The Modeling Study about Impacts of Emission Control Policies for Chinese 14th Five-Year Plan on PM2.5 and O3 in Yangtze River Delta, China
Abstract
:1. Introduction
2. Methods
2.1. Model Configurations and Emission Inventory
2.2. Descriptions of Emission Control Scenarios
3. Results and Discussions
3.1. Impacts of the Emissions Control Scenarios on PM2.5 in the YRD
3.2. Impacts of the Emissions Control Scenarios on O3 in the YRD
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Knowlton, K.; Rosenthal, J.; Hogrefe, C.; Lynn, B.; Gaffin, S.; Goldberg, R.; Rosenzweig, C.; Civerolo, K.; Ku, J.; Kinney, P. Assessing Ozone-Related Health Impacts Under A Changing Climate. Environ. Health Perspect. 2004, 112, 1557–1563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebi, K.; McGregor, G. Climate Change, Tropospheric Ozone and Particulate Matter, and Health Impacts. Ciência Saúde Coletiva 2009, 14, 2281–2293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuzzi, S.; Baltensperger, U.; Carslaw, K.; Decesari, S.; Denier van der Gon, H.; Facchini, M.; Fowler, D.; Koren, I.; Langford, B.; Lohmann, U.; et al. Particulate Matter, Air Quality And Climate: Lessons Learned And Future Needs. Atmos. Chem. Phys. 2015, 15, 8217–8299. [Google Scholar] [CrossRef] [Green Version]
- Feng, S.; Gao, D.; Liao, F.; Zhou, F.; Wang, X. The Health Effects of Ambient PM2.5 and Potential Mechanisms. Ecotoxicol. Environ. Saf. 2016, 128, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhang, B. Air Pollution and Healthcare Expenditure: Implication for the Benefit of Air Pollution Control in China. Environ. Int. 2018, 120, 443–455. [Google Scholar] [CrossRef]
- Li, K.; Jacob, D.; Liao, H.; Zhu, J.; Shah, V.; Shen, L.; Bates, K.; Zhang, Q.; Zhai, S. A Two-Pollutant Strategy for Improving Ozone and Particulate Air Quality in China. Nat. Geosci. 2019, 12, 906–910. [Google Scholar] [CrossRef]
- An, Z.; Huang, R.; Zhang, R.; Tie, X.; Li, G.; Cao, J.; Zhou, W.; Shi, Z.; Han, Y.; Gu, Z.; et al. Severe Haze in Northern China: A Synergy of Anthropogenic Emissions and Atmospheric Processes. Proc. Natl. Acad. Sci. USA 2019, 116, 8657–8666. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Song, J.; Lin, T.; Dixon, J.; Zhang, G.; Ye, H. Urbanization and Health in China, Thinking at the National, Local and Individual Levels. Environ. Health 2016, 15, S32. [Google Scholar] [CrossRef] [Green Version]
- Mou, Y.; Song, Y.; Xu, Q.; He, Q.; Hu, A. Influence of Urban-Growth Pattern on Air Quality in China: A Study Of 338 Cities. Int. J. Environ. Res. Public Health 2018, 15, 1805. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Zhang, S.; Xing, J.; Wang, Y.; Chen, W.; Ding, D.; Wu, Y.; Wang, S.; Duan, L.; Hao, J. Progress of Air Pollution Control in China and Its Challenges and Opportunities in The Ecological Civilization Era. Engineering 2020, 6, 1423–1431. [Google Scholar] [CrossRef]
- Yi, F.; Ye, H.; Wu, X.; Zhang, Y.; Jiang, F. Self-Aggravation Effect of Air Pollution: Evidence from Residential Electricity Consumption in China. Energy Econ. 2020, 86, 104684. [Google Scholar] [CrossRef]
- Fang, D.; Chen, B.; Hubacek, K.; Ni, R.; Chen, L.; Feng, K.; Lin, J. Clean Air for Some: Unintended Spillover Effects of Regional Air Pollution Policies. Sci. Adv. 2019, 5, eaav4707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, M.; Bi, J.; Ma, Z. Visibility-Based PM2.5 Concentrations in China: 1957–1964 And 1973–2014. Environ. Sci. Technol. 2017, 51, 13161–13169. [Google Scholar] [CrossRef]
- Liang, L.; Wang, Z. Control Models and Spatiotemporal Characteristics of Air Pollution in The Rapidly Developing Urban Agglomerations. Int. J. Environ. Res. Public Health 2021, 18, 6177. [Google Scholar] [CrossRef] [PubMed]
- Shan, Y.; Wang, X.; Wang, Z.; Liang, L.; Li, J.; Sun, J. The Pattern and Mechanism of Air Pollution in Developed Coastal Areas of China: From the Perspective of Urban Agglomeration. PLoS ONE 2020, 15, e0237863. [Google Scholar] [CrossRef]
- He, J.; Gong, S.; Yu, Y.; Yu, L.; Wu, L.; Mao, H.; Song, C.; Zhao, S.; Liu, H.; Li, X.; et al. Air Pollution Characteristics and Their Relation To Meteorological Conditions During 2014–2015 In Major Chinese Cities. Environ. Pollut. 2017, 223, 484–496. [Google Scholar] [CrossRef]
- Hou, X.; Fei, D.; Kang, H.; Zhang, Y.; Gao, J. Seasonal Statistical Analysis of The Impact of Meteorological Factors on Fine Particle Pollution in China In 2013–2017. Nat. Hazards 2018, 93, 677–698. [Google Scholar] [CrossRef]
- Li, K.; Jacob, D.; Liao, H.; Shen, L.; Zhang, Q.; Bates, K. Anthropogenic Drivers Of 2013–2017 Trends in Summer Surface Ozone in China. Proc. Natl. Acad. Sci. USA 2018, 116, 422–427. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Lyu, X.; Deng, X.; Huang, X.; Jiang, F.; Ding, A. Aggravating O3 Pollution Due to NOx Emission Control in Eastern China. Sci. Total Environ. 2019, 677, 732–744. [Google Scholar] [CrossRef]
- Han, H.; Liu, J.; Shu, L.; Wang, T.; Yuan, H. Local and Synoptic Meteorological Influences on Daily Variability in Summertime Surface Ozone in Eastern China. Atmos. Chem. Phys. 2020, 20, 203–222. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Huang, X.; Wang, N.; Li, Y.; Ding, A. Understanding Ozone Pollution in The YRD Of Eastern China from The Perspective of Diurnal Cycles. Sci. Total Environ. 2021, 752, 141928. [Google Scholar] [CrossRef]
- Sun, M.; Wang, J.; He, K. Analysis on The Urban Land Resources Carrying Capacity During Urbanization-A Case Study of Chinese YRD. Appl. Geogr. 2020, 116, 102170. [Google Scholar] [CrossRef]
- Terada, H.; Ueda, H.; Wang, Z. Trend of Acid Rain and Neutralization by Yellow Sand in East Asia-A Numerical Study. Atmos. Environ. 2002, 36, 503–509. [Google Scholar] [CrossRef]
- Bhatti, N.; Streets, D.; Foell, W. Acid Rain in Asia. Environ. Manag. 1992, 16, 541–562. [Google Scholar] [CrossRef]
- Yan, X.; Crookes, R. Energy Demand and Emissions from Road Transportation Vehicles in China. Prog. Energy Combust. Sci. 2010, 36, 651–676. [Google Scholar] [CrossRef]
- Xu, P.; Chen, Y.; Ye, X. Haze, Air Pollution, And Health in China. Lancet 2013, 382, 2067. [Google Scholar] [CrossRef]
- Ou, J.; Huang, Z.; Klimont, Z.; Jia, G.; Zhang, S.; Li, C.; Meng, J.; Mi, Z.; Zheng, H.; Shan, Y.; et al. Role of Export Industries on Ozone Pollution and Its Precursors in China. Nat. Commun. 2020, 11, 5492. [Google Scholar] [CrossRef]
- Gao, M.; Teng, W.; Du, Z.; Nie, L.; An, X.; Liu, W.; Sun, X.; Shen, Z.; Shi, A. Source Profiles and Emission Factors of VOCs From Solvent-Based Architectural Coatings and Their Contributions to Ozone and Secondary Organic Aerosol Formation in China. Chemosphere 2021, 275, 129815. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zheng, Y.; Tong, D.; Shao, M.; Wang, S.; Zhang, Y.; Xu, X.; Wang, J.; He, H.; Liu, W.; et al. Drivers of improved PM2.5 air quality in China from 2013 to 2017. Proc. Natl. Acad. Sci. USA 2019, 116, 24463–24469. [Google Scholar] [CrossRef] [Green Version]
- Murphy, B.; Nolte, C.; Sidi, F.; Bash, J.; Appel, K.; Jang, C.; Kang, D.; Kelly, J.; Mathur, R.; Napelenok, S.; et al. The Detailed Emissions Scaling, Isolation, And Diagnostic (DESID) Module in The Community Multiscale Air Quality (CMAQ) Modeling System Version 5.3.2. Geosci. Model Dev. 2021, 14, 3407–3420. [Google Scholar] [CrossRef] [PubMed]
- Appel, K.; Bash, J.; Fahey, K.; Foley, K.; Gilliam, R.; Hogrefe, C.; Hutzell, W.; Kang, D.; Mathur, R.; Murphy, B.; et al. The Community Multiscale Air Quality (CMAQ) Model Versions 5.3 And 5.3.1: System Updates and Evaluation. Geosci. Model Dev. 2021, 14, 2867–2897. [Google Scholar] [CrossRef] [PubMed]
- Yarwood, G.; Jung, J.; Whitten, G.Z.; Heo, G.; Mellberg, J.; Estes, M. Updates to the Carbon Bond mechanism for version 6 (CB6). In Proceedings of the Annual CMAS Conference, Chapel Hill, NC, USA, 11–13 October 2010. [Google Scholar]
- Whitten, G.; Heo, G.; Kimura, Y.; McDonald-Buller, E.; Allen, D.; Carter, W.; Yarwood, G. A New Condensed Toluene Mechanism for Carbon Bond: CB05-TU. Atmos. Environ. 2010, 44, 5346–5355. [Google Scholar] [CrossRef]
- Pye, H.O.T. Overview of AERO7 and AERO7i. Available online: https://github.com/USEPA/CMAQ/blob/a04eb9749859cb7b3804dc55caa3f7fc1d19db6f/DOCS/Release_Notes/CMAQv5.3_aero7_overview.md (accessed on 3 October 2021).
- Fountoukis, C.; Nenes, A. ISORROPIA II: A computationally efficient thermodynamic equilibrium model for K+–Ca2+–Mg2+–NH4+–Na+–SO42−–NO3−–Cl−–H2O aerosols. Atmos. Chem. Phys. 2007, 7, 4639–4659. [Google Scholar] [CrossRef] [Green Version]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.; Duda, M.G.; Huang, X.Y.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version. Available online: https://opensky.ucar.edu/islandora/object/technotes:500 (accessed on 3 October 2021).
- Yu, S.; Mathur, R.; Pleim, J.; Wong, D.; Gilliam, R.; Alapaty, K.; Zhao, C.; Liu, X. Aerosol Indirect Effect on The Grid-Scale Clouds in The Two-Way Coupled WRF–CMAQ: Model Description, Development, Evaluation and Regional Analysis. Atmos. Chem. Phys. 2014, 14, 11247–11285. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Chen, X.; Yu, S.; Wang, L.; Li, Z.; Li, M.; Liu, W.; Li, P.; Rosenfeld, D.; Seinfeld, J.H. City-level air quality improvement in the Beijing-Tianjin-Hebei region from 2016/17 to 2017/18 heating seasons: Attribu-tions and process analysis. Environ. Pollut. 2021, 274, 116523. [Google Scholar] [CrossRef]
- Wang, L.; Yu, S.; Li, P.; Chen, X.; Li, Z.; Zhang, Y.; Li, M.; Mehmood, K.; Liu, W.; Chai, T.; et al. Significant wintertime PM2.5 mitigation in the Yangtze River Delta, China, from 2016 to 2019: Observational constraints on anthropogenic emission controls. Atmos. Chem. Phys. 2020, 20, 14787–14800. [Google Scholar] [CrossRef]
- Moss, R.H.; Edmonds, J.A.; Hibbard, K.A.; Manning, M.R.; Rose, S.K.; Van Vuuren, D.P.; Carter, T.R.; Emori, S.; Kainuma, M.; Kram, T. The next generation of scenarios for climate change research and assessment. Nature 2010, 463, 747–756. [Google Scholar] [CrossRef]
- Schwalm, C.; Glendon, S.; Duffy, P. RCP8.5 Tracks Cumulative CO2 emissions. Proc. Natl. Acad. Sci. USA 2020, 117, 19656–19657. [Google Scholar] [CrossRef]
- Riahi, K.; Rao, S.; Krey, V.; Cho, C.; Chirkov, V.; Fischer, G.; Kindermann, G.; Nakicenovic, N.; Rafaj, P. RCP 8.5—A Scenario of Comparatively High Greenhouse Gas Emissions. Clim. Change 2011, 109, 33–57. [Google Scholar] [CrossRef] [Green Version]
- RCP Database (version 2.0). Available online: https://tntcat.iiasa.ac.at/RcpDb/ (accessed on 3 October 2021).
- Zhao, B.; Zheng, H.; Wang, S.; Smith, K.; Lu, X.; Aunan, K.; Gu, Y.; Wang, Y.; Ding, D.; Xing, J.; et al. Change in Household Fuels Dominates the Decrease in PM2.5 Exposure and Premature Mortality in China In 2005–2015. Proc. Natl. Acad. Sci. USA 2018, 115, 12401–12406. [Google Scholar] [CrossRef] [Green Version]
- Schwede, D.; Pouliot, G.; Pierce, T. Changes to the Biogenic Emission Inventory System Version 3 (BEIS3). In Proceedings of the 4th Annual CMAS Models-3 User’s Conference, Chapel Hill, NC, USA, 26–28 September 2005. [Google Scholar]
- China National Environmental Monitoring Centre. Available online: http://www.cnemc.cn (accessed on 3 October 2021).
- National Development and Reform Commission (NDRC) of People’s Republic of China. The 14th FYP for Economic and Social Development of The People’s Republic of China. Available online: http://www.gov.cn/xinwen/2021-03/13/content_5592681 (accessed on 3 October 2021).
- National Development and Reform Commission (NDRC) of People’s Republic of China. The 14th FYP for Economic and Social Development of Shanghai. Available online: https://www.ndrc.gov.cn/fggz/fzzlgh/dffzgh/202104/t20210408_1271913_ext (accessed on 3 October 2021).
- National Development and Reform Commission (NDRC) of People’s Republic of China. The 14th FYP for Economic and Social Development of Anhui Province. Available online: https://www.ndrc.gov.cn/fggz/fzzlgh/dffzgh/202104/t20210408_1271917 (accessed on 3 October 2021).
- National Development and Reform Commission (NDRC) of People’s Republic of China. The 14th FYP for Economic and Social Development of Jiangsu Province. Available online: http://fzggw.jiangsu.gov.cn/art/2021/3/1/art_284_9683575 (accessed on 3 October 2021).
- National Development and Reform Commission (NDRC) of People’s Republic of China. The 14th FYP for Economic and Social Development of Zhejiang Province. Available online: https://www.ndrc.gov.cn/fggz/fzzlgh/dffzgh/202104/t20210408_1271915_ext (accessed on 3 October 2021).
- Liu, M.; Huang, X.; Song, Y.; Tang, J.; Cao, J.; Zhang, X.; Zhang, Q.; Wang, S.; Xu, T.; Kang, L.; et al. Ammonia emission control in China would mitigate haze pollution and nitrogen deposition, but worsen acid rain. Proc. Natl. Acad. Sci. USA 2019, 16, 7760–7765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chinese Standard. Available online: https://www.chinesestandard.net/ (accessed on 28 November 2021).
- Simon, H.; Reff, A.; Wells, B.; Xing, J.; Frank, N. Ozone Trends Across the United States over a Period of Decreasing NOx and VOC Emissions. Environ. Sci. Technol. 2015, 49, 186–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Province | City | Control Scenario 1 (S1) | Enhanced Control Scenario 1 (S1_E) | ||||
---|---|---|---|---|---|---|---|
SO2 | NOX | VOCs | SO2 | NOX | VOCs | ||
municipal | Shanghai | 20.0% | 20.0% | 20.0% | 30.0% | 30.0% | 60.0% |
Anhui | Anqing | 16.0% | 14.4% | 11.4% | 24.0% | 21.6% | 34.2% |
Bengbu | 15.4% | 13.2% | 10.4% | 23.1% | 19.8% | 31.2% | |
Bozhou | 11.0% | 8.8% | 6.6% | 16.5% | 13.2% | 30.0% | |
Chizhou | 5.0% | 6.0% | 8.8% | 7.5% | 9.0% | 30.0% | |
Chuzhou | 13.2% | 15.4% | 9.1% | 19.8% | 23.1% | 30.0% | |
Fuyang | 11.2% | 14.4% | 7.9% | 16.8% | 21.6% | 30.0% | |
Hefei | 23.1% | 24.2% | 12.2% | 34.7% | 36.3% | 36.6% | |
Huaibei | 17.6% | 16.0% | 9.9% | 26.4% | 24.0% | 30.0% | |
Huainan | 17.9% | 17.6% | 6.8% | 26.9% | 26.4% | 30.0% | |
Huangshan | 2.0% | 2.0% | 10.3% | 3.0% | 3.0% | 30.9% | |
Luan | 8.8% | 8.0% | 8.6% | 13.2% | 12.0% | 30.0% | |
Mananshan | 23.1% | 24.2% | 12.4% | 34.7% | 36.3% | 37.2% | |
Suzhou | 22.0% | 22.0% | 22.0% | 33.0% | 33.0% | 66.0% | |
Tongling | 17.6% | 17.6% | 9.8% | 26.4% | 26.4% | 30.0% | |
Wuhu | 17.9% | 17.6% | 11.6% | 26.9% | 26.4% | 34.8% | |
Xuancheng | 8.5% | 10.0% | 9.9% | 12.8% | 15.0% | 30.0% | |
Jiangsu | Changzhou | 20.0% | 20.0% | 20.0% | 30.0% | 30.0% | 60.0% |
Huaian | 20.0% | 20.0% | 20.0% | 30.0% | 30.0% | 60.0% | |
Lianyungang | 20.0% | 20.0% | 20.0% | 30.0% | 30.0% | 60.0% | |
Nanjing | 20.0% | 20.0% | 20.0% | 30.0% | 30.0% | 60.0% | |
Nantong | 20.0% | 20.0% | 20.0% | 30.0% | 30.0% | 60.0% | |
Suqian | 20.0% | 20.0% | 20.0% | 30.0% | 30.0% | 60.0% | |
Suzhou | 12.1% | 11.0% | 8.4% | 18.2% | 16.5% | 30.0% | |
Taizhou | 22.0% | 22.0% | 22.0% | 33.0% | 33.0% | 66.0% | |
Wuxi | 22.0% | 22.0% | 22.0% | 33.0% | 33.0% | 66.0% | |
Xuzhou | 22.0% | 22.0% | 22.0% | 33.0% | 33.0% | 66.0% | |
Yancheng | 18.0% | 18.0% | 18.0% | 27.0% | 27.0% | 54.0% | |
Yangzhou | 20.0% | 20.0% | 20.0% | 30.0% | 30.0% | 60.0% | |
Zhenjiang | 20.0% | 20.0% | 20.0% | 30.0% | 30.0% | 60.0% | |
Zhejiang | Hangzhou | 23.0% | 23.0% | 26.0% | 34.5% | 34.5% | 78.0% |
Huzhou | 23.0% | 23.0% | 20.0% | 34.5% | 34.5% | 60.0% | |
Jiaixng | 21.0% | 21.0% | 18.0% | 31.5% | 31.5% | 54.0% | |
Jinhua | 21.0% | 21.0% | 26.0% | 31.5% | 31.5% | 78.0% | |
Lishui | 8.0% | 8.0% | 24.0% | 12.0% | 12.0% | 72.0% | |
Ningbo | 17.0% | 17.0% | 25.0% | 25.5% | 25.5% | 75.0% | |
Quzhou | 15.0% | 15.0% | 24.0% | 22.5% | 22.5% | 72.0% | |
Shaoxing | 22.0% | 22.0% | 18.0% | 33.0% | 33.0% | 54.0% | |
Taizhou | 13.0% | 13.0% | 3.0% | 19.5% | 19.5% | 30.0% | |
Wenzhou | 15.0% | 15.0% | 15.0% | 22.5% | 22.5% | 45.0% | |
Zhoushan | 3.0% | 3.0% | 10.0% | 4.5% | 4.5% | 30.0% |
Control Scenario | Description | Sectors * | Control Percentage (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CO | NH3 | NOx | PEC | PM10 | PM2.5 | POC | SO2 | VOCs | |||
S2_E | Enhanced control | AGRF | 10.0% | ||||||||
AGRL | 10.0% | ||||||||||
INCB | 20.0% | 20.0% | 20.0% | 20.0% | 20.0% | 20.0% | 20.0% | ||||
PPCB | 30.0% | 30.0% | 20.0% | 20.0% | 20.0% | 20.0% | 20.0% | ||||
PRCE | 30.0% | 30.0% | 30.0% | 30.0% | 30.0% | 30.0% | 30.0% | ||||
PRIR | 20.0% | 20.0% | 20.0% | 20.0% | 20.0% | 20.0% | 20.0% | ||||
PROT | 20.0% | 20.0% | 20.0% | 20.0% | 20.0% | 20.0% | 20.0% | 50.0% | |||
PRSO | 50.0% | ||||||||||
TROF | 30.0% | 30.0% | 30.0% | 30.0% | 30.0% | 30.0% | 30.0% | 30.0% | |||
TRON | 30.0% | 30.0% | 30.0% | 30.0% | 30.0% | 30.0% | 30.0% | 30.0% | |||
S3_E | Enhanced control | AGRF | 20.0% | ||||||||
AGRL | 20.0% | ||||||||||
INCB | 35.0% | 35.0% | 35.0% | 35.0% | 35.0% | 35.0% | 35.0% | ||||
PPCB | 35.0% | 35.0% | 35.0% | 35.0% | 35.0% | 35.0% | 35.0% | ||||
PRCE | 50.0% | 50.0% | 50.0% | 50.0% | 50.0% | 50.0% | 50.0% | ||||
PRIR | 35.0% | 35.0% | 35.0% | 35.0% | 35.0% | 35.0% | 35.0% | ||||
PROT | 65.0% | ||||||||||
PRSO | 65.0% | ||||||||||
TROF | 50.0% | 50.0% | 50.0% | 50.0% | 50.0% | 50.0% | 50.0% | 50.0% | |||
TRON | 50.0% | 50.0% | 50.0% | 50.0% | 50.0% | 50.0% | 50.0% | 50.0% | |||
S2_E_NT | Enhanced control No transport control | AGRF | 10.0% | ||||||||
AGRL | 10.0% | ||||||||||
INCB | 20.0% | 20.0% | 20.0% | 20.0% | 20.0% | 20.0% | 20.0% | ||||
PPCB | 30.0% | 30.0% | 20.0% | 20.0% | 20.0% | 20.0% | 20.0% | ||||
PRCE | 30.0% | 30.0% | 30.0% | 30.0% | 30.0% | 30.0% | 30.0% | ||||
PRIR | 20.0% | 20.0% | 20.0% | 20.0% | 20.0% | 20.0% | 20.0% | ||||
PROT | 20.0% | 20.0% | 20.0% | 20.0% | 20.0% | 20.0% | 20.0% | 50.0% | |||
PRSO | 50.0% | ||||||||||
TROF | \ | \ | \ | \ | \ | \ | \ | \ | \ | ||
TRON | \ | \ | \ | \ | \ | \ | \ | \ | \ | ||
S3_E_NT | Enhanced control No transport control | AGRF | 20.0% | ||||||||
AGRL | 20.0% | ||||||||||
INCB | 35.0% | 35.0% | 35.0% | 35.0% | 35.0% | 35.0% | 35.0% | ||||
PPCB | 35.0% | 35.0% | 35.0% | 35.0% | 35.0% | 35.0% | 35.0% | ||||
PRCE | 50.0% | 50.0% | 50.0% | 50.0% | 50.0% | 50.0% | 50.0% | ||||
PRIR | 35.0% | 35.0% | 35.0% | 35.0% | 35.0% | 35.0% | 35.0% | ||||
PROT | 65.0% | ||||||||||
PRSO | 65.0% | ||||||||||
TROF | \ | \ | \ | \ | \ | \ | \ | \ | \ | ||
TRON | \ | \ | \ | \ | \ | \ | \ | \ | \ |
Base | S1-Base | S1_E-Base | S2_E-Base | S3_E-Base | ||
---|---|---|---|---|---|---|
Province | City | Concentrations * (μg/m3) | Decrease Values * (μg/m3) | |||
municipal | Shanghai | 30.0 ± 27.7 | −0.3 ± 1.7 | −1.1 ± 2.5 | −4.8 ± 4.7 | −9.1 ± 8.7 |
Anhui | Anqing | 63.7 ± 59.7 | −0.2 ± 1.6 | −4.0 ± 12.0 | −8.7 ± 10.2 | −8.0 ± 13.6 |
BengBu | 38.1 ± 38.8 | −0.6 ± 2.7 | −0.5 ± 2.0 | −9.0 ± 10.0 | −11.5 ± 12.4 | |
Bozhou | 42.4 ± 41.8 | −0.2 ± 1.8 | −3.0 ± 9.7 | −10.0 ± 10.4 | −13.1 ± 14.7 | |
Chizhou | 23.8 ± 25.1 | −0.3 ± 1.2 | −1.7 ± 5.1 | −12.3 ± 13.8 | −9.6 ± 12.1 | |
Chuzhou | 53.6 ± 53.0 | −0.1 ± 1.0 | −2.1 ± 5.7 | −8.2 ± 7.3 | −9.9 ± 12.6 | |
Fuyang | 34.9 ± 34.2 | −0.2 ± 0.8 | −1.3 ± 3.2 | −10.5 ± 10.8 | −10.6 ± 14.1 | |
Hefei | 32.9 ± 28.9 | −0.8 ± 2.8 | −0.7 ± 2.6 | −10.2 ± 10.7 | −12.9 ± 17.5 | |
Huaibei | 35.0 ± 39.4 | −0.2 ± 1.2 | −1.5 ± 4.8 | −9.1 ± 9.6 | −9.2 ± 11.5 | |
Huainan | 29.8 ± 34.6 | −0.2 ± 0.9 | −0.7 ± 2.3 | −9.6 ± 10.8 | −6.3 ± 9.2 | |
Huangshan | 38.3 ± 37.4 | 0.0 ± 1.0 | −1.7 ± 6.4 | −11.2 ± 13.2 | −7.0 ± 6.4 | |
Luan | 46.0 ± 46.3 | −0.1 ± 0.4 | −0.8 ± 1.6 | −9.0 ± 9.5 | −8.4 ± 7.1 | |
Maanshan | 48.9 ± 50.4 | 0.1 ± 1.0 | −3.9 ± 9.1 | −6.8 ± 6.8 | −10.8 ± 15.4 | |
Suzhou | 33.0 ± 30.3 | −0.1 ± 0.9 | −2.1 ± 9.3 | −9.2 ± 9.1 | −10.2 ± 11.5 | |
Tongling | 51.3 ± 46.9 | −0.1 ± 0.9 | −2.6 ± 8.1 | −7.1 ± 7.2 | −8.4 ± 10.5 | |
Wuhu | 53.7 ± 50.0 | −0.5 ± 1.5 | −2.2 ± 7.1 | −5.9 ± 5.5 | −6.4 ± 6.2 | |
Xuancheng | 49.9 ± 47.0 | −0.2 ± 1.7 | −2.0 ± 6.4 | −11.1 ± 12.7 | −7.6 ± 9.2 | |
Jiangsu | Changzhou | 57.2 ± 54.9 | −0.3 ± 1.9 | −2.6 ± 7.3 | −10.8 ± 11.6 | −6.5 ± 9.2 |
Huaian | 48.6 ± 44.7 | −0.2 ± 1.0 | −2.1 ± 7.9 | −11.6 ± 12.5 | −11 ± 12.9 | |
Lianyungang | 41.2 ± 41.4 | −0.2 ± 0.9 | −1.5 ± 5.7 | −7.1 ± 6.5 | −7.3 ± 8.6 | |
Nanjing | 39.3 ± 38.8 | −0.4 ± 1.9 | −2.4 ± 9.8 | −11.4 ± 10.8 | −10.1 ± 11.2 | |
Nantong | 35.1 ± 33.8 | −0.2 ± 0.3 | −1.6 ± 5.4 | −10.6 ± 10.6 | −9.2 ± 9.8 | |
Suqian | 38.6 ± 37.2 | 0.1 ± 1.1 | −2.2 ± 6.1 | −11.9 ± 12.1 | −9.9 ± 12.3 | |
Suzhou | 59.1 ± 55.9 | −0.2 ± 0.3 | −1.7 ± 5.1 | −13.1 ± 13.9 | −10.7 ± 12.9 | |
Taizhou | 51.4 ± 47.0 | −0.1 ± 0.9 | −1.8 ± 5.6 | −6.8 ± 7.7 | −11.0 ± 11.8 | |
Wuxi | 43.3 ± 41.7 | −0.5 ± 1.7 | −1.2 ± 4.9 | −4.6 ± 4.9 | −9.7 ± 10.7 | |
Xuzhou | 54.4 ± 55.4 | −0.3 ± 1.8 | −0.3 ± 0.9 | −8.7 ± 8.5 | −11.0 ± 12.0 | |
Yangzhou | 47.0 ± 44.2 | −0.1 ± 0.3 | −3.3 ± 9.3 | −5.9 ± 5.9 | −10.5 ± 12.3 | |
Yancheng | 31.0 ± 28.1 | −0.1 ± 1.2 | −1.7 ± 5.5 | −9.8 ± 10.2 | −7.8 ± 14.5 | |
Zhenjiang | 49.2 ± 44.6 | −0.4 ± 1.8 | −3.0 ± 8.2 | −10.1 ± 10.6 | −4.9 ± 5.0 | |
Zhejiang | Hangzhou | 56.8 ± 52.9 | −0.2 ± 1.1 | −1.6 ± 5.9 | −9.2 ± 8.2 | −13.5 ± 15.3 |
Huzhou | 55.3 ± 51.6 | 0.0 ± 0.6 | −1.5 ± 5.2 | −9.9 ± 10.2 | −8.5 ± 8.3 | |
Jiaxing | 43.5 ± 39.5 | −0.3 ± 1.3 | −2.3 ± 8.8 | −10.8 ± 11.5 | −3.9 ± 3.8 | |
Jinhua | 61.4 ± 55.6 | 0.1 ± 1.2 | −1.3 ± 4.4 | −9.2 ± 8.1 | −12.4 ± 13.2 | |
Lishui | 19.7 ± 16.9 | −0.1 ± 1.0 | −1.3 ± 3.1 | −8.3 ± 10.0 | −10.4 ± 12.2 | |
Ningbo | 46.9 ± 44.9 | 0.1 ± 1.0 | −2.9 ± 9.0 | −12.0 ± 12.2 | −11.4 ± 13.2 | |
Quzhou | 44.7 ± 40.8 | −0.2 ± 1.0 | −1.3 ± 4.8 | −5.7 ± 5.5 | −10.5 ± 13.6 | |
Shaoxing | 44.4 ± 48.6 | −0.1 ± 1.1 | −0.4 ± 0.8 | −10.6 ± 10.9 | −11.7 ± 13.9 | |
Taizhou | 41.9 ± 41.0 | 0.0 ± 1.1 | −2.4 ± 10.1 | −5.3 ± 5.1 | −10.7 ± 12.7 | |
Wenzhou | 53.6 ± 50.6 | −0.1 ± 0.3 | −1.3 ± 2.8 | −8.6 ± 9.1 | −9.3 ± 9.2 | |
Zhoushan | 47.9 ± 42.0 | 0.0 ± 1.2 | −1.3 ± 4.1 | −8.8 ± 10.7 | −10.7 ± 12.5 |
Base | S1-Base | S1_E-Base | S2_E-Base | S3_E-Base | S2_E_NT-Base | S3_E_NT-Base | ||
---|---|---|---|---|---|---|---|---|
Province | City | Concentrations (μg/m3) | Change Values (μg/m3) | |||||
municipal | Shanghai | 93.2 ± 65.9 | 5.5 ± 12.5 | 0.6 ± 10.6 | −10.2 ± 11.8 | −15.5 ± 16.3 | −20.8 ± 36.6 | −16.2 ± 38.3 |
Anhui | Anqing | 106.6 ± 64.3 | 6.2 ± 12.8 | −14 ± 39.1 | −7.1 ± 9.5 | −11.3 ± 13.3 | −12.4 ± 25.0 | −21.1 ± 32.0 |
BengBu | 94.5 ± 66.1 | 8.3 ± 16.4 | −5.6 ± 24.3 | −7.8 ± 9.3 | −14.9 ± 16.2 | −10.0 ± 28.1 | −23.1 ± 34.8 | |
Bozhou | 94.7 ± 62.8 | 3.8 ± 8.2 | −0.6 ± 10.8 | −5.8 ± 6.7 | −14.6 ± 18.7 | 0.0 ± 13.8 | −35.4 ± 43.8 | |
Chizhou | 94.1 ± 55.6 | 6.0 ± 12.5 | −9.7 ± 22.2 | −10.6 ± 10.6 | −16.5 ± 31.8 | −7.6 ± 24.8 | −20.9 ± 51.2 | |
Chuzhou | 104.5 ± 67.4 | 7.2 ± 15.0 | −2.7 ± 13.0 | −6.1 ± 6.9 | −14.6 ± 17.8 | 1.6 ± 20.3 | −23.0 ± 36.0 | |
Fuyang | 102.2 ± 63.4 | 3.3 ± 13.3 | −1.3 ± 10.1 | −8.9 ± 7.5 | −13.9 ± 17.8 | −7.0 ± 17.4 | −19.9 ± 42.6 | |
Hefei | 112.5 ± 69.3 | 4.9 ± 14.0 | 3.3 ± 10.0 | −8.9 ± 10.0 | −11.4 ± 19.0 | −1.3 ± 12.1 | −25.9 ± 40.5 | |
Huaibei | 97.4 ± 56.9 | 5.4 ± 13.7 | −4.1 ± 18.2 | −7.9 ± 8.5 | −12.8 ± 15.8 | −10.0 ± 22.4 | −14.4 ± 28.3 | |
Huainan | 75.1 ± 48.5 | 6.2 ± 15.0 | −7.1 ± 19.5 | −7.6 ± 7.1 | −17.3 ± 17.3 | −2.6 ± 16.9 | −16.2 ± 30.9 | |
Huangshan | 76.3 ± 53.6 | 6.0 ± 16.6 | −4.6 ± 17.6 | −8.5 ± 9.8 | −10.8 ± 12.6 | −9.6 ± 27.2 | −12.8 ± 26.3 | |
Luan | 96.2 ± 55.7 | 6.8 ± 17.0 | −6.3 ± 16.9 | −8.6 ± 9.8 | −14.0 ± 19.7 | −5.3 ± 20.1 | −14.1 ± 26.4 | |
Maanshan | 85.5 ± 52.6 | 6.3 ± 19.6 | 0.0 ± 10.4 | −7.3 ± 6.6 | −10.7 ± 12.2 | −8.0 ± 24.1 | −4.9 ± 21.8 | |
Suzhou | 102.4 ± 77.6 | 2.3 ± 12.6 | 2.6 ± 7.9 | −6.7 ± 7.6 | −13.0 ± 8.8 | −11.8 ± 30.0 | −5.7 ± 17.5 | |
Tongling | 107.5 ± 69.0 | 4.9 ± 13.2 | 1.6 ± 7.2 | −8.0 ± 8.6 | −12.1 ± 17.9 | −13.6 ± 24.8 | −10.1 ± 26.3 | |
Wuhu | 89.7 ± 65.7 | 7.1 ± 14.3 | 4.6 ± 10.2 | −7.2 ± 8.5 | −17.9 ± 22.5 | −9.3 ± 21.7 | −28.8 ± 40.8 | |
Xuancheng | 87.3 ± 63.0 | 1.7 ± 14.5 | −2.9 ± 15.9 | −6.2 ± 5.4 | −16.5 ± 19.9 | 2.3 ± 20.0 | −21.1 ± 41.1 | |
Jiangsu | Changzhou | 103.3 ± 61.8 | 5.1 ± 11.1 | −7.1 ± 19.6 | −7.4 ± 7.5 | −10 ± 9.2 | −1.6 ± 20.6 | −2.1 ± 16.1 |
Huaian | 102.4 ± 64.9 | 3.7 ± 11.2 | −2.3 ± 17.7 | −6.1 ± 7.5 | −14 ± 17.6 | −3.7 ± 22.2 | −27.6 ± 42.6 | |
Lianyungang | 103.9 ± 50.4 | 5.0 ± 14.1 | −6.7 ± 19.9 | −9.5 ± 13.2 | −17.5 ± 20.7 | −8.2 ± 25.4 | −15.8 ± 32.6 | |
Nanjing | 94.3 ± 53.3 | 5.9 ± 14.2 | 1.3 ± 12.3 | −7.1 ± 8.8 | −10.6 ± 7.4 | −7.3 ± 23.0 | −3.6 ± 8.5 | |
Nantong | 96.2 ± 71.0 | 3.3 ± 12.7 | −3.6 ± 17.0 | −6.4 ± 7.0 | −14.2 ± 13.5 | −12.8 ± 25.3 | −13.9 ± 34.9 | |
Suqian | 126.3 ± 57.7 | 6.4 ± 13.1 | −8.2 ± 21.7 | −7.7 ± 8.1 | −13.4 ± 9.4 | −17.4 ± 29.2 | −9.3 ± 19.6 | |
Suzhou | 99.5 ± 63.8 | 6.5 ± 15.6 | −7.4 ± 17.0 | −7.8 ± 11.3 | −13.1 ± 13.3 | −0.6 ± 24.9 | −16.9 ± 29.2 | |
Taizhou | 114.6 ± 67.8 | 7.5 ± 11.4 | −3.4 ± 15.2 | −7.4 ± 8.0 | −12.5 ± 17.7 | −13.9 ± 28.2 | −13.7 ± 39.4 | |
Wuxi | 97.6 ± 49.6 | 7.5 ± 10.4 | −9.3 ± 31.6 | −6.4 ± 8.1 | −16.9 ± 20.7 | −11.2 ± 28.9 | −25.4 ± 38.0 | |
Xuzhou | 83.1 ± 52.2 | 10.1 ± 16.3 | −2.0 ± 14.5 | −8.2 ± 9.7 | −12 ± 11.2 | −11.5 ± 34.4 | −9.1 ± 20.5 | |
Yangzhou | 94.2 ± 59.2 | 6.6 ± 12.9 | −2.6 ± 13.9 | −5.5 ± 6.6 | −14.7 ± 14.4 | 1.8 ± 22.0 | −9.7 ± 33.3 | |
Yancheng | 123.4 ± 58.2 | 7.8 ± 15.9 | −0.9 ± 16.5 | −7.9 ± 7.3 | −13.5 ± 17.6 | −5.8 ± 20.9 | −15.8 ± 36.8 | |
Zhenjiang | 104.5 ± 59.3 | 6.8 ± 18.7 | 2.7 ± 9.5 | −5.5 ± 6.6 | −13 ± 15.3 | −10.7 ± 28.2 | −16.2 ± 30.5 | |
Zhejiang | Hangzhou | 108.4 ± 60.0 | 2.3 ± 16.3 | 0.7 ± 8.3 | −6.6 ± 7.2 | −12.8 ± 16.4 | −9.5 ± 21.3 | −14.7 ± 38.3 |
Huzhou | 89.5 ± 48.1 | 2.6 ± 11.4 | −3.5 ± 15.2 | −6.4 ± 7.0 | −11.4 ± 12.1 | −10.5 ± 24.0 | −5.2 ± 21.8 | |
Jiaxing | 115.8 ± 64.7 | 5.7 ± 14.1 | −0.9 ± 14.7 | −5.3 ± 8.3 | −11.6 ± 13.0 | 0.1 ± 17.9 | −9.5 ± 30.4 | |
Jinhua | 98.6 ± 62.3 | 4.1 ± 19.0 | 3.3 ± 13.5 | −5.6 ± 6.9 | −14.7 ± 14.2 | −4.2 ± 31.0 | −10.9 ± 25.9 | |
Lishui | 78.5 ± 55.2 | 8.3 ± 16.8 | −2.3 ± 19.0 | −6.6 ± 8.6 | −14.5 ± 9.2 | −16.7 ± 32.6 | −7.8 ± 20.0 | |
Ningbo | 96.3 ± 57.7 | 6.4 ± 15.4 | −4.6 ± 24.0 | −7.8 ± 9.7 | −11.6 ± 12.7 | −13.7 ± 29.6 | −20.9 ± 30.3 | |
Quzhou | 102.4 ± 67.7 | 7.1 ± 9.5 | −5.7 ± 17.9 | −10.7 ± 12.6 | −15.9 ± 20.9 | −7.6 ± 25.4 | −12.8 ± 39.9 | |
Shaoxing | 94.3 ± 57.7 | 7.9 ± 15.6 | −7.5 ± 17.3 | −5.7 ± 6.3 | −17.7 ± 23.2 | −10.2 ± 24.8 | −17.1 ± 39.3 | |
Taizhou | 127.1 ± 70.5 | 8.7 ± 14.0 | −9.6 ± 21.4 | −10.6 ± 13.3 | −10.8 ± 8.5 | −0.3 ± 19.7 | −6.6 ± 18.1 | |
Wenzhou | 85.8 ± 60.9 | 2.6 ± 11.3 | 0.8 ± 9.5 | −7.6 ± 7.8 | −14.0 ± 13.2 | −6.9 ± 19.1 | −18.1 ± 27.4 | |
Zhoushan | 98.8 ± 55.2 | 5.2 ± 9.9 | 1.5 ± 7.1 | −5.9 ± 8.2 | −12.5 ± 24.5 | −6.5 ± 21.6 | −22.2 ± 37.9 |
Base | S1Base | S1_E-Base | S2_E-Base | S3_E-Base | S2_E_NT-Base | S3_E_NT-Base | ||
---|---|---|---|---|---|---|---|---|
Province | City | Concentrations (μg/m3) | Change Values (μg/m3) | |||||
municipal | Shanghai | 95.7 ± 64.3 | 20.2 ± 19.6 | 2.0 ± 9.5 | −5.7 ± 6.4 | −18.2 ± 9.3 | −2.2 ± 24.8 | 2.6 ± 21.2 |
Anhui | Anqing | 96.5 ± 51.9 | 9.7 ± 17.3 | −2.7 ± 18.8 | −6.5 ± 7.7 | −18.2 ± 9.8 | 6.2 ± 33.2 | −0.5 ± 14.5 |
BengBu | 97.8 ± 38.9 | 11.1 ± 15.0 | −17.3 ± 31.0 | −10.6 ± 12.8 | −17.2 ± 18.6 | −5.4 ± 38.0 | −36.5 ± 42.3 | |
Bozhou | 101.2 ± 67.0 | 14.8 ± 21.3 | 8.5 ± 8.7 | −5.8 ± 5.4 | −23.7 ± 16.2 | 1.2 ± 23.9 | −12.6 ± 37.3 | |
Chizhou | 75.0 ± 45.3 | 10.8 ± 11.6 | −16.2 ± 27.3 | −7.7 ± 7.3 | −27.6 ± 20.9 | −0.4 ± 28.5 | −12.3 ± 46.4 | |
Chuzhou | 107.8 ± 53.7 | 10.2 ± 13.6 | 3.2 ± 8.0 | −6.5 ± 7.4 | −19.5 ± 22.9 | −5.9 ± 27.8 | −16.5 ± 34.2 | |
Fuyang | 96.7 ± 55.4 | 15.9 ± 19.4 | 4.8 ± 9.1 | −9.3 ± 12.1 | −21.7 ± 10.1 | −3.3 ± 30.3 | 1.0 ± 16.8 | |
Hefei | 95.6 ± 58.5 | 13.1 ± 16.5 | −2.0 ± 21.9 | −7.1 ± 7.0 | −30.1 ± 21.7 | −10.5 ± 29.7 | −16.0 ± 39.8 | |
Huaibei | 73.3 ± 45.6 | 12.4 ± 15.3 | −2.0 ± 17.3 | −8.8 ± 9.9 | −38.1 ± 21.4 | −22.4 ± 35.6 | −43.3 ± 63.6 | |
Huainan | 66.8 ± 32.9 | 18.8 ± 17.3 | −2.6 ± 31.0 | −7.0 ± 8.7 | −35.1 ± 42.1 | 17.0 ± 24.9 | −34.2 ± 74.5 | |
Huangshan | 121.6 ± 51.5 | 14.5 ± 15.1 | −7.7 ± 23.9 | −9.0 ± 8.0 | −23.5 ± 19.3 | −0.4 ± 21.3 | −17.9 ± 44.9 | |
Luan | 126.5 ± 58.5 | 8.9 ± 8.4 | 5.8 ± 10.4 | −8.3 ± 7.8 | −28.0 ± 20.6 | −2.6 ± 24.5 | −19.5 ± 53.8 | |
Maanshan | 97.8 ± 71.2 | 17.7 ± 14.8 | 4.5 ± 16.5 | −10.0 ± 8.8 | −17.8 ± 11.1 | −3.9 ± 25.1 | −0.9 ± 12.9 | |
Suzhou | 98.4 ± 52.0 | 10.0 ± 12.6 | −4.3 ± 32.8 | −10.5 ± 16.4 | −27.8 ± 18.6 | 9.2 ± 19.3 | −22.4 ± 44.2 | |
Tongling | 87.2 ± 53.8 | 15.2 ± 19.9 | −7.8 ± 22.3 | −11.5 ± 9.0 | −14.9 ± 10.1 | −11.0 ± 19.6 | −18.1 ± 30.8 | |
Wuhu | 86.9 ± 70.2 | 18.5 ± 19.8 | −0.1 ± 20.8 | −7.0 ± 8.3 | −18.0 ± 15.4 | 3.5 ± 43.1 | −16.1 ± 31.3 | |
Xuancheng | 92.4 ± 68.4 | 16.2 ± 18.1 | −1.8 ± 23.5 | −11.1 ± 11.6 | −20.9 ± 8.9 | 1.1 ± 26.8 | −20.3 ± 32.7 | |
Jiangsu | Changzhou | 90.2 ± 62.7 | 11 ± 10.7 | −15 ± 29.0 | −15.0 ± 14.0 | −16.2 ± 7.1 | −11.9 ± 38.7 | 0.9 ± 13.4 |
Huaian | 105.1 ± 59.7 | 8.7 ± 13.0 | −11.4 ± 34.6 | −6.2 ± 7.6 | −22.7 ± 10.4 | 12.9 ± 24.0 | 4.8 ± 30.0 | |
Lianyungang | 109.4 ± 57.7 | 7.8 ± 14.6 | −1.7 ± 22.1 | −7.9 ± 6.7 | −22.0 ± 10.6 | −16.0 ± 31.4 | −19.4 ± 31.2 | |
Nanjing | 86.9 ± 30.3 | 7.8 ± 7.7 | −14.4 ± 30.8 | −5.9 ± 6.3 | −19.5 ± 12.8 | −4.5 ± 31.1 | −28.1 ± 37.4 | |
Nantong | 101.8 ± 59.2 | 11.8 ± 20.4 | 9.4 ± 15.1 | −10.0 ± 7.9 | −21.2 ± 18 | −10.1 ± 29.7 | −15.0 ± 40.6 | |
Suqian | 85.6 ± 56.7 | 16.2 ± 16.0 | 9.1 ± 9.9 | −7.6 ± 8.9 | −38.0 ± 31.8 | 3.7 ± 16.7 | −29.5 ± 52.8 | |
Suzhou | 91.3 ± 38.2 | 8.9 ± 17.7 | −3.5 ± 13.7 | −12.5 ± 8.8 | −28.4 ± 28.2 | −14.4 ± 38.4 | −1.6 ± 54.2 | |
Taizhou | 93.0 ± 65.5 | 15.0 ± 17.0 | 12.9 ± 9.6 | −8.2 ± 9.1 | −16.6 ± 10.2 | −18.6 ± 35.1 | −2.1 ± 13.2 | |
Wuxi | 95.8 ± 58.8 | 16.7 ± 17.3 | −0.4 ± 13.9 | −6.7 ± 7.7 | −32.1 ± 22.4 | 12.3 ± 19.5 | −41.1 ± 53.2 | |
Xuzhou | 90.7 ± 71.1 | 10.1 ± 11.2 | 3.3 ± 13.8 | −8.1 ± 8.4 | −16.7 ± 17.6 | 3.5 ± 37.9 | 3.7 ± 26.1 | |
Yangzhou | 88.0 ± 37.1 | 11.1 ± 16.2 | −2.6 ± 20.6 | −8.6 ± 9.2 | −18.1 ± 10.5 | 11.8 ± 31.7 | 2.8 ± 23.9 | |
Yancheng | 124.6 ± 57.5 | 11.5 ± 8.6 | 2.5 ± 8.4 | −13.4 ± 10.4 | −18.9 ± 9.5 | 10.8 ± 21.7 | −7.9 ± 31.1 | |
Zhenjiang | 72.5 ± 34.3 | 11.4 ± 11.3 | 10.8 ± 9.1 | −7.8 ± 11.0 | −23.6 ± 13.7 | 5.8 ± 18.4 | −4.2 ± 26.6 | |
Zhejiang | Hangzhou | 69.5 ± 25.3 | 12.6 ± 11.2 | −3.7 ± 18.1 | −8.5 ± 10.5 | −19.2 ± 11.2 | −0.1 ± 30.9 | 2.9 ± 29.7 |
Huzhou | 89.6 ± 37.6 | 17.2 ± 14.2 | 3.9 ± 13.6 | −7.1 ± 5.9 | −18.9 ± 15.7 | −6.7 ± 32.8 | −31.2 ± 41.5 | |
Jiaxing | 85.5 ± 57.6 | 11.8 ± 16.1 | −32.1 ± 55.5 | −12.8 ± 11.6 | −22.2 ± 13.0 | −23.1 ± 34.5 | −12.5 ± 36.3 | |
Jinhua | 77.4 ± 60.6 | 13.2 ± 16.3 | −7.6 ± 22.9 | −14.4 ± 9.8 | −26.1 ± 29.4 | −17.2 ± 44.2 | −54.0 ± 48.3 | |
Lishui | 103.2 ± 71.0 | 6.1 ± 14.3 | 2.8 ± 11.9 | −6.1 ± 6.9 | −38.3 ± 26.2 | 1.0 ± 25.0 | −45.2 ± 45.7 | |
Ningbo | 79.4 ± 35.8 | 12.5 ± 12.4 | 0.9 ± 16.2 | −7.5 ± 6.8 | −24.9 ± 15.9 | −4.6 ± 26.0 | −13.6 ± 32.8 | |
Quzhou | 66.8 ± 23.2 | 12.2 ± 14.1 | −1.1 ± 21.2 | −9.8 ± 12.5 | −26.3 ± 23.7 | −17.4 ± 49.0 | −34.3 ± 48.7 | |
Shaoxing | 92.5 ± 58.9 | 9.4 ± 14.7 | −1.2 ± 16.4 | −5.3 ± 7.8 | −28.5 ± 28.0 | −1.5 ± 45.4 | −25.2 ± 56.4 | |
Taizhou | 135.9 ± 63.9 | 14.1 ± 12.7 | −12.1 ± 39.8 | −14.4 ± 11.9 | −19.6 ± 14.0 | −6.0 ± 19.6 | −13.7 ± 41.3 | |
Wenzhou | 90.6 ± 68.0 | 8.7 ± 13.4 | 10.0 ± 12.3 | −5.9 ± 8.1 | −28.4 ± 19.3 | 6.4 ± 25.0 | −30.7 ± 53.7 | |
Zhoushan | 127.9 ± 58.2 | 13.8 ± 16.6 | 0.4 ± 17.9 | −7.0 ± 7.5 | −31.5 ± 22.0 | 10.7 ± 22.4 | −22.0 ± 42.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Yu, S.; Li, M.; Chen, X.; Zhang, Y.; Song, Z.; Li, J.; Jiang, Y.; Liu, W.; Li, P.; et al. The Modeling Study about Impacts of Emission Control Policies for Chinese 14th Five-Year Plan on PM2.5 and O3 in Yangtze River Delta, China. Atmosphere 2022, 13, 26. https://doi.org/10.3390/atmos13010026
Li Z, Yu S, Li M, Chen X, Zhang Y, Song Z, Li J, Jiang Y, Liu W, Li P, et al. The Modeling Study about Impacts of Emission Control Policies for Chinese 14th Five-Year Plan on PM2.5 and O3 in Yangtze River Delta, China. Atmosphere. 2022; 13(1):26. https://doi.org/10.3390/atmos13010026
Chicago/Turabian StyleLi, Zhen, Shaocai Yu, Mengying Li, Xue Chen, Yibo Zhang, Zhe Song, Jiali Li, Yaping Jiang, Weiping Liu, Pengfei Li, and et al. 2022. "The Modeling Study about Impacts of Emission Control Policies for Chinese 14th Five-Year Plan on PM2.5 and O3 in Yangtze River Delta, China" Atmosphere 13, no. 1: 26. https://doi.org/10.3390/atmos13010026
APA StyleLi, Z., Yu, S., Li, M., Chen, X., Zhang, Y., Song, Z., Li, J., Jiang, Y., Liu, W., Li, P., & Zhang, X. (2022). The Modeling Study about Impacts of Emission Control Policies for Chinese 14th Five-Year Plan on PM2.5 and O3 in Yangtze River Delta, China. Atmosphere, 13(1), 26. https://doi.org/10.3390/atmos13010026