The Content and Sources of Potentially Toxic Elements in the Road Dust of Surgut (Russia)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Laboratory Analyses
- (1)
- Industrial and warehouse area.
- (2)
- High-rise residential area.
- (3)
- Low-rise residential area.
- (4)
- Power plant area.
- (5)
- Public and business area.
- (6)
- Transport hubs (railway station and airport).
2.3. Calculations and Data Processing
3. Results
3.1. The pH and Particle Size Distribution
3.2. The Chemical Composition of Road Dust
3.3. Source Identification
3.4. Comparisons with Other Cities
4. Exposure and Risk Assessment
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sutherland, R. Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environ. Geol. 2000, 39, 611–627. [Google Scholar] [CrossRef]
- Chow, J.; Watson, J.; Lu, Z. Descriptive analysis of PM(2.5) and PM(10) at regionally representative locations during SJVAQS/AUSPEX 1996. Atmos. Environ. 1996, 30, 2079–2112. [Google Scholar] [CrossRef]
- Kupiainen, K. Monograph of Boreal Environment Research. In Road Dust from Pavement Wear and Traction Sanding; Finnish Environment Institute: Helsinki, Finland, 2007; 50p, Available online: http://hdl.handle.net/10138/39334 (accessed on 18 November 2021).
- Mazzei, F.; D’alessandro, A.; Lucarelli, F.; Nava, S.; Prati, P.; Valli, G.; Vecchi, R. Characterization of particulate matter sources in an urban environment. Sci. Total Environ. 2008, 401, 81–89. [Google Scholar] [CrossRef]
- Kosheleva, N.E.; Vlasov, D.V.; Korlyakov, I.D.; Kasimov, N.S. Contamination of urban soils with heavy metals in Moscow as affected by building development. Sci. Total Environ. 2018, 636, 854–863. [Google Scholar] [CrossRef] [PubMed]
- Varrica, D.; Dongarra, G.; Sabatino, G.; Monna, F. Inorganic geochemistry of roadway dust from the metropolitan area of Palermo, Italy. Environ. Geol. 2003, 44, 222–230. [Google Scholar] [CrossRef]
- Amato, F.; Pandolfi, M.; Viana, M.; Querol, X.; Alastuey, A.; Moreno, T. Spatial and chemical patterns of PM10 in road dust deposited in urban environment. Atmos. Environ. 2009, 43, 1650–1659. [Google Scholar] [CrossRef]
- Amato, F.; Cassee, F.R.; Denier van der Gon, H.A.C.; Gehrig, R.; Gustafsson, M.; Hafner, W.; Harrison, R.M.; Jozwicka, M.; Kelly, F.J.; Moreno, T.; et al. Urban air quality: The challenge of traffic non-exhaust emissions. J. Hazard. Mater. 2014, 275, 31–36. [Google Scholar] [CrossRef]
- Denier van der Gon, H.A.C.; Gerlofs-Nijland, M.E.; Gehrig, R.; Gustafsson, M.; Janssen, N.; Harrison, R.M.; Hulskotte, J.; Johansson, C.; Jozwicka, M.; Keuken, M.; et al. The policy relevance of wear emissions from road transport, now and in the future—An international workshop report and consensus statement. J. Air Waste Manag. 2013, 63, 136–149. [Google Scholar] [CrossRef] [Green Version]
- Murakami, M.; Nakajima, F.; Furumai, H.; Tomiyasu, B.; Owari, M. Identification of particles containing chromium and lead in road dust and soakaway sediment by electron probe microanalyser. Chemosphere 2007, 67, 2000–2010. [Google Scholar] [CrossRef] [PubMed]
- Irvine, K.N.; Perrelli, M.F.; Ngoen-klan, R.; Droppo, I.G. Metal levels in street sediment from an industrial city: Spatial trends, chemical fractionation, and management implications. J. Soils Sedim. 2009, 9, 328–341. [Google Scholar] [CrossRef]
- Nazzal, Y.; Rosen, M.A.; Al-Rawabden, A.M. Assessment of metal pollution in urban road dusts from selected highways of the Greater Toronto Area in Canada. Environ. Monit. Assess. 2013, 185, 1847–1858. [Google Scholar] [CrossRef] [PubMed]
- Vlasov, D.V.; Kosheleva, N.E.; Kasimov, N.S. Spatial distribution and sources of potentially toxic elements in road dust and its PM10 fraction of Moscow megacity. Sci. Total Environ. 2021, 761, 143267. [Google Scholar] [CrossRef] [PubMed]
- Tager, I.B. Health effects of aerosols: Mechanisms and epidemiology. In Aerosols Handbook: Measurement, Dosimetry, and Health Effects; Ruzer, L.S., Harley, N.H., Eds.; CRC Press: Boca Raton, FA, USA, 2005; pp. 619–696. [Google Scholar]
- Jose, J.; Srimuruganandam, B. Investigation of road dust characteristics and its associated health risks from an urban environment. Environ. Geochem. Health 2020, 42, 2819–2840. [Google Scholar] [CrossRef]
- Demographics. Federal State Statistics Service. 2021. Available online: https://rosstat.gov.ru/folder/12781 (accessed on 18 November 2021).
- Li, F.; Zhang, J.; Huang, J.; Huang, D.; Yang, J.; Song, Y.; Zeng, G. Heavy metals in road dust from Xiandao District, Changsha City, China: Characteristics, health risk assessment, and integrated source identification. Environ. Sci. Pollut. Res. 2016, 23, 13100–13113. [Google Scholar] [CrossRef] [PubMed]
- Gulia, S.; Goyal, P.; Goyal, S.K.; Kumar, R. Re-suspension of road dust: Contribution, assessment and control through dust suppressants—A review. Int. J. Environ. Sci. Technol. 2019, 16, 1717–1728. [Google Scholar] [CrossRef]
- Othman, M.; Latif, M.T. Pollution characteristics, sources, and health risk assessments of urban road dust in Kuala Lumpur City. Environ. Sci. Pollut. Res. 2020, 27, 11227–11245. [Google Scholar] [CrossRef]
- Kasimov, N.S.; Bityukova, V.R.; Malkhazova, S.M.; Kosheleva, N.E.; Nikiforova, E.M.; Shartova, N.V.; Vlasov, D.V.; Timonin, S.A.; Krainov, V.N. Regions and Cities of RUSSIA: The Integrated Assessment of the Environment; Filimonov MV Publishing: Moscow, Russia, 2014; 560p. (In Russian) [Google Scholar]
- Krupnova, T.G.; Rakova, O.V.; Gavrilkina, S.V.; Antoshkina, E.G.; Baranov, E.O.; Yakimova, O.N. Road dust trace elements contamination, sources, dispersed composition, and human health risk in Chelyabinsk, Russia. Chemosphere 2020, 261, 127799. [Google Scholar] [CrossRef]
- Ladonin, D.V.; Plyaskina, O.V. Isotopic composition of lead in soils and street dust in the Southeastern administrative district of Moscow. Eurasian Soil Sci. 2009, 42, 93–104. [Google Scholar] [CrossRef]
- Ladonin, D.V.; Mikhaylova, A.P. Heavy Metals and Arsenic in Soils and Street Dust of the Southeastern Administrative District of Moscow: Long-Term Data. Eurasian Soil Sci. 2020, 53, 1635–1644. [Google Scholar] [CrossRef]
- Vlasov, D.V.; Kasimov, N.S.; Kosheleva, N.E. Geochemistry of the road dust in the Eastern district of Moscow. Vestn. Mosk. Univ. Geogr. 2015, 1, 23–33. (In Russian) [Google Scholar]
- Kasimov, N.S.; Vlasov, D.V.; Kosheleva, N.E.; Nikiforova, E.M. Geochemistry of Landscapes of Eastern Moscow; APR Publishing: Moscow, Russia, 2016; 276p. (In Russian) [Google Scholar]
- Kasimov, N.S.; Vlasov, D.V.; Kosheleva, N.E. Enrichment of road dust particles and adjacent environments with metals and metalloids in eastern Moscow. Urban Clim. 2020, 32, 100638. [Google Scholar] [CrossRef]
- Kaygorodov, R.V.; Tiunova, M.I.; Druzshinina, A.A. Polluting substances in a dust of travellers of parts and in wood vegetation of roadside strips of a city zone. Vestn. Permsk. Univ. Seriya Biol. 2009, 10, 141–146. (In Russian) [Google Scholar]
- Kasimov, N.S.; Bezberdaya, L.A.; Vlasov, D.V.; Lychagin, M.Y. Metals, Metalloids, and benzo[a]pyrene in PM10 particles of soils and road dust of Alushta City. Eurasian Soil Sci. 2019, 52, 1608–1621. [Google Scholar] [CrossRef]
- Konstantinova, E.; Minkina, T.; Konstantinov, A.; Sushkova, S.; Antonenko, E.; Kurasova, A.; Loiko, S. Pollution status and human health risk assessment of potentially toxic elements and polycyclic aromatic hydrocarbons in urban street dust of Tyumen city, Russia. Environ. Geochem. Health 2020. [Google Scholar] [CrossRef] [PubMed]
- Program for the Integrated Development of the Transport Infrastructure of the Municipal Formation “Urban District of the City of Surgut” for the Period up to 2035. 2017. Available online: https://www.dumasurgut.ru/getattachment/2be92a61-ce22-4fec-970b-ac2456e2a195/221-VI%20%D0%94%D0%93.aspx (accessed on 18 November 2021).
- Vinokurova, M.V.; Vinokurov, M.V.; Voronin, S.A. Effect of auto-road complex in the city of Surgut on air pollution and population health. Gig. Sanit. 2015, 94, 57–61. (In Russian) [Google Scholar]
- Reference Book on the USSR Climate. Series 2. Issue 17. Tyumen and Omsk Regions; Gidrometeoizdat: S.-Petersburg, Russia, 1998; 702p. (In Russian)
- Nasratinova, R.M.; Shantarin, V.D. Ecological monitoring of snow cover in the Town of Surgut. Oil Gas 2014, 6, 120–123. (In Russian) [Google Scholar]
- Gorban, M.V.; Nakonechniy, N.V.; Vdovkin, R.S.; Bashkatova, Y.V. The condition assessment of Surgut City soils experiencing the influence of motor transport. Vestn. KrasGAU 2014, 9, 53–58. (In Russian) [Google Scholar]
- Samoylenko, Z.A.; Bezuglaya, V.V.; Guselnikova, M.V.; Pyatova, P.N. Content of heavy metals in soils under the influence of unauthorized dumps in Surgut. J. Agric. Environ. 2021, 3, 1–6. (In Russian) [Google Scholar]
- Slashcheva, A.V. Ecological and geochemical assessment of the Surgut lowland territory. Reg. Environ. Issues 2011, 3, 35–44. (In Russian) [Google Scholar]
- Moskovchenko, D.V. Ecogeochemistry of Oil and Gas Producing Regions of Western Siberia; Academic Publishing House “Geo”: Novosibirsk, Russia, 2013; 259p. (In Russian) [Google Scholar]
- Bourliva, A.; Christophoridis, C.; Papadopoulou, L.; Giouri, K.; Papadopoulos, A.; Mitsika, E.; Fytianos, K. Characterization, Heavy metal content and health risk assessment of urban road dusts from the historic center of the city of Thessaloniki, Greece. Environ. Geochem. Health 2017, 39, 611–634. [Google Scholar] [CrossRef] [PubMed]
- Alsbou, E.; Zaitoun, M.A.; Alasoufi, A.M.; Al Shra’Ah, A. Concentration and Source Assessment of Polycyclic Aromatic Hydrocarbons in the Street Soil of Ma’an City, Jordan. Arch. Environ. Contam. Toxicol. 2019, 77, 619–630. [Google Scholar] [CrossRef] [PubMed]
- Alsohaimi, I.H.; El-Hashemy, M.A.; Al-Ruwaili, A.G.; El-Nasr, T.A.S.; Almuaikel, N.S. Assessment of Trace Elements in Urban Road Dust of a City in a Border Province Concerning Their Levels, Sources, and Related Health Risks. Arch. Environ. Contam. Toxicol. 2020, 79, 23–38. [Google Scholar] [CrossRef]
- Padoan, E.; Romè, C.; Ajmone-Marsan, F. Bioaccessibility and size distribution of metals in road dust and roadside soils along a peri-urban transect. Sci. Total Environ. 2017, 601, 89–98. [Google Scholar] [CrossRef]
- Trujillo-Gonzalez, J.M.; Torres-Mora, M.A.; Keesstra, S.; Brevik, E.C.; Jimenez-Ballesta, R. Heavy metal accumulation related to population density in road dust samples taken from urban sites under different land uses. Sci. Total Environ. 2016, 553, 636–642. [Google Scholar] [CrossRef] [PubMed]
- Al-Awadhi, J.M.; AlShuaibi, A.A. Dust fallout in Kuwait City: Deposition and characterization. Sci. Total Environ. 2013, 461, 139–148. [Google Scholar] [CrossRef]
- Li, F.; Huang, J.; Zeng, G.; Huang, X.; Liu, W.; Wu, H.; Yuan, Y.; He, X.; Lai, M. Spatial distribution and health risk assessment of toxic metals associated with receptor population density in street dust: A case study of Xiandao District, Changsha, Middle China. Environ. Sci. Pollut. Res. 2015, 22, 6732–6742. [Google Scholar] [CrossRef]
- Kara, M.; Dumanoglu, Y.; Altiok, H.; Elbir, T.; Odabasi, M.; Bayram, A. Seasonal and spatial variations of atmospheric trace elemental deposition in the Aliaga industrial region, Turkey. Atmos. Res. 2014, 149, 204–216. [Google Scholar] [CrossRef]
- Bourennane, H.; Douay, F.; Sterckeman, T.; Villanneau, E.; Ciesielski, H.; King, D.; Baize, D. Mapping of anthropogenic trace elements inputs in agricultural topsoil from Northern France using enrichment factors. Geoderma 2010, 157, 165–174. [Google Scholar] [CrossRef]
- Syso, A.I. Patterns of Distribution of Chemical Elements in Soil-Forming Rocks and Soils of Western Siberia; Publishing House of SB RAS: Novosibirsk, Russia, 2007; 227p. (In Russian) [Google Scholar]
- Moskovchenko, D.V. Oil and Gas Production and the Environment: Ecological and Geochemical Analysis of the Tyumen Region; Nauka, Sib.predpriyatie RAS: Novosibirsk, Russia, 1998; 112p. (In Russian) [Google Scholar]
- Rudnick, R.L.; Gao, S. Composition of the continental crust. In Treatise on Geochemistry, 3rd ed.; Elsevier Science: New York, NY, USA, 2003; pp. 1–64. [Google Scholar]
- Hakanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Guo, S.; Li, H.; Liu, J.; Zhang, Z.; Yan, L.; Tan, C.; Yang, Z.; Guo, X. Concentration and speciation of trace metals and metalloids from road-deposited sediments in urban and rural areas of Beijing, China. J. Soils Sediments 2020, 20, 3487–3501. [Google Scholar] [CrossRef]
- Yongming, H.; Peixuan, D.; Junji, C.; Posmentier, E.S. Multivariate analysis of heavy metal contamination in urban dusts of Xi’an, Central China. Sci. Total Environ. 2006, 355, 176–186. [Google Scholar] [CrossRef]
- US EPA (US Environmental Protection Agency). Risk Assessment Guidance for Superfund. Volume I: Human Health Evaluation Manual (Part A). Interim Final (EPA/ 540/1-89/002); Office of Emergency and Remedial Response: Washington, DC, USA, 1989.
- Kong, S.; Lu, B.; Bai, Z.; Zhao, X.; Chen, L.; Han, B.; Li, Z.; Ji, Y.; Xu, Y.; Liu, Y.; et al. Potential threat of heavy metals in re-suspended dusts on building surfaces in oilfeld city. Atmos. Environ. 2011, 25, 4192–4204. [Google Scholar] [CrossRef]
- Zheng, N.; Liu, J.; Wang, Q.; Liang, Z. Health risk assessment of heavy metal exposure to street dust in the zinc smelting district, Northeast of China. Sci. Total Environ. 2010, 408, 726–733. [Google Scholar] [CrossRef]
- Li, R.P.; Cai, G.Q.; Wang, J.; Wei, O.Y.; Cheng, H.G.; Lin, C.Y. Contents and chemical forms of heavy metals in school and roadside topsoils and road-surface dust of Beijing. J. Soils Sediments 2014, 14, 1806–1817. [Google Scholar] [CrossRef]
- Al-Khashman, O.A. The investigation of metal concentrations in street dust samples in Aqaba city, Jordan. Environ. Geochem. Health 2007, 29, 197–207. [Google Scholar] [CrossRef] [PubMed]
- Acosta, J.A.; Faz, A.; Kalbitz, K.; Jansen, B.; Martínez-Martínez, S. Heavy metal concentrations in particle size fractions from street dust of Murcia (Spain) as the basis for risk assessment. J. Environ. Monit. 2011, 13, 3087–3096. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, Y.; Luo, J.; Wang, T.; Lian, H.; Ding, Z. Bioaccessibility and health risk of arsenic, mercury and other metals in urban street dusts from a mega-city, Nanjing, China. Environ. Pollut. 2011, 159, 1215–1221. [Google Scholar] [CrossRef]
- Robertson, D.J.; Taylor, K.G.; Hoon, S.R. Geochemical and mineral magnetic characterisation of urban sediment particulates, Manchester, UK. Appl. Geochem. 2003, 18, 269–282. [Google Scholar] [CrossRef]
- Christoforidis, A.; Stamatis, N. Heavy metal contamination in street dust and roadside soil along the major national road in Kavala’s region, Greece. Geoderma 2009, 15, 257–263. [Google Scholar] [CrossRef]
- Zaytseva, N.V.; May, I.V.; Maks, A.A.; Zagorodnov, S.Y. Analysis of the dispersion and component composition of the dust for the assessment of the exposure to the population in the areas of influence of industrial emissions of stationary source. Hyg. Sanit. 2013, 5, 19–23. (In Russian) [Google Scholar]
- Lanzerstorfer, C. Heavy metals in the finest size fractions of road-deposited sediments. Environ. Pollut. 2018, 239, 522–531. [Google Scholar] [CrossRef] [PubMed]
- Cowan, N.; Blair, D.; Malcolm, H.; Graham, M. A survey of heavy metal contents of rural and urban roadside dusts: Comparisons at low, medium and high traffic sites in Central Scotland. Environ. Sci. Pollut. Res. 2021, 28, 7365–7378. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 3rd ed.; CRC press: Boca Raton, FL, USA, 2000; 432p. [Google Scholar] [CrossRef]
- De Miguel, E.; Llamas, J.F.; Chacón, E.; Berg, T.; Larssen, S.; Røyset, O.; Vadset, M. Origin and patterns of distribution of trace elements in street dust: Unleaded petrol and urban lead. Atmos. Environ. 1997, 31, 2733–2740. [Google Scholar] [CrossRef]
- Shi, G.; Chen, Z.; Bi, C.; Wang, L.; Teng, J.; Li, Y.; Xu, S. A comparative study of health risk of potentially toxic metals in urban and suburban road dust in the most populated city of China. Atmos. Environ. 2011, 45, 764–771. [Google Scholar] [CrossRef]
- Siddiqui, Z.; Khillare, P.S.; Jyethi, D.S.; Aithani, D.; Yadav, A.K. Pollution characteristics and human health risk from trace metals in roadside soil and road dust around major urban parks in Delhi city. Air Qual. Atmos. Health 2020, 13, 1271–1286. [Google Scholar] [CrossRef]
- Opekunova, M.G.; Opekunov, A.Y.; Kukushkin, S.Y.; Ganul, A.G. Background contents of heavy metals in soils and bottom sediments in the north of Western Siberia. Eurasian Soil Sci. 2019, 52, 380–395. [Google Scholar] [CrossRef]
- Yuan, G.L.; Sun, T.H.; Han, P.; Li, J.; Lang, X.X. Source identification and ecological risk assessment of heavy metals in topsoil using environmental geochemical mapping: Typical urban renewal area in Beijing, China. J. Geochem. Explor. 2014, 136, 40–47. [Google Scholar] [CrossRef]
- Cao, Z.; Chen, Q.; Wang, X.; Zhang, Y.; Wang, S.; Wang, M.; Zhao, L.; Yan, G.; Zhang, X.; Zhang, Z.; et al. Contamination characteristics of trace metals in dust from different levels of roads of a heavily air-polluted city in north China. Environ. Geochem. Health 2018, 40, 2441–2452. [Google Scholar] [CrossRef] [PubMed]
- Shevchenko, V.P.; Pokrovsky, O.S.; Vorobyev, S.; Krickov, I.V.; Manasypov, R.M.; Politova, N.V.; Kopysov, S.G.; Dara, O.M.; Auda, Y.; Shirokova, L.S.; et al. Impact of snow deposition on major and trace element concentrations and elementary fluxes in surface waters of the Western Siberian Lowland across a 1700 km latitudinal gradient. Hydrol. Earth Syst. Sci. 2017, 21, 5725–5746. [Google Scholar] [CrossRef] [Green Version]
- Pavlov, D.; Dakhouche, A.; Rogachev, T. Influence of arsenic, antimony and bismuth on the properties of lead/acid battery positive plates. J. Power Sources 1990, 1, 117–129. [Google Scholar] [CrossRef]
- Nriagu, J.O.; Pacyna, J.M. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nat. Cell Biol. 1988, 333, 134–139. [Google Scholar] [CrossRef]
- Mugica-Alvarez, V.; Maubert, M.; Torres-Rodríguez, M.; Muñoz, J.; Rico, E. Temporal and spatial variations of metal content in TSP and PM10 in Mexico City during 1996. J. Aerosol Sci. 2002, 33, 91–102. [Google Scholar] [CrossRef]
- Napier, F.; D’Arcy, B.; Jefferies, C. A review of vehicle related metals and polycyclic aromatic hydrocarbons in the UK environment. Desalination 2008, 226, 143–150. [Google Scholar] [CrossRef]
- Adachi, K.; Tainosho, Y. Characterization of heavy metal particles embedded in tire dust. Environ. Int. 2004, 30, 1009–1017. [Google Scholar] [CrossRef] [PubMed]
- Mummullage, S.; Egodawatta, P.; Ayoko, G.A.; Goonetilleke, A. Use of physicochemical signatures to assess the sources of metals in urban road dust. Sci. Total Environ. 2015, 541, 1303–1309. [Google Scholar] [CrossRef] [PubMed]
- Miazgowicz, A.; Krennhuber, K.; Lanzerstorfer, C. Metals concentrations in road dust from high traffic and low traffic area: A size dependent comparison. Int. J. Environ. Sci. Technol. 2020, 17, 3365–3372. [Google Scholar] [CrossRef] [Green Version]
- Councell, T.B.; Duckenfield, K.U.; Landa, E.R.; Callender, E. Tire wear particles as a source of zinc to the environment. Environ. Sc. Technol. 2004, 38, 4206–4214. [Google Scholar] [CrossRef] [PubMed]
- Hjortenkrans, D.; Bergbäck, B.; Häggerud, A. New metal emission patterns in road traffic environments. Environ. Monit. Assess. 2006, 117, 85–98. [Google Scholar] [CrossRef] [PubMed]
- Dall’Osto, M.; Beddows, D.C.; Gietl, J.K.; Olatunbosun, O.A.; Yang, X.; Harrison, R.M. Characteristics of tyre dust in polluted air: Studies by single particle mass spectrometry (ATOFMS). Atmos. Environ. 2014, 94, 224–230. [Google Scholar] [CrossRef] [Green Version]
- Nriagu, J.O. A History of Global Metal Pollution. Science 1996, 272, 223. [Google Scholar] [CrossRef]
- Davis, A.P.; Shokouhian, M.; Ni, S. Loading estimates of lead, copper, cadmium, and zinc in urban runoff from specific sources. Chemosphere 2001, 44, 997–1009. [Google Scholar] [CrossRef]
- Thorpe, A.; Harrison, R.M. Sources and properties of non-exhaust particulate matter from road traffic: A review. Sci. Total Environ 2008, 400, 270–282. [Google Scholar] [CrossRef]
- Bityukova, V.R.; Mozgunov, N.A. Spatial Features transformation of emission from motor vehicles in Moscow. Geogr. Environ. Sustain. 2019, 12, 57–73. [Google Scholar] [CrossRef]
- Al-Khashman, O.A. Assessment of heavy metals contamination in deposited street dusts in different urbanized areas in the city of Ma’an, Jordan. Environ. Earth Sci. 2013, 70, 2603–2612. [Google Scholar] [CrossRef]
- Lindgren, A. Asphalt Wear and Pollution Transport. Sci. Total Environ. 1996, 189, 281–286. [Google Scholar] [CrossRef]
- Lesovaya, S.N.; Goryachkin, S.V.; Polekhovskii, Y.S. Soil formation and weathering on ultramafic rocks in the mountainous tundra of the Rai-Iz massif, Polar Urals. Eurasian Soil Sci. 2012, 45, 33–44. [Google Scholar] [CrossRef]
- Aminiyan, M.M.; Baalousha, M.; Mousavi, R.; Aminiyan, F.M.; Hosseini, H.; Heydariyan, A. The ecological risk, Source identification, and pollution assessment of heavy metals in road dust: A case study in Rafsanjan, SE Iran. Environ. Sci. Pollut. Res. 2018, 25, 13382–13395. [Google Scholar] [CrossRef] [PubMed]
- Kabata-Pendias, A.; Mukherjee, A.B. Trace Elements from Soil to Human; Springer: Berlin/Heidelberg, Germany, 2007; 550p. [Google Scholar]
- Wei, B.; Jiang, F.; Li, X.; Mu, S. Spatial distribution and contamination assessment of heavy metals in urban road dusts from Urumqi, NW China. Microchem. J. 2009, 93, 147–152. [Google Scholar] [CrossRef]
- Najmeddin, A.; Keshavarzi, B.; Moore, F.; Lahijanzadeh, A. Source apportionment and health risk assessment of potentially toxic elements in road dust from urban industrial areas of Ahvaz megacity, Iran. Environ. Geochem. Health 2018, 40, 1187–1208. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.K.; Wang, H. Concentrations and chemical forms of potentially toxic metals in road-deposited sediments from different zones of Hangzhou, China. J. Environ. Sci. 2009, 21, 625–631. [Google Scholar] [CrossRef]
- Fiala, M.; Hwang, H.M. Influence of Highway Pavement on Metals in Road Dust: A Case Study in Houston, Texas. Water Air Soil Pollut. 2021, 232, 185. [Google Scholar] [CrossRef]
- Jadoon, W.; Khpalwak, W.; Chidya, R.C.G.; Abdel-Dayem, S.M.M.A.; Takeda, K.; Makhdoom, M.A.; Sakugawa, H. Evaluation of Levels, Sources and Health Hazards of Road-Dust Associated Toxic Metals in Jalalabad and Kabul Cities, Afghanistan. Arch. Environ. Contam. Toxicol. 2018, 74, 32–45. [Google Scholar] [CrossRef] [PubMed]
- Adamiec, E.; Jarosz-Krzemińska, E.; Wieszała, R. Heavy metals from non-exhaust vehicle emissions in urban and motorway road dusts. Environ. Monit. Assess. 2016, 188, 369. [Google Scholar] [CrossRef] [Green Version]
- Ferreira-Baptista, L.; De Miguel, E. Geochemistry and risk assessment of street dust in Luanda, Angola: A tropical urban environment. Atmos. Environ. 2005, 39, 4501–4512. [Google Scholar] [CrossRef] [Green Version]
- Musa, A.A.; Hamza, S.M.; Kidak, R. Street dust heavy metal pollution implication on human health in Nicosia, North Cyprus. Environ. Sci. Pollut. Res. 2019, 26, 28993–29002. [Google Scholar] [CrossRef]
- Rasmussen, P.; Subramanian, K.; Jessiman, B. A multi-element profile of house dust in relation to exterior dust and soils in the city of Ottawa, Canada. Sci. Total Environ. 2001, 267, 125–140. [Google Scholar] [CrossRef]
- Kim, W.; Doh, S.J.; Park, Y.H.; Yun, S.T. Two-year magnetic monitoring in conjunction with geochemical and electron microscopic data of roadside dust in Seoul, Korea. Atmos. Environ. 2007, 41, 7627–7641. [Google Scholar] [CrossRef]
- Shi, G.; Chen, Z.; Xu, S.; Zhang, J.; Wang, L.; Bi, C.; Teng, J. Potentially toxic metal contamination of urban soils and roadside dust in Shanghai, China. Environ. Pollut. 2008, 156, 251–260. [Google Scholar] [CrossRef]
- Zhang, M.; Lu, X.; Chen, H.; Gao, P.; Fu, Y. Multi-element characterization and source identification of trace metal in road dust from an industrial city in semi-humid area of Northwest China. J. Radioanal. Nucl. Chem. 2015, 303, 637–646. [Google Scholar] [CrossRef]
- Pan, H.; Lu, X.; Lei, K. A comprehensive analysis of heavy metals in urban road dust of Xi’an, China: Contamination, source apportionment and spatial distribution. Sci. Total Environ. 2017, 609, 1361–1369. [Google Scholar] [CrossRef]
- Li, H.; Qian, X.; Hu, W.; Wang, Y.; Gao, H. Chemical speciation and human health risk of trace metals in urban street dusts from a metropolitan city, Nanjing, SE China. Sci. Total Environ. 2013, 456, 212–221. [Google Scholar] [CrossRef] [PubMed]
Enrichment Factor | Potential Ecological Risk Index | Total Potential Ecological Risk Index | Total Enrichment Factor | ||||
---|---|---|---|---|---|---|---|
EF values | Enrichment level [1] | grades [50] | values | RI levels [50] | Ze values | Environmental hazards [13,25,26] | |
EF ≤ 2 | Minimal | Low | RI < 150 | Low | <32 | Non-hazardous | |
2 < EF ≤ 5 | Moderate | Moderate | 150 ≤ RI < 300 | Moderate | 32–64 | Moderately dangerous | |
5 < EF ≤ 20 | Significant | Considerable | 200 ≤ RI < 600 | High | 64–128 | Dangerous | |
20 < EF ≤ 40 | Very High | High | RI ≥ 600 | Very High | 128–256 | Very dangerous |
Area | <0.002 | 0.002–0.01 | 0.01–0.05 | 0.05–0.1 | 0.1–0.25 | 0.25–0.5 | 0.5–1.0 |
---|---|---|---|---|---|---|---|
Traffic Densities: | |||||||
Low (n = 8) | 0.5 ± 0.1 1 | 2.6 ± 0.7 | 14.9 ± 5.1 | 14.6 ± 6.7 | 36.7 ± 5.4 | 26.1 ± 7.4 | 4.4 ± 0.4 |
Moderate (n = 14) | 0.7 ± 0.7 | 3.8 ± 3.2 | 14.0 ± 8.5 | 14.5 ± 4.0 | 40.0 ± 6.9 | 24.2 ± 7.8 | 2.7 ± 1.9 |
High (n = 3) | 0.4 ± 0.1 | 2.1 ± 0.7 | 12.0 ± 5.1 | 15.0 ± 6.7 | 42.0 ± 5.4 | 26.2 ± 7.6 | 2.4 ± 0.4 |
Land use Areas | |||||||
Industrial and warehouse area (n = 6) | 0.25 ± 0.3 | 2.0 ± 1.1 | 8.9 ± 3.6 | 11.9 ± 2.8 | 44.4 ± 3.4 | 29.5 ± 4.6 | 3.1 ± 1.4 |
High-rise residential area (n = 6) | 0.5 ± 0.32 | 2.6 ± 0.8 | 13.2 ± 5.7 | 16.0 ± 6.0 | 39.0 ± 5.0 | 25.1 ± 7.5 | 3.5 ± 1.9 |
Low-rise residential area (n = 5) | 0.7 ± 1.0 | 4.4 ± 5.0 | 13.6 ± 13.8 | 12.2 ± 5.3 | 36.9 ± 9.4 | 27.1 ± 12.2 | 4.8 ± 3.9 |
Power plant area (n = 3) | 0.9 ± 0.7 | 4.5 ± 2.6 | 14.5 ± 7.5 | 14.8 ± 2.4 | 39.3 ± 4,2 | 23.2 ± 7.3 | 3.1 ± 2.6 |
Public and business area (n = 3) | 0.9 ± 0.6 | 3.0 ± 0.9 | 26.5 ± 13.4 | 21.0 ± 2.9 | 31.0 ± 9.4 | 15.8 ± 7.4 | 1.9 ± 0.9 |
Transport hubs (n = 2) | 0.7 ± 0.2 | 3.6 ± 1.0 | 10.8 ± 5.8 | 11.9 ± 4.4 | 43.8 ± 3.4 | 27.3 ± 7.5 | 2.0 ± 0.6 |
Element | DL | Mean | Sd | Min | Max | V, % | WA | PIr |
---|---|---|---|---|---|---|---|---|
Al2O3 | 0.009 | 4.2 | 0.97 | 2.6 | 6.68 | 23 | 15.4 | 0.3 (0.2–0.4) |
CaO | 0.005 | 3.9 | 1.42 | 2.0 | 7.81 | 36 | 3.59 | 1.1 (0.5–2.2) |
Fe2O3 | 0.01 | 2.4 | 0.60 | 1.2 | 3.86 | 25 | 5.04 | 0.5 (0.2–0.8) |
K2O | 0.002 | 0.80 | 0.16 | 0.55 | 1.26 | 20 | 2.8 | 0.3 (0.2–0.5) |
MgO | 0.005 | 2.8 | 1.06 | 1.4 | 5.48 | 37 | 2.48 | 1.1(0.5–2.2) |
MnO | 0.0004 | 0.043 | 0.013 | 0.024 | 0.071 | 29 | 0.1 | 0.4 (0.2–0.7) |
Na2O | 0.001 | 0.91 | 0.22 | 0.65 | 1.48 | 24 | 3.27 | 0.3 (0.2–0.5) |
P2O5 | 0.005 | 0.06 | 0.03 | 0.025 | 0.15 | 58 | 0.15 | 0.4 (0.2–1.0) |
S | 0.002 | 0.064 | 0.021 | 0.028 | 0.12 | 33 | 0.062 | 1.0 (0.4–2.0) |
TiO2 | 0.0005 | 0.27 | 0.09 | 0.12 | 0.55 | 35 | 0.64 | 0.4 (0.2–0.9) |
As | 0.1 | 1.29 | 0.65 | 0.4 | 3.3 | 51 | 4.8 | 0.3 (0.1–0.7) |
Be | 0.03 | 0.42 | 0.12 | 0.3 | 0.72 | 28 | 2.1 | 0.2(0.1–0.3) |
Bi | 0.01 | 0.067 | 0.046 | 0.02 | 0.22 | 69 | 0.16 | 0.4 (0.1–1.4) |
Cd | 0.04 | 0.11 | 0.15 | 0.04 | 0.66 | 136 | 0.09 | 1.2 (0.4–7.4) |
Ce | 0.008 | 15.5 | 8.1 | 8.4 | 45.4 | 52 | 63 | 0.2 (0.13–0.7) |
Co | 0.08 | 6.9 | 1.7 | 3.8 | 11.2 | 25 | 17.3 | 0.4 (0.2–0.7) |
Cr | 0.7 | 46.4 | 15.4 | 18.4 | 83.9 | 33 | 92 | 0.5 (0.2–0.9) |
Cs | 0.01 | 0.43 | 0.17 | 0.24 | 1.0 | 39 | 4.9 | 0.1 (0.05–0.2) |
Cu | 0.8 | 42.8 | 27.3 | 9.3 | 144.9 | 64 | 28 | 1.5 (0.3–5.2) |
Dy | 0.007 | 1.12 | 0.44 | 0.74 | 2.59 | 39 | 3.9 | 0.3 (0.2–0.7) |
Er | 0.003 | 0.60 | 0.24 | 0.40 | 1.34 | 39 | 2.3 | 0.3 (0.2–0.6) |
Eu | 0.006 | 0.40 | 0.19 | 0.26 | 1.17 | 47 | 1 | 0.4 (0.3–1.2) |
Ga | 0.1 | 3.74 | 0.84 | 2.6 | 6.1 | 23 | 17.5 | 0.2 (0.1–0.3) |
Gd | 0.007 | 1.20 | 0.53 | 0.77 | 3.13 | 44 | 4 | 0.3 (0.2–0.8) |
Hf | 0.02 | 0.72 | 0.24 | 0.5 | 1.7 | 33 | 5.3 | 0.14 (0.1–0.3) |
Ho | 0.005 | 0.21 | 0.08 | 0.13 | 0.48 | 40 | 0.83 | 0.2 (0.2–0.6) |
La | 0.009 | 7.05 | 3.03 | 4.0 | 17.7 | 43 | 31 | 0.2 (0.13–0.6) |
Li | 0.03 | 5.16 | 1.04 | 3.7 | 7.57 | 20 | 24 | 0.2(0.2–0.3) |
Lu | 0.005 | 0.091 | 0.035 | 0.06 | 0.20 | 39 | 0.31 | 0.3 (0.2–0.6) |
Nb | 0.02 | 2.85 | 1.55 | 1.5 | 8.9 | 55 | 12 | 0.2 (0.1–0.7) |
Nd | 0.009 | 6.78 | 3.83 | 3.86 | 22.5 | 56 | 27 | 0.3 (0.14–0.8) |
Ni | 0.7 | 41.1 | 17.0 | 12.1 | 90.1 | 41 | 47 | 0.9 (0.3–1.9) |
Pb | 0.06 | 19.0 | 25.5 | 5.6 | 126.1 | 134 | 17 | 1.1 (0.3–7.4) |
Pr | 0.005 | 1.77 | 0.96 | 0.95 | 5.50 | 54 | 7.1 | 0.2 (0.13–0.8) |
Rb | 0.1 | 19.8 | 4.21 | 13.0 | 33.3 | 21 | 84 | 0.2 (0.2–0.4) |
Sb | 0.06 | 0.89 | 0.57 | 0.38 | 3.13 | 64 | 0.4 | 2.2 (1.0–7.8) |
Sc | 0.09 | 5.62 | 1.30 | 3.7 | 8.5 | 23 | 14 | 0.4(0.3–0.6) |
Sm | 0.004 | 1.42 | 0.73 | 0.85 | 4.26 | 51 | 4.7 | 0.3 (0.2–0.9) |
Sr | 0.07 | 119.6 | 27.8 | 91.0 | 210.6 | 23 | 320 | 0.4 (0.3–0.7) |
Ta | 0.01 | 0.19 | 0.13 | 0.1 | 0.7 | 69 | 0.88 | 0.2 (0.1–0.8) |
Tb | 0.004 | 0.18 | 0.08 | 0.12 | 0.48 | 44 | 0.7 | 0.3 (0.2–0.7) |
Th | 0.01 | 1.45 | 0.65 | 0.7 | 3.2 | 45 | 10.5 | 0.1 (0.07–0.3) |
Tl | 0.005 | 0.08 | 0.02 | 0.05 | 0.15 | 23 | 0.9 | 0.1 (0.06–0.16) |
Tm | 0.004 | 0.086 | 0.034 | 0.06 | 0.20 | 40 | 0.3 | 0.3 (0.2–0.7) |
U | 0.01 | 0.61 | 0.27 | 0.4 | 1.6 | 44 | 2.7 | 0.2 (0.1–0.6) |
V | 0.8 | 42.1 | 11.9 | 20.6 | 67.6 | 28 | 97 | 0.4 (0.2–0.7) |
Y | 0.02 | 6.03 | 2.29 | 4.1 | 13.2 | 38 | 21 | 0.3(0.2–0.6) |
Yb | 0.003 | 0.66 | 0.27 | 0.45 | 1.54 | 41 | 2 | 0.3 (0.2–0.8) |
Zn | 0.5 | 89.9 | 50.6 | 35.6 | 262.7 | 56 | 67 | 1.3 (0.5–3.9) |
Zr | 0.04 | 28.6 | 10.1 | 18.2 | 68.8 | 35 | 193 | 0.1 (0.1–0.4) |
Area | Contamination Levels and EF Values | Ze | RI | |
---|---|---|---|---|
Significant (EF = 5–20) | Moderate (EF = 2–5) | |||
Land Use Areas | ||||
Industrial and warehouse area (n = 6) | Sb 12 Pb 9 Cu7 | Ni3 | 43 | 55 |
High-rise residential area (n = 6) | Cu 5 Zn 5 | Ni3 Pb2 | 31 | 79 |
Low-rise residential area (n = 5) | Sb 6 | Ni4 Cu4 Zn4 Cr2 | 27 | 47 |
Power plant area (n = 3) | Sb 9 | Cu5 Zn5 Ni4 Cr2 Pb2 | 32 | 39 |
Public and business area (n = 3) | Zn 7 Cu 6 Sb 6 | Pb2 | 29 | 87 |
Transport hubs (n = 2) | Sb 8 | Cu4 Ni3 Zn3 Fe2 | 30 | 30 |
Traffic Density | ||||
Low (n = 8) | Sb 5 | Cu4 Zn3 Ni3 Pb2 | 28 | 39 |
Moderate (n = 14) | Sb10 Cu 6 Pb 6 | Zn5 Ni3 | 40 | 53 |
High(n = 3) | Zn9 Sb8 Cu8 | Ni4 Pb3 Cd2 | 44 | 144 |
Total for Surgut | Sb 8.1 Cu 5.5 | Zn 4.9 Pb 4 Ni 4 | 37 | 59 |
Elements and Parameters | PC1 | PC2 | PC3 | PC4 |
---|---|---|---|---|
V | 0.61 | 0.04 | −0.04 | 0.52 |
Cr | 0.78 | 0.06 | 0.23 | 0.15 |
Co | 0.86 | 0.14 | −0.01 | 0.16 |
Ni | 0.85 | −0.03 | −0.02 | −0.28 |
Cu | 0.16 | 0.57 | 0.28 | 0.41 |
Zn | 0.16 | 0.92 | 0.10 | 0.17 |
As | 0.55 | 0.01 | −0.18 | 0.17 |
Cd | 0.09 | 0.87 | −0.06 | 0.05 |
Sb | 0.18 | 0.16 | 0.90 | −0.01 |
Pb | −0.10 | 0.05 | 0.94 | −0.01 |
pH | −0.10 | −0.0 | 0.01 | −0.69 |
PM10 | 0.70 | 0.073 | 0.13 | 0.12 |
Expl. Var | 3.39 | 2.62 | 1.97 | 1.33 |
Prp. Totl | 0.26 | 0.20 | 0.15 | 0.10 |
City | Cr | Co | Ni | Cu | Zn | As | Cd | Pb | Sb | Reference |
---|---|---|---|---|---|---|---|---|---|---|
Surgut, this study | 46 | 6.9 | 41.1 | 42.8 | 89.9 | 1.3 | 0.11 | 19.0 | 0.89 | This study |
Chelyabinsk | 48.5 | 6.3 | 21.9 | 55.9 | 154 | 3.8 | 0.4 | 14.4 | 1.3 | [20] |
Moscow | 50 | 8.0 | 26 | 93 | 252 | 2.8 | 0.61 | 53 | 4.6 | [23] |
Alushta | 31 | 7.4 | 33 | 44 | 127 | 8.0 | 0.3 | 37 | 1.5 | [28] |
Tyumen | 415 | 25.6 | 324 | 51.3 | 105 | 8.8 | 0.19 | 20.1 | 1.83 | [29] |
Ahvaz, Iran | 51.5 | 9.2 | 59.7 | 74.4 | 309 | - | 0.5 | 85.4 | 2.1 | [93] |
Hangzhou, China | 51 | 20 | 26 | 116 | 321 | - | 1.59 | 202 | - | [94] |
Houston, TX, USA | 67 | 4.8 | 119 | 183 | 557 | - | - | 40 | - | [95] |
Kabul, Afganistan | 38.4 | 8.52 | 66.4 | 43.6 | 122.5 | - | 1.16 | 28.7 | - | [96] |
Kuala Lumpur, Malaysia | 74.1 | 3.36 | 11.3 | 87.0 | 314 | 68.8 | 0.71 | 98.8 | - | [19] |
Katowice, Poland | 211 | - | 43.7 | 239 | 2030 | - | 0.35 | 430 | - | [97] |
Luanda, Angola | 26 | 2.9 | 10 | 42 | 317 | 5.0 | 1.1 | 351 | 3.4 | [98] |
Nicosia, North Cyprus | 321 | - | 65 | 52 | 136 | 17.5 | - | 35.6 | - | [99] |
Ottawa, Canada | 43.3 | 8.3 | 15.2 | 65.8 | 112 | 1.3 | 0.6 | 39 | 0.89 | [100] |
Seul, Korea | 151 | - | - | 396 | 795 | - | - | 144 | [101] | |
Shanghai, China | 159 | - | 84 | 197 | 734 | - | 1.23 | 295 | - | [102] |
Thessaloniki, Greece | 105 | - | 89 | 662 | 452 | - | 1.76 | 209 | - | [17] |
Tongchuan, China | 106.5 | 31.7 | 25.3 | 32.4 | 142 | 6.7 | - | 75.2 | - | [103] |
Toronto, Canada | 198 | - | 58.8 | 162 | 233 | - | 0.51 | 183 | - | [12] |
Xi’an, China | 145 | 30.9 | 30.8 | 54.7 | 268.6 | - | - | 125 | - | [104] |
Element | HQ Ing | HQ Derm | HQ Inh | HI | ||||
---|---|---|---|---|---|---|---|---|
Childr | Adults | Childr | Adults | Childr | Adults | Childr | Adults | |
Pb | 3.4 × 10−2 | 3.8 × 10−3 | 2.5 × 10−4 | 2.8 × 10−5 | 1.6 × 10−4 | 2.7 × 10−4 | 3.4 × 10−2 | 3.8 × 10−3 |
Ni | 2.4 × 10−2 | 2.7 × 10−3 | 4.4 × 10−4 | 4.9 × 10−5 | 4.9 × 10−2 | 8.1 × 10−2 | 7.3 × 10−2 | 8.4 × 10−2 |
Cu | 2.7 × 10−2 | 3.1 × 10−3 | 3.5 × 10−5 | 4.0 × 10−6 | 3.2 × 10−5 | 5.4 × 10−5 | 2.7 × 10−2 | 3.1 × 10−3 |
Zn | 1.9 × 10−3 | 2.2 × 10−4 | 1.4 × 10−5 | 1.6 × 10−6 | 4.5 × 10−5 | 7.6 × 10−5 | 1.9 × 10−3 | 2.2 × 10−4 |
As | 2.7 × 10−2 | 3.1 × 10−3 | 2.1 × 10−5 | 2.4 × 10−6 | 9.1 × 10−5 | 1.5 × 10−4 | 2.8 × 10−2 | 3.2 × 10−3 |
Cd | 6.9 × 10−4 | 7.7 × 10−5 | 2.0 × 10−5 | 2.3 × 10−6 | 1.1 × 10−3 | 1.9 × 10−3 | 1.8 × 10−3 | 2.0 × 10−3 |
Sb | 1.4 × 10−2 | 1.6 × 10−3 | 7.0 × 10−5 | 7.9 × 10−6 | 3.2 × 10−4 | 5.3 × 10−4 | 1.5 × 10−2 | 2.1 × 10−3 |
Element | CRA Ing | CRA Derm | CRA Inh | CRA Sum | ||||
---|---|---|---|---|---|---|---|---|
Childr | Adults | Childr | Adults | Childr | Adults | Childr | Adults | |
Pb | 1.0 × 10−6 | 1.2 × 10−6 | 7.6 × 10−9 | 8.5 × 10−10 | 2.4 × 10−8 | 4.0 × 10−8 | 1.1 × 10−6 | 1.6 × 10−7 |
As | 1.2 × 10−5 | 1.4 × 10−6 | 9.5 × 10−9 | 1.1 × 10−9 | 5.9 × 10−7 | 9.8 × 10−7 | 1.3 × 10−5 | 2.4 × 10−6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moskovchenko, D.; Pozhitkov, R.; Soromotin, A.; Tyurin, V. The Content and Sources of Potentially Toxic Elements in the Road Dust of Surgut (Russia). Atmosphere 2022, 13, 30. https://doi.org/10.3390/atmos13010030
Moskovchenko D, Pozhitkov R, Soromotin A, Tyurin V. The Content and Sources of Potentially Toxic Elements in the Road Dust of Surgut (Russia). Atmosphere. 2022; 13(1):30. https://doi.org/10.3390/atmos13010030
Chicago/Turabian StyleMoskovchenko, Dmitriy, Roman Pozhitkov, Andrey Soromotin, and Valeriy Tyurin. 2022. "The Content and Sources of Potentially Toxic Elements in the Road Dust of Surgut (Russia)" Atmosphere 13, no. 1: 30. https://doi.org/10.3390/atmos13010030
APA StyleMoskovchenko, D., Pozhitkov, R., Soromotin, A., & Tyurin, V. (2022). The Content and Sources of Potentially Toxic Elements in the Road Dust of Surgut (Russia). Atmosphere, 13(1), 30. https://doi.org/10.3390/atmos13010030