Tropospheric Delay in the Neapolitan and Vesuvius Areas (Italy) by Means of a Dense GPS Array: A Contribution for Weather Forecasting and Climate Monitoring
Abstract
:1. Introduction
- Are extreme weather events predictable, and how can our forecasting skills be improved?
- To what extent is today’s regional and global water and energy cycles’ change due to natural variability versus anthropogenic influences?
2. Climate Setting of the Study Area
3. The Datasets
4. Methods and Data Analysis
4.1. GPS-Derived Tropospheric Parameters
4.2. Data Analysis
5. Results and Discussion
5.1. Long Term Analysis
5.2. Short-Term Analysis
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wickert, J.; Michalak, G.; Schmidt, T.; Beyerle, G.; Cheng, C.Z.; Healy, S.B.; Heise, S.; Huang, C.Y.; Jakowski, N.; Kohler, W.; et al. GPS Radio Occultation: Results from CHAMP, GRACE and FORMOSAT-3/COSMIC. Terr. Atmos. Ocean. Sci. 2009, 20, 35–50. [Google Scholar] [CrossRef] [Green Version]
- Jin, S.; Van Dam, T.; Widowinski, S. Observing and understanding the Earth system variations from space geodesy. J. Geodyn. 2013, 72, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Guerova, G.; Jones, J.; Douša, J.; Dick, G.; de Haan, S.; Pottiaux, E.; Bock, O.; Pacione, R.; Elgered, G.; Vedel, H.; et al. Review of the state of the art and future prospects of the ground-based GNSS meteorology in Europe. Atmos. Meas. Tech. 2016, 9, 5385–5406. [Google Scholar] [CrossRef] [Green Version]
- Tapley, B.D.; Watkins, M.M.; Flechtner, F.; Reigber, C.; Bettadpur, S.; Rodell, M.; Sasgen, I.; Famiglietti, J.S.; Landerer, F.W.; Chambers, D.P.; et al. Contributions of GRACE to understanding climate change. Nat. Clim. Chang. 2019, 9, 358–369. [Google Scholar] [CrossRef]
- Famiglietti, J.S. The global groundwater crisis. Nat. Clim. Chang. 2014, 4, 945–948. [Google Scholar] [CrossRef]
- Bevis, M.; Businger, S.; Herring, T.A.; Rocken, C.; Anthes, R.A.; Ware, R.H. GPS Meteorology: Remote sensing of atmospheric water vapor using the global positioning system. J. Geophys. Res. Atmos. 1992, 97, 15787–15801. [Google Scholar] [CrossRef]
- Rius, A.; Ruffini, G.; Romeo, A. Analysis of ionospheric electron density distribution from GPS/MET occultation. IEEE Trans. Geosci. Rem. Sens. 1998, 36, 383–394. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Fu, E.; Silcock, D.; Wang, Y.; Kuleshov, Y. An investigation of atmospheric temperature profiles in the Australian region using collocated GPS radio occultation and radiosonde data. Atmos. Meas. 2011, 4, 2087–2092. [Google Scholar] [CrossRef] [Green Version]
- Gaffen, D.J.; Elliott, W.P.; Robock, A. Relationships between tropospheric water vapor and surface temperature as observed by radiosondes. Geophys. Res. Lett. 1992, 19, 1839–1842. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Climate Change 2013: The Physical Science Basis. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA; p. 1535.
- Seneviratne, S.I.; Nicholls, N.; Easterling, D.; Goodess, C.M.; Kanae, S.; Kossin, J.; Luo, Y.; Marengo, J.; McInnes, K.; Rahimi, M. Changes in Climate Extremes and Their Impacts on the Natural Physical Environment.; Cambridge University Press: Cambridge, UK, 2012; pp. 109–230. [Google Scholar]
- Champollion, C.; Masson, F.; Van Baelen, J.; Walpersdorf, A.; Chéry, J.; Doerflinger, E. GPS monitoring of the tropospheric water vapor distribution and variation during the 9 September 2002 torrential precipitation episode in the Cévennes (southern France). J. Geophys. Res. 2004, 109, D24102. [Google Scholar] [CrossRef] [Green Version]
- Riccardi, U.; Tammaro, U.; Capuano, P. Evaluation of the atmospheric precipitable water at local scale during extreme weather using groundbased CGPS measurements. In Proceedings of the 2013 IEEE Workshop on Environmental, Energy and Structural Monitoring Systems, Trento, Italy, 11–12 September 2013; pp. 37–40. [Google Scholar]
- Tammaro, U.; Riccardi, U.; Masson, F.; Capuano, P.; Boy, J.P. Atmospheric Precipitable Water in Somma-Vesuvius Area during Extreme Weather Events from Ground-Based GPS Measurements. In International Symposium on Earth and Environmental Sciences for Future Generations; International Association of Geodesy Symposia; Freymueller, J.T., Sánchez, L., Eds.; Springer: Cham, Swizterland, 2016; Volume 147. [Google Scholar] [CrossRef]
- Ejigu, Y.G.; Teferle, F.N.; Klos, A.; Bogusz, J.; Hunegnaw, A. Tracking Hurricanes Using GPS Atmospheric Precipitable Water Vapor Field. In International Association of Geodesy Symposia; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar] [CrossRef]
- Palumbo, A.; Mazzarella, A. The heat-island over Naples. Weather 1981, 36, 28–29. [Google Scholar]
- Palumbo, A.; Mazzarella, A. Local recent changes in extreme air temperatures. Clim. Chang. 1984, 6, 303–309. [Google Scholar] [CrossRef]
- Fortelli, A.; Scafetta, N.; Mazzarella, A. Local Warming in the Historical Center of Naples. Int. J. Heat Technol. 2016, 34, S569–S572. [Google Scholar] [CrossRef]
- Scafetta, N.; Di Cristo, R.; Mazzarella, A.; Viola, R. L’Osservatorio Meteorologico di San Marcellino Napoli Centro. Rend. Acc. Sc. Fis. Mat. Napoli 2019, LXXXVI, 201–250. Available online: http://www.societanazionalescienzeletterearti.it/index.php?pg=218 (accessed on 15 September 2021). [CrossRef]
- Tranfaglia, G.; Braca, G. Analisi Idrologica e Meteorologica dell’Evento Alluvionale del 25–26 Ottobre 1954: Confronto con le Serie Storiche e Valutazione del Periodo di Ritorno di Eventi Analoghi. In Il Nubifragio dell’Ottobre 1954 a Vietri sul Mare. Costa di Amalfi, Salerno; Esposito, E., Porfido, S., Violante, C., Eds.; 2004; pp. 295–348. Available online: https://www.researchgate.net/publication/285503827_Analisi_idrologica_e_meteorologica_dell’evento_alluvionale_del_25-26_ottobre_1954_confronto_con_le_serie_storiche_evalutazione_del_periodo_di_ritorno_di_eventi_analoghi (accessed on 15 September 2021).
- Principe, C.; Rosi, M.; Santacroce, R.; Sbrana, A. Explanatory Notes to the Geological Map. In Somma-Vesuvius, Quaderni de “La Ricerca Scientifica”, CNR, 114 (Progetto Finalizzato Geodinamica, Monografie Finali, 8); Santacroce, R., Ed.; Consiglio Nazionale della Ricerca: Naples, Italy, 1987; pp. 11–52. ISSN 0556-9664. [Google Scholar]
- Thayer, G.D. An improved equation for the radio refractive index of air. Radio Sci. 1974, 9, 803–807. [Google Scholar] [CrossRef]
- Saastamoinen, J. Atmospheric correction for the troposphere and stratosphere in radio ranging satellites. The use of artificial satellites for geodesy. Geophys. Monogr. Ser. 1972, 15, 247–251. [Google Scholar]
- Davis, J.L.; Herring, T.A.; Shapiro, I.I.; Rogers, A.; Elgered, G. Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length. Radio Sci. 1985, 20, 1593–1607. [Google Scholar] [CrossRef]
- Boehm, J.; Schuh, H. Vienna mapping functions in VLBI analyses. Geophys. Res. Lett. 2004, 31, L01603. [Google Scholar] [CrossRef]
- Boehm, J.B.; Werl, S.H. Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. J. Geophys. Res. 2006, 111, B02406. [Google Scholar] [CrossRef]
- Lagler, K.; Schindelegger, M.; Böhm, J.; Krásná, H.; Nilsson, T. GPT2: Empirical slant delay model for radio space geodetic techniques. Geophys. Res. Lett. 2013, 40, 1069–1073. [Google Scholar] [CrossRef] [Green Version]
- Askne, J.; Nordius, H. Estimation of tropospheric delay for microwaves from surface weather data. Radio Sci. 1987, 22, 379–386. [Google Scholar] [CrossRef]
- Bevis, M.; Businger, S.; Chiswell, S.; Herring, T.A.; Anthes, R.A.; Rocken, C.; Ware, R.H. GPS Meteorology: Mapping Zenith Wet Delays onto Precipitable Water. J. Appl. Meteorol. 1994, 33, 379–386. [Google Scholar] [CrossRef]
- Rizos, C.; Janssen, V.; Roberts, C.; Grinter, T. GNSS: Precise Point Positioning PPP versus DGNSS. Geomat. World 2012, 20, 18–20. [Google Scholar]
- Teunissen, P.J.G.; Khodabandeh, A. Review and principles of PPP-RTK methods. J. Geod. 2015, 89, 217–240. [Google Scholar] [CrossRef]
- Banville, S. CSRS-PPP Version 3: Tutorial. Last update: 25 August 2020; p. 11. Available online: https://webapp.geod.nrcan.gc.ca/geod/tools-outils/sample_doc_filesV3/NRCan%20CSRS-PPP-v3_Tutorial%20EN.pdf (accessed on 15 September 2021).
- Herring, T.A.; King, R.W.; Floyd, M.A.; McClusky, R.W. Gamit-Globk. Reference Manuals. Release 10.71. 2018, p. 168. Available online: http://geoweb.mit.edu/gg/docs.php (accessed on 15 September 2021).
- Blewitt, G.; Hammond, W.C.; Kreemer, C. Harnessing the GPS Data Explosion for Interdisciplinary Science. Eos 2018, 99, 99. [Google Scholar] [CrossRef]
- Lyard, F.; Lefevre, F.; Letellier, T.; Francis, O. Modelling the global ocean tides: Modern insights from FES2004. Ocean Dyn. 2006, 56, 5–6. [Google Scholar] [CrossRef]
- Altamimi, Z.; Rebischung, P.; Métivier, L.; Collilieux, X. ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions. J. Geophys. Res. Solid Earth 2016, 121, 6109–6613. [Google Scholar] [CrossRef] [Green Version]
- Duan, J.; Bevis, M.; Fang, P.; Bock, Y.; Chiswell, S.R.; Businger, S.; Rocken, C.; Solheim, F.S.; Van Hove, T.; Ware, R.; et al. GPS meteorology: Direct estimation of the absolute value of precipitable water. J. Appl. Meteorol. 1996, 35, 830–838. [Google Scholar] [CrossRef] [Green Version]
- Ortiz de Galisteo, J.P.; Bennouna, Y.; Toledano, C.; Cachorro, V.; Romero, P.; Andres, M.I.; Torres, B. Analysis of the annual cycle of the precipitable water vapour over Spain from 10-year homogenized series of GPS data. Q. J. R. Meteorol. Soc. 2014, 140, 397–406. [Google Scholar] [CrossRef]
- Amendola, S.; Maimone, F.; Pelino, V.; Pasini, A. New records of monthly temperature extremes as a signal of climate change in Italy. Int. J. Climatol. 2019, 39, 2491–2503. [Google Scholar] [CrossRef]
- Picone, M.; Orasi, A.; Nardone, G. Sea Surface Temperature monitoring in Italian Seas: Analysis of long-term trends and short-term dynamics. In Proceedings of the IMEKO International Conference on Metrology for The Sea, Naples, Italy, 11–13 October 2017; Available online: https://www.imeko.org/publications/tc19-Metrosea-2017/IMEKO-TC19-METROSEA-2017-07.pdf (accessed on 15 September 2021).
- Alshawaf, F.; Balidakis, K.; Dick, G.; Heise, S.; Wickert, J. Estimating trends in atmospheric water vapor and temperature time series over Germany. Atmos. Meas. Tech. 2017, 10, 3117–3132. [Google Scholar] [CrossRef] [Green Version]
- Ziv, S.Z.; Alpert, P.; Ruveni, Y. Long-term variability and trends of precipitable water vapour derived from GPS tropospheric path delays over the Eastern Mediterranean. Int. J. Climatol. 2021, 1–22. [Google Scholar] [CrossRef]
- Jin, S.G.; Park, J.; Cho, J.; Park, P. Seasonal variability of GPS-derived zenith tropospheric delay (1994–2006) and climate implications. J. Geophys. Res. 2007, 112, D09110. [Google Scholar] [CrossRef]
- Alinia, S.; Tiampo, K.F.; Samsonov, S.V.; González, P.J. Modelling the elevation-dependent seasonal amplitude of tropospheric delays in GPS time-series using DInSAR and meteorological data. Geophys. J. Int. 2019, 216, 676–691. [Google Scholar] [CrossRef]
- Bechtold, B. Violin Plots for Matlab, Github Project. 2016. Available online: https://github.com/bastibe/Violinplot-Matlab (accessed on 15 September 2021). [CrossRef]
- Benevides, P.; Catalao, J.; Miranda, P.M.A. On the inclusion of GPS precipitable water vapour in the nowcasting of rainfall. Nat. Hazards Earth Syst. Sci. 2015, 15, 2605–2616. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Deng, J. Atmospheric water monitoring by using ground-based GPS during heavy rains produced by TPV and SWV. Adv. Meteorol. 2013, 12, 793957. [Google Scholar] [CrossRef]
- Priego, E.; Jones, J.; Porres, M.J.; Seco, A. Monitoring water vapour with GNSS during a heavy rainfall event in the Spanish mediterranean area. Geomat. Nat. Hazards Risk 2017, 8, 282–294. [Google Scholar] [CrossRef]
- Huelsing, H.K.; Wang, J.; Mears, C.; Braun, J.J. Precipitable water characteristics during the 2013 Colorado flood using ground-based GPS measurements. Atmos. Meas. Tech. 2017, 10, 4055–4066. [Google Scholar] [CrossRef] [Green Version]
- Barindelli, S.; Realini, E.; Venuti, G.; Fermi, A.; Gatti, A. Detection of water vapor time variations associated with heavy rain in northern Italy by geodetic and low-cost GNSS receivers. Earth Planets Space 2018, 70, 28. [Google Scholar] [CrossRef] [Green Version]
- EUMETSAT Data Service. 2021. Available online: https://view.eumetsat.int/productviewer (accessed on 20 June 2021).
- Sato, K.; Eugenio, R.; Tsuda, T.; Oigawa, M.; Iwaki, Y.; Shoji, Y.; Seko, H. A High-Resolution, Precipitable Water Vapor Monitoring System Using a Dense Network of GNSS Receivers. J. Disaster Res. 2013, 8, 37–47. [Google Scholar] [CrossRef] [Green Version]
- Ferretti, R.; Lombardi, A.; Tomassetti, B.; Sangelantoni, L.; Colaiuda, V.; Mazzarella, V.; Maiello, I.; Verdecchia, M.; Redaelli, G. A meteorological–hydrological regional ensemble forecast for an early-warning system over small Apennine catchments in Central Italy. Hydrol. Earth Syst. Sci. 2020, 24, 3135–3156. [Google Scholar] [CrossRef]
- Zanchetta, A.D.L.; Coulibaly, P. Recent advances in real-time pluvial flash flood forecasting. Water 2020, 12, 570. [Google Scholar] [CrossRef] [Green Version]
- Barredo, J.I. Major flood disasters in Europe: 1950–2005. Nat. Hazards 2007, 42, 125–148. [Google Scholar] [CrossRef]
- Lu, C.; Li, X.; Ge, M.; Heinkelmann, R.; Nilsson, T.; Soja, B.; Dick, G.; Schuh, H. Estimation and evaluation of real-time precipitable water vapor from GLONASS and GPS. GPS Solut. 2016, 20, 703–713. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Dick, G.; Lu, C.; Ge, M.; Nilsson, T.; Ning, T.; Wickert, J.; Schuh, H. Multi-GNSS Meteorology: Real-Time Retrieving of Atmospheric Water Vapor from BeiDou, Galileo, GLONASS, and GPS Observations. IEEE Trans. Geosci. Remote Sens. 2015, 53, 6385–6393. [Google Scholar] [CrossRef] [Green Version]
- Gurbuz, G.; Jin, S. Long-time variations of precipitable water vapour estimated from GPS, MODIS and radiosonde observations in Turkey. Int. J. Climatol. 2017, 37, 5170–5180. [Google Scholar] [CrossRef]
Station (ID) | Latitude (°N) | Longitude (°E) | Altitude (m a.s.l.) | Analysis Type |
---|---|---|---|---|
AGR1 | 40.811 | 14.343 | 70 | long term |
BKE1 | 40.819 | 14.439 | 864 | long term |
BKNO | 40.830 | 14.430 | 959 | long term |
ENAV | 40.582 | 14.335 | 485 | long term |
FRUL | 40.877 | 14.225 | 233 | thunderstorm |
MAFE | 40.847 | 14.258 | 57 | long term/thunderstorm |
NAMM | 40.836 | 14.254 | 3 | thunderstorm |
ONPI | 40.779 | 14.411 | 123 | long term |
OSVE | 40.828 | 14.397 | 624 | long term/thunderstorm |
PACA | 40.870 | 14.556 | 74 | long term/thunderstorm |
PRET | 40.849 | 14.477 | 209 | long term |
SANA | 40.869 | 14.412 | 156 | long term |
TAI1 | 40.859 | 14.276 | 35 | thunderstorm |
TERZ | 40.808 | 14.475 | 180 | long term |
VOLL | 40.883 | 14.348 | 33 | thunderstorm |
Thunderstorms | ||
---|---|---|
Start | End | Total Rain (mm) |
23 September 2019, 01:00 | 23 September 2019, 04:00 | 21.6 |
26 September 2019, 01:00 | 26 September 2019, 06:00 | 28.2 |
16 November 2020, 22:30 | 17 November 2020, 02:30 | 70.2 |
Station (Id) | Altitude (m a.s.l.) | Time Span (Years) | PWV Trend Rate (mm/Decade) |
---|---|---|---|
AGR1 | 70 | 10 | +1.94 ± 0.15 |
BKE1 | 864 | 10 | +1.8 ± 0.22 |
BKNO | 959 | 11 | N.D. |
ENAV | 485 | 10 | +1.4 ± 0.12 |
MAFE | 57 | 6 | N.D. |
ONPI | 123 | 10 | +2.0 ± 0.22 |
OSVE | 624 | 6 | N.D. |
PACA | 74 | 10 | +1.8 ± 0.11 |
PRET | 209 | 11 | +1.1 ± 0.26 |
SANA | 156 | 11 | +1.94 ± 0.26 |
TERZ | 180 | 11 | +2.9 ± 0.27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riccardi, U.; Tammaro, U.; Capuano, P. Tropospheric Delay in the Neapolitan and Vesuvius Areas (Italy) by Means of a Dense GPS Array: A Contribution for Weather Forecasting and Climate Monitoring. Atmosphere 2021, 12, 1225. https://doi.org/10.3390/atmos12091225
Riccardi U, Tammaro U, Capuano P. Tropospheric Delay in the Neapolitan and Vesuvius Areas (Italy) by Means of a Dense GPS Array: A Contribution for Weather Forecasting and Climate Monitoring. Atmosphere. 2021; 12(9):1225. https://doi.org/10.3390/atmos12091225
Chicago/Turabian StyleRiccardi, Umberto, Umberto Tammaro, and Paolo Capuano. 2021. "Tropospheric Delay in the Neapolitan and Vesuvius Areas (Italy) by Means of a Dense GPS Array: A Contribution for Weather Forecasting and Climate Monitoring" Atmosphere 12, no. 9: 1225. https://doi.org/10.3390/atmos12091225
APA StyleRiccardi, U., Tammaro, U., & Capuano, P. (2021). Tropospheric Delay in the Neapolitan and Vesuvius Areas (Italy) by Means of a Dense GPS Array: A Contribution for Weather Forecasting and Climate Monitoring. Atmosphere, 12(9), 1225. https://doi.org/10.3390/atmos12091225