Simulation of a Severe Sand and Dust Storm Event in March 2021 in Northern China: Dust Emission Schemes Comparison and the Role of Gusty Wind
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Model Configuration
2.3. Dust-Emission Schemes
2.4. Gusty Wind Scheme
3. Results and Discussion
3.1. Sand and Dust Storm Event Description
3.2. Characteristics of Gusty Wind during the Sand and Dust Storm Event
3.3. Comparison of the Simulated PM10 Concentrations Generated by the Three Schemes
3.4. The Role of Gusty Wind
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, X.-Y.; Gong, S.L.; Zhao, T.L.; Arimoto, R.; Wang, Y.Q.; Zhou, Z.J. Sources of Asian dust and role of climate change versus desertification in Asian dust emission. Geophys. Res. Lett. 2003, 30, 6–9. [Google Scholar] [CrossRef] [Green Version]
- An, L.; Che, H.; Xue, M.; Zhang, T.; Wang, H.; Wang, Y.; Zhou, C.; Zhao, H.; Gui, K.; Zheng, Y.; et al. Temporal and spatial variations in sand and dust storm events in East Asia from 2007 to 2016: Relationships with surface conditions and climate change. Sci. Total Environ. 2018, 633, 452–462. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Gui, H.; Hu, J.; Ke, H.; Wang, Y.; Zhang, X. Detection of New Dust Sources in Central/East Asia and Their Impact on Simulations of a Severe Sand and Dust Storm. J. Geophys. Res. Atmos. 2019, 124, 10232–10247. [Google Scholar] [CrossRef] [Green Version]
- Yao, W.; Gui, K.; Wang, Y.; Che, H.; Zhang, X. Identifying the dominant local factors of 2000–2019 changes in dust loading over East Asia. Sci. Total Environ. 2021, 777, 146064. [Google Scholar] [CrossRef]
- Lu, H.; Shao, Y. A new model for dust emission by saltation bombardment. J. Geophys. Res. Space Phys. 1999, 104, 16827–16842. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Pan, Z.; Liu, X. Numerical simulation of spatial-temporal distribution of dust aerosol and its direct radiative effects on East Asian climate. J. Geophys. Res. Earth Surf. 2012, 117. [Google Scholar] [CrossRef]
- Shao, Y.; Dong, C.H. A review on East Asian dust storm climate, modelling and monitoring. Glob. Planet. Chang. 2006, 52, 1–22. [Google Scholar] [CrossRef]
- Guan, Q.; Luo, H.; Pan, N.; Zhao, R.; Yang, L.; Yang, Y.; Tian, J. Contribution of dust in northern China to PM10 concentrations over the Hexi corridor. Sci. Total Environ. 2019, 660, 947–958. [Google Scholar] [CrossRef]
- Wang, J.; Gui, H.; An, L.; Hua, C.; Zhang, T.; Zhang, B. Modeling for the source apportionments of PM10 during sand and dust storms over East Asia in 2020. Atmos. Environ. 2021, 267, 118768. [Google Scholar] [CrossRef]
- Shao, Y. Simplification of a dust emission scheme and comparison with data. J. Geophys. Res. Space Phys. 2004, 109. [Google Scholar] [CrossRef] [Green Version]
- Kok, J.F.; Mahowald, N.M.; Fratini, G.; Gillies, J.A.; Ishizuka, M.; Leys, J.F.; Mikami, M.; Park, M.-S.; Park, S.-U.; Van Pelt, R.S.; et al. An improved dust emission model—Part 1: Model description and comparison against measurements. Atmos. Chem. Phys. Discuss. 2014, 14, 13023–13041. [Google Scholar] [CrossRef] [Green Version]
- Ju, T.; Li, X.; Zhang, H.; Cai, X.; Song, Y. Parameterization of dust flux emitted by convective turbulent dust emission (CTDE) over the Horqin Sandy Land area. Atmos. Environ. 2018, 187, 62–69. [Google Scholar] [CrossRef]
- Cheng, X.; Zeng, Q.-C.; Hu, F. Characteristics of gusty wind disturbances and turbulent fluctuations in windy atmospheric boundary layer behind cold fronts. J. Geophys. Res. Space Phys. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Yang, F.; Zhou, C.; Mamtimin, A.; Huo, W.; He, Q. Improved parameterization for effect of soil moisture on threshold friction velocity for saltation activity based on observations in the Taklimakan Desert. Geoderma 2020, 369, 114322. [Google Scholar] [CrossRef]
- Kang, J.Y.; Yoon, S.C.; Shao, Y.; Kim, S.W. Comparison of vertical dust flux by implementing three dust emission schemes in wrf/chem. J. Geophys. Res. Atmos. 2011, 116, D09202. [Google Scholar] [CrossRef] [Green Version]
- Tian, R.; Ma, X.; Zhao, J. A revised mineral dust emission scheme in GEOS-Chem: Improvements in dust simulations over China. Atmos. Chem. Phys. Discuss. 2021, 21, 4319–4337. [Google Scholar] [CrossRef]
- Ma, S.; Zhang, X.; Gao, C.; Tong, D.Q.; Xiu, A.; Wu, G.; Cao, X.; Huang, L.; Zhao, H.; Zhang, S.; et al. Multimodel simulations of a springtime dust storm over northeastern China: Implications of an evaluation of four commonly used air quality models (CMAQ v5.2.1, CAMx v6.50, CHIMERE v2017r4, and WRF-Chem v3.9.1). Geosci. Model Dev. 2019, 12, 4603–4625. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Q.; Cheng, X.; Hu, F.; Peng, Z. Gustiness and coherent structure of strong winds and their role in dust emission and entrainment. Adv. Atmos. Sci. 2009, 27, 1. [Google Scholar] [CrossRef]
- Cheng, X.; Zeng, Q.; Hu, F. Stochastic modeling the effect of wind gust on dust entrainment during sand storm. Chin. Sci. Bull. 2012, 57, 3595–3602. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Zheng, X. Saltation transport rate in unsteady wind variations. Eur. Phys. J. E 2014, 37, 1. [Google Scholar] [CrossRef]
- Kurbatova, M.; Rubinstein, K.; Gubenko, I.; Kurbatov, G. Comparison of seven wind gust parameterizations over the European part of Russia. Adv. Sci. Res. 2018, 15, 251–255. [Google Scholar] [CrossRef]
- Stucki, P.; Dierer, S.; Welker, C.; Gómez-Navarro, J.J.; Raible, C.C.; Martius, O.; Brönnimann, S. Evaluation of downscaled wind speeds and parameterised gusts for recent and historical windstorms in Switzerland. Tellus A Dyn. Meteorol. Oceanogr. 2016, 68. [Google Scholar] [CrossRef] [Green Version]
- Patlakas, P.; Drakaki, E.; Galanis, G.; Spyrou, C.; Kallos, G. Wind gust estimation by combining a numerical weather prediction model and statistical post-processing. Energy Procedia 2017, 125, 190–198. [Google Scholar] [CrossRef]
- Efthimiou, G.C.; Hertwig, D.; Andronopoulos, S.; Bartzis, J.G.; Coceal, O. A Statistical Model for the Prediction of Wind-Speed Probabilities in the Atmospheric Surface Layer. Bound.-Layer Meteorol. 2016, 163, 179–201. [Google Scholar] [CrossRef]
- Liu, S.; Xing, J.; Sahu, S.K.; Liu, X.; Liu, S.; Jiang, Y.; Zhang, H.; Li, S.; Ding, D.; Chang, X.; et al. Wind-blown dust and its impacts on particulate matter pollution in Northern China: Current and future scenarios. Environ. Res. Lett. 2021, 16, 114041. [Google Scholar] [CrossRef]
- Yin, Z.; Wan, Y.; Zhang, Y.; Wang, H. Why super sandstorm 2021 in North China. Natl. Sci. Rev. 2021. [Google Scholar] [CrossRef]
- Gui, K.; Yao, W.; Che, H.; Zheng, Y.; Li, L.; Zhao, H.; Zhang, L.; Zhong, J.; Wang, Y.; Zhang, X. Two mega sand and dust storm events over northern China in March 2021: Transport processes, historical ranking and meteoro-logical drivers. Atmos. Chem. Phys. 2021. preprint. [Google Scholar] [CrossRef]
- Francis, D.; Fonseca, R.; Nelli, N.; Bozkurt, D.; Picard, G.; Guan, B. Atmospheric rivers drive exceptional Saharan dust transport towards Europe. Atmos. Res. 2021, 266, 105959. [Google Scholar] [CrossRef]
- Voss, K.K.; Evan, A.T.; Ralph, F.M. Evaluating the Meteorological Conditions Associated with Dusty Atmospheric Rivers. J. Geophys. Res. Atmos. 2021, 126, e2021JD035403. [Google Scholar] [CrossRef]
- Baker, K.; Johnson, M.; King, S.; Ji, W. Meteorological Modeling Performance Summary for Application to PM2.5/Haze/Ozone Modeling Projects. 2004. Available online: https://www.iowadnr.gov/portals/idnr/uploads/air/insidednr/regmodel/mm5_mpe_dec2004.pdf (accessed on 9 December 2021).
- Ramboll Environment and Health. User’s Guide, Comprehensive Air Quality Model with Extensions (CAMx), Version 7.00. 2020. Available online: http://www.camx.com (accessed on 9 December 2021).
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Liu, Z.; Berner, J.; Wang, W.; Powers, J.G.; Duda, M.G.; Barker, D.M.; et al. A Description of the Advanced Research WRF Version 4; NCAR Technical Note NCAR/TN-556+STR; National Center for Atmospheric Research: Boulder, CO, USA, 2019; 145p. [Google Scholar] [CrossRef]
- Klingmüller, K.; Metzger, S.; Abdelkader, M.; Karydis, V.A.; Stenchikov, G.L.; Pozzer, A.; Lelieveld, J. Revised mineral dust emissions in the atmospheric chemistry–climate model EMAC (MESSy 2.52 DU_Astitha1 KKDU2017 patch). Geosci. Model Dev. 2018, 11, 989–1008. [Google Scholar] [CrossRef] [Green Version]
- Astitha, M.; Lelieveld, J.; Kader, M.A.; Pozzer, A.; de Meij, A. Parameterization of dust emissions in the global atmospheric chemistry-climate model EMAC: Impact of nudging and soil properties. Atmos. Chem. Phys. Discuss. 2012, 12, 11057–11083. [Google Scholar] [CrossRef] [Green Version]
- Marticorena, B.; Bergametti, G. Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme. J. Geophys. Res. Earth Surf. 1995, 100, 16415–16430. [Google Scholar] [CrossRef] [Green Version]
- Harper, B.A.; Kepert, J.D.; Ginger, J.D. Guidelines for Converting between Various Wind Averaging Periods in Tropical Cyclone Conditions; WMO Technical Report WMO/TD-1555; WMO: Geneva, Switzerland, 2010; 64p, Available online: https://library.wmo.int/index.php?lvl=notice_display&id=135#.YduoNnbkTJ0 (accessed on 9 December 2021).
- Suomi, I.; Vihma, T.; Gryning, S.-E.; Fortelius, C. Wind-gust parametrizations at heights relevant for wind energy: A study based on mast observations. Q. J. R. Meteorol. Soc. 2013, 139, 1298–1310. [Google Scholar] [CrossRef]
- Tang, B.H.; Bassill, N.P. Point Downscaling of Surface Wind Speed for Forecast Applications. J. Appl. Meteorol. Clim. 2018, 57, 659–674. [Google Scholar] [CrossRef]
- Zhang, Z.; Ralph, F.M.; Zheng, M. The Relationship Between Extratropical Cyclone Strength and Atmospheric River Intensity and Position. Geophys. Res. Lett. 2019, 46, 1814–1823. [Google Scholar] [CrossRef]
- Guo, Y.; Shinoda, T.; Guan, B.; Waliser, D.E.; Chang, E.K.M. Statistical Relationship between Atmospheric Rivers and Extratropical Cyclones and Anticyclones. J. Clim. 2020, 33, 7817–7834. [Google Scholar] [CrossRef]
- Li, Q.; Cheng, X.; Zeng, Q. Gustiness and coherent structure under weak wind period in atmospheric boundary layer. Atmos. Ocean. Sci. Lett. 2016, 9, 52–59. [Google Scholar] [CrossRef] [Green Version]
Wind Speed | Wind Direction | Temperature | |||||
---|---|---|---|---|---|---|---|
BIAS (m/s) | RMSE (m/s) | IOA | BIAS (°) | BIAS (K) | RMSE (K) | IOA | |
Mongolia | 0.48 | 1.78 | 0.7 | −4.8 | −1.11 | 1.67 | 0.93 |
Northwest China | 0.96 | 1.17 | 0.87 | 6.3 | −1.54 | 2.56 | 0.95 |
Northern China | 0.69 | 1.62 | 0.85 | 7.2 | −1.43 | 2.84 | 0.87 |
Peak PM10 (μg/m3) | Mean PM10 (μg/m3) | IOA | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
OBS | MB | LS | KOK | OBS | MB | LS | KOK | MB | LS | KOK | |
Beijing | 7685 | 1239 | 7076 | 10,616 | 2698.9 | 432.0 | 2182.8 | 2787.8 | 0.97 | 0.97 | 0.94 |
Hohhot | >6500 | 2599 | 12,036 | 25,394 | >2793.7 | 573.9 | 2490.0 | 5073.5 | / | / | / |
Yinchuan | >6500 | 2133 | 11,513 | 16,119 | >2975.2 | 562.7 | 2867.3 | 5128.7 | 0.88 | 0.87 | 0.90 |
Lanzhou | 4086 | 478 | 3488 | 6334 | 2934.9 | 221.7 | 1696.4 | 3110.0 | 0.69 | 0.71 | 0.53 |
Zhengzhou | 1826 | 363 | 1682 | 2453 | 736.2 | 156.7 | 612.7 | 696.0 | 0.97 | 0.98 | 0.98 |
Jinan | 3522 | 462 | 2796 | 4102 | 1097.4 | 148.8 | 844.2 | 1015.8 | 0.90 | 0.90 | 0.88 |
Bias (μg/m3) | Schemes | Beijing | Lanzhou | Zhengzhou | Jinan |
---|---|---|---|---|---|
Peak PM10 | LS | −609 (−7.9%) | −598 (−14.6%) | −144 (−7.8%) | −726 (20.6%) |
LS-GUST | 314 (4.1%) | 169 (4.1%) | 90 (4.9%) | −347 (−9.8%) | |
Mean PM10 | LS | −516.1 (−6.7%) | −1238.5 (−30.3%) | −123.4 (−6.7%) | −330.0 (−9.3%) |
LS-GUST | −110.2 (−1.4%) | −814.4 (−19.9%) | 22.9 (1.2%) | −90.1 (−2.5%) |
Peak PM10 (μg/m3) | Beijing | Hohhot | Yinchuan | Zhengzhou | Jinan |
---|---|---|---|---|---|
Observed | 3347 | 2968 | 3425 | 1395 | 1061 |
MB-GUST | 1053 (−69%) | 1284 (−57%) | 977 (−71%) | 345 (−75%) | 534 (−50%) |
LS-GUST | 4419 (32%) | 5500 (85%) | 4206 (23%) | 1529 (10%) | 2698 (154%) |
KOK-GUST | 9058 (171%) | 11,889 (301%) | 6932 (102%) | 2760 (98%) | 5625 (430%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Zhang, B.; Zhang, H.; Hua, C.; An, L.; Gui, H. Simulation of a Severe Sand and Dust Storm Event in March 2021 in Northern China: Dust Emission Schemes Comparison and the Role of Gusty Wind. Atmosphere 2022, 13, 108. https://doi.org/10.3390/atmos13010108
Wang J, Zhang B, Zhang H, Hua C, An L, Gui H. Simulation of a Severe Sand and Dust Storm Event in March 2021 in Northern China: Dust Emission Schemes Comparison and the Role of Gusty Wind. Atmosphere. 2022; 13(1):108. https://doi.org/10.3390/atmos13010108
Chicago/Turabian StyleWang, Jikang, Bihui Zhang, Hengde Zhang, Cong Hua, Linchang An, and Hailin Gui. 2022. "Simulation of a Severe Sand and Dust Storm Event in March 2021 in Northern China: Dust Emission Schemes Comparison and the Role of Gusty Wind" Atmosphere 13, no. 1: 108. https://doi.org/10.3390/atmos13010108
APA StyleWang, J., Zhang, B., Zhang, H., Hua, C., An, L., & Gui, H. (2022). Simulation of a Severe Sand and Dust Storm Event in March 2021 in Northern China: Dust Emission Schemes Comparison and the Role of Gusty Wind. Atmosphere, 13(1), 108. https://doi.org/10.3390/atmos13010108