch, C.; Beck, H.A.; Niessner, R.; Jacob, E.; Rothe, D.; Schindler, W.; Haisch, C.; Beck, H.A.; Niessner, R.; et al. A Photoacoustic Sensor System for Time Resol Quantification of Diesel Soot Emissions. Paper 2004-01-1968. SAE Trans. 2004, 113, 483–490. [Google Scholar]
- Vander Wal, R.L.; Weiland, K.J. Laser-induced incandescence: Development and characterization towards a measurement of soot-volume fraction. Appl. Phys. B Laser Opt. 1994, 59, 445–452. [Google Scholar] [CrossRef]
- Axelsson, B.; Collin, R.; Bengtsson, P.E. Laser-induced incandescence for soot particle size and volume fraction measurements using on-line extinction calibration. Appl. Phys. B Lasers Opt. 2001, 72, 367–372. [Google Scholar] [CrossRef]
- Snelling, D.R.; Smallwood, G.J.; Liu, F.; Gülder, Ö.L.; Bachalo, W.D. A calibration-independent laser-induced incandescence technique for soot measurement by detecting absolute light intensity. Appl. Opt. 2005, 44, 6773–6785. [Google Scholar] [CrossRef] [Green Version]
- Kelesidis, G.A.; Bruun, C.A.; Pratsinis, S.E. The impact of organic carbon on soot light absorption. Carbon N. Y. 2021, 172, 742–749. [Google Scholar] [CrossRef]
- Tjong, H. Measurement of Soot with Organic Coatings by Laser-Induced Incandescence. Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canada, 2012. [Google Scholar]
- Durdina, L.; Brem, B.; Elser, M.; Schönenberger, D.; Wang, J. Correlations of nonvolatile particulate matter mass and number emissions and particle size with smoke number determined for commercial aircraft jet engines. 2016; Volume 47, 2013. [Google Scholar]
- Baumgardner, D.; Popovicheva, O.; Allan, J.; Bernardoni, V.; Cao, J.; Cavalli, F.; Cozic, J.; Diapouli, E.; Eleftheriadis, K.; Genberg, P.J.; et al. Soot reference materials for instrument calibration and intercomparisons: A workshop summary with recommendations. Atmos. Meas. Tech. 2012, 5, 1869–1887. [Google Scholar] [CrossRef] [Green Version]
- Aakko-Saksa, P.; Murtonen, T.; Vesala, H.; Koponen, P.; Nyyssönen, S.; Puustinen, H.; Lehtoranta, K.; Timonen, H.; Teinilä, K.; Hillamo, R.; et al. Black carbon measurements using different marine fuels, CIMAC Paper 068. In Proceedings of the 28th CIMAC World Congress, Helsinki, Finland, 6–10 June 2016. [Google Scholar]
- Ten Brink, H.; Maenhaut, W.; Hitzenberger, R.; Gnauk, T.; Spindler, G.; Even, A.; Chi, X.; Bauer, H.; Puxbaum, H.; Putaud, J.P.; et al. INTERCOMP2000: The comparability of methods in use in Europe for measuring the carbon content of aerosol. Atmos. Environ. 2004, 38, 6507–6519. [Google Scholar] [CrossRef]
- Hitzenberger, R.; Petzold, A.; Bauer, H.; Ctyroky, P.; Pouresmaeil, P.; Laskus, L.; Puxbaum, H. Intercomparison of thermal and optical measurement methods for elemental carbon and black carbon at an urban location. Environ. Sci. Technol. 2006, 40, 6377–6383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reisinger, P.; Wonaschütz, A.; Hitzenberger, R.; Petzold, A.; Bauer, H.; Jankowski, N.; Puxbaum, H.; Chi, X.; Maenhaut, W. Intercomparison of measurement techniques for black or elemental carbon under urban background conditions in wintertime: Influence of biomass combustion. Environ. Sci. Technol. 2008, 42, 884–889. [Google Scholar] [CrossRef] [Green Version]
- Cavalli, F.; Viana, M.; Yttri, K.E.; Genberg, J.; Putaud, J.-P. Toward a standardised thermal-optical protocol for measuring atmospheric organic and elemental carbon: The EUSAAR protocol. Atmos. Meas. Tech. 2010, 3, 79–89. [Google Scholar] [CrossRef] [Green Version]
- Kondo, Y.; Sahu, L.; Moteki, N.; Khan, F.; Takegawa, N.; Liu, X.; Koike, M.; Miyakawa, T. Consistency and traceability of black carbon measurements made by laser-induced incandescence, thermal-optical transmittance, and filter-based photo-absorption techniques. Aerosol Sci. Technol. 2011, 45, 295–312. [Google Scholar] [CrossRef]
- Sofiev, M.; Winebrake, J.J.; Johansson, L.; Carr, E.W.; Prank, M.; Soares, J.; Vira, J.; Kouznetsov, R.; Jalkanen, J.P.; Corbett, J.J. Cleaner fuels for ships provide public health benefits with climate tradeoffs. Nat. Commun. 2018, 9, 406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aakko-Saksa, P.; Murtonen, T.; Vesala, H.; Koponen, P.; Timonen, H.; Teinilä, K.; Aurela, M.; Karjalainen, P.; Kuittinen, N.; Puustinen, H.; et al. Black Carbon Emissions from a Ship Engine in Laboratory (SEA-EFFECTS BC WP1); VTT Technical Research Centre of Finland: Espoo, Finland, 2017; 112p. [Google Scholar]
- Amanatidis, S.; Ntziachristos, L.; Karjalainen, P.; Saukko, E.; Simonen, P.; Kuittinen, N.; Aakko-Saksa, P.; Timonen, H.; Rönkkö, T.; Keskinen, J. Comparative performance of a thermal denuder and a catalytic stripper in sampling laboratory and marine exhaust aerosols. Aerosol Sci. Technol. 2018, 52, 420–432. [Google Scholar] [CrossRef] [Green Version]
- Timonen, H.; Aakko-Saksa, P.; Kuittinen, N.; Karjalainen, P.; Murtonen, T.; Lehtoranta, K.; Vesala, H.; Bloss, M.; Saarikoski, S.; Koponen, P.; et al. Black Carbon Measurement Validation Onboard (SEA-EFFECTS BC WP2); VTT Technical Research Centre of Finland: Espoo, Finland, 2017. [Google Scholar]
- Keskinen, J.; Rönkkö, T. Can real-world diesel exhaust particle size distribution be reproduced in the laboratory? A critical review. J. Air Waste Manag. Assoc. 2010, 1995, 1245–1255. [Google Scholar] [CrossRef]
- Rönkkö, T.; Virtanen, A.; Vaaraslahti, K.; Keskinen, J.; Pirjola, L.; Lappi, M. Effect of dilution conditions and driving parameters on nucleation mode particles in diesel exhaust: Laboratory and on-road study. Atmos. Environ. 2006, 40, 2893–2901. [Google Scholar] [CrossRef]
- Conrad, B.M.; Johnson, M.R. Mass absorption cross-section of flare-generated black carbon: Variability, predictive model, and implications. Carbon N. Y. 2019, 149, 760–771. [Google Scholar] [CrossRef]
- Cyrys, J.; Heinrich, J.; Hoek, G.; Meliefste, K.; Lewné, M.; Gehring, U.; Bellander, T.; Fischer, P.; Van Vliet, P.; Brauer, M.; et al. Comparison between different traffic-related particle indicators: Elemental carbon (EC), PM2.5 mass, and absorbance. J. Expo. Anal. Environ. Epidemiol. 2003, 13, 134–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AVL List GmbH. Smoke Value Measurement with the Filter-Paper-Method; Application Notes. AT1007E, Rev. 03; AVL List GmbH: Graz, Austria, 2014; pp. 1–112. [Google Scholar]
- Petzold, A.; Kramer, H.; Scölinner, M. Continous Measurement of Atmospheric Black Carbon Using a Multi-Angle Absorption Photometer. Environ. Sci. Pollout. Res. 2002, 4, 78–82. [Google Scholar]
- Zotter, P.; Herich, H.; Gysel, M.; El-Haddad, I.; Zhang, Y.; Mocnik, G.; Hüglin, C.; Baltensperger, U.; Szidat, S.; Prévôt, A.S.H. Evaluation of the absorption Ångström exponents for traffic and wood burning in the Aethalometer-based source apportionment using radiocarbon measurements of ambient aerosol. Atmos. Chem. Phys. 2017, 17, 4229–4249. [Google Scholar] [CrossRef] [Green Version]
- MAGEE Aethalometer® Model AE33. User Manual; Aerosol: Ljubljana, Slovenia, 2015; pp. 1–52.
- Bauer, J.J.; Yu, X.-Y.; Cary, R.; Laulainen, N.; Berkowitz, C. Characterization of the sunset semi-continuous carbon aerosol analyzer. J. Air Waste Manag. Assoc. 2009, 59, 826–833. [Google Scholar] [CrossRef]
- Ristimaki, J.; Hellen, G.; Lappi, M. Chemical and physical characterization of exhaust particulate matter from a marine medium speed diesel engine. CIMAC Congr. 2010 2010, 73, 11. [Google Scholar]
- Sippula, O.; Stengel, B.; Sklorz, M.; Streibel, T.; Rabe, R.; Orasche, J.; Lintelmann, J.; Michalke, B.; Abbaszade, G.; Radischat, C.; et al. Particle emissions from a marine engine: Chemical composition and aromatic emission profiles under various operating conditions. Environ. Sci. Technol. 2014, 48, 11721–11729. [Google Scholar] [CrossRef]
- Lack, D.A.; Corbett, J.J. Black carbon from ships: A review of the effects of ship speed, fuel quality and exhaust gas scrubbing. Atmos. Chem. Phys. 2012, 12, 3985–4000. [Google Scholar] [CrossRef] [Green Version]
- Lobo, P.; Durdina, L.; Smallwood, G.J.; Rindlisbacher, T.; Siegerist, F.; Black, E.A.; Yu, Z.; Mensah, A.A.; Hagen, D.E.; Miake-Lye, R.C.; et al. Measurement of aircraft engine non-volatile PM emissions: Results of the Aviation-Particle Regulatory Instrumentation Demonstration Experiment (A-PRIDE) 4 campaign. Aerosol Sci. Technol. 2015, 49, 472–484. [Google Scholar] [CrossRef] [Green Version]
- Johnson, K.; Miller, W.; Durbin, T.; Jiang, Y.; Yang, J.; Karavalakis, G.; Cocker, D. Black Carbon Measurement Methods and Emission Factors from Ships; International Council on Clean Transportation: Washington, DC, USA, 2016. [Google Scholar]
- Carbone, S.; Timonen, H.J.; Rostedt, A.; Happonen, M.; Rönkkö, T.; Keskinen, J.; Ristimaki, J.; Korpi, H.; Artaxo, P.; Canagaratna, M.; et al. Distinguishing fuel and lubricating oil combustion products in diesel engine exhaust particles. Aerosol Sci. Technol. 2019, 53, 594–607. [Google Scholar] [CrossRef]
- Lipsky, E.M.; Robinson, A.L. Effects of dilution on fine particle mass and partitioning of semivolatile organics in diesel exhaust and wood smoke. Environ. Sci. Technol. 2006, 40, 155–162. [Google Scholar] [CrossRef]
- Schindler, W.; Singer, W. Notes on “Soot“ Measurement of Diesel Engines. Available online: https://www.nanoparticles.ch/archive/2004_Schindler_PR.pdf (accessed on 25 December 2021).
- Kuittinen, N.; Jalkanen, J.P.; Alanen, J.; Ntziachristos, L.; Hannuniemi, H.; Johansson, L.; Karjalainen, P.; Saukko, E.; Isotalo, M.; Aakko-Saksa, P.; et al. Shipping Remains a Globally Significant Source of Anthropogenic PN Emissions even after 2020 Sulfur Regulation. Environ. Sci. Technol. 2021, 55, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Virkkula, A. Modeled source apportionment of black carbon particles coated with a light-scattering shell. Atmos. Meas. Tech. 2021, 14, 3707–3719. [Google Scholar] [CrossRef]
- Engeljehringer, K.; Schindler, W.; Sulzer, R. Meeting ISO 8178 requirements for the measurement of diesel particulates with partial-flow dilution systems. SAE Tech. Pap. 1993, 102, 2087–2096. [Google Scholar] [CrossRef]
- Jiang, Y.; Yang, J.; Gagné, S.; Chan, T.W.; Thomson, K.; Fofie, E.; Cary, R.A.; Rutherford, D.; Comer, B.; Swanson, J.; et al. Sources of variance in BC mass measurements from a small marine engine: Influence of the instruments, fuels and loads. Atmos. Environ. 2018, 182, 128–137. [Google Scholar] [CrossRef] [Green Version]
Engine | Fuel | Instrument | ||||||
---|---|---|---|---|---|---|---|---|
Engine/Load | After-Treatment | Type | Sulphur (%) | Aromatics (%) | PAH/Asphaltenes (%) | Ash (%) | Type | Model |
A. Laboratory | ||||||||
MSD-lab | None | HFO | 2.22 | 22.9 | -/28.3 | 0.094 | SM (FSN) | AVL 415 S |
75% | HFO | 0.375 | 28.3 | -/5.7 | 0.038 | SM (FSN) | AVL 415SE | |
25% | DMB | 0.078 | 42.5 | 10.8/- | <0.005 | PAS | AVL MSS | |
Bio-FA | 0.00043 | 19.5 | 2.8/- | <0.005 | MAAP | Thermo 5012 | ||
Aethalometer | Magee AE33 | |||||||
Aethalometer | Magee AE42 | |||||||
TOA (EC/OC) | Sunset 4L | |||||||
B.On-board | ||||||||
MSD-1 | None | HFO | 0.652 | - | - | <0.005 | SM (FSN) | AVL 415S |
MSD-2 | SCR | MGO | 0.078 | 39.7 | 13.0/- | <0.001 | PAS | AVL MSS |
75% | Scrubber | MAAP | Thermo 5012 | |||||
40% | Aethalometer | Magee AE33 | ||||||
TOA (EC/OC) | Sunset 4L | |||||||
C.Laboratory | ||||||||
HSD | None | Ar-20 | 0.00062 | 19.6 | 1.7/- | <0.001 | SM (FSN) | AVL 415S |
Ramped | Ar-0 | <0.0001 | 0.1 | <0.1/- | <0.001 | PAS | AVL 483 MSS | |
mode cycle | LII | Artium-300 | ||||||
MAAP | Thermo 5012 | |||||||
Aethalometer | Magee AE33 | |||||||
TOA (EC/OC) | Sunset 4L |
BC Instrument | BC | BC Equation | b (Slope) | σ (ΔBC) | |
---|---|---|---|---|---|
R2 | a (Intercept) | mg Sm−3 | mg Sm−3 | ||
SM(FSN) (all data 1) | 0.99 | 0.50 | 1.04 | 0.66 | ±0.50 |
MSS(PAS) (all data 1) | 0.98 | −0.23 | 1.04 | −0.05 | ±0.74 |
EC(TOA) (all data 1) | 0.99 | −0.32 | 0.94 | −0.60 | ±0.53 |
MAAP (all data 1) | 0.95 | 0.32 | 0.91 | −0.02 | ±0.62 |
AE (all data 1) | 0.96 | −0.33 | 1.26 | 0.90 | ±1.91 |
SM(FSN) 2 (HSD data) | 0.97 | 0.019 | 0.955 | −0.01 | ±0.08 |
MSS(PAS) 2 (HSD data) | 0.99 | −0.117 | 1.004 | −0.09 | ±0.04 |
LII 2 (HSD data) | 0.98 | 0.098 | 1.000 | 0.10 | ±0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aakko-Saksa, P.; Kuittinen, N.; Murtonen, T.; Koponen, P.; Aurela, M.; Järvinen, A.; Teinilä, K.; Saarikoski, S.; Barreira, L.M.F.; Salo, L.; et al. Suitability of Different Methods for Measuring Black Carbon Emissions from Marine Engines. Atmosphere 2022, 13, 31. https://doi.org/10.3390/atmos13010031
Aakko-Saksa P, Kuittinen N, Murtonen T, Koponen P, Aurela M, Järvinen A, Teinilä K, Saarikoski S, Barreira LMF, Salo L, et al. Suitability of Different Methods for Measuring Black Carbon Emissions from Marine Engines. Atmosphere. 2022; 13(1):31. https://doi.org/10.3390/atmos13010031
Chicago/Turabian StyleAakko-Saksa, Päivi, Niina Kuittinen, Timo Murtonen, Päivi Koponen, Minna Aurela, Anssi Järvinen, Kimmo Teinilä, Sanna Saarikoski, Luis M. F. Barreira, Laura Salo, and et al. 2022. "Suitability of Different Methods for Measuring Black Carbon Emissions from Marine Engines" Atmosphere 13, no. 1: 31. https://doi.org/10.3390/atmos13010031
APA StyleAakko-Saksa, P., Kuittinen, N., Murtonen, T., Koponen, P., Aurela, M., Järvinen, A., Teinilä, K., Saarikoski, S., Barreira, L. M. F., Salo, L., Karjalainen, P., Ortega, I. K., Delhaye, D., Lehtoranta, K., Vesala, H., Jalava, P., Rönkkö, T., & Timonen, H. (2022). Suitability of Different Methods for Measuring Black Carbon Emissions from Marine Engines. Atmosphere, 13(1), 31. https://doi.org/10.3390/atmos13010031