Impacts of the Wave Train along the Asian Jet on the South China Sea Summer Monsoon Onset
Abstract
:1. Introduction
2. Data and Methods
3. Results
3.1. The Relationships between the Wave Train along the Asian Jet and the SCSSM Onset
3.2. Physical Mechanism behind the Relationships
4. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, B.; Huang, F.; Wu, Z.; Yang, J.; Fu, X.; Kikuchi, K. Multi-scale climate variability of the South China Sea monsoon: A review. Dyn. Atmos. Ocean. 2009, 47, 15–37. [Google Scholar] [CrossRef]
- Ding, Y.; Chan, J.C. The East Asian summer monsoon: An overview. Meteor. Atmos. Phys. 2005, 89, 117–142. [Google Scholar]
- Ding, Y.; Wang, Z. A study of rainy seasons in China. Meteor. Atmos. Phys. 2008, 100, 121–138. [Google Scholar]
- Kajikawa, Y.; Wang, B. Interdecadal change of the South China Sea summer monsoon onset. J. Clim. 2012, 25, 3207–3218. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, Y.; Song, Y.; Zhang, J. From MONEX to the global monsoon: A review of monsoon system research. Adv. Atmos. Sci. 2015, 32, 10–31. [Google Scholar] [CrossRef]
- Huang, R.; Chen, J.; Huang, G. Characteristics and variations of the East Asian monsoon system and its impacts on climate disasters in China. Adv. Atmos. Sci. 2007, 24, 993–1023. [Google Scholar] [CrossRef]
- He, J.; Zhu, Z. The relation of South China Sea monsoon onset with the subsequent rainfall over the subtropical East Asia. Int. J. Climatol. 2015, 35, 4547–4556. [Google Scholar] [CrossRef]
- Huangfu, J.; Huang, R.; Chen, W. Relationship between the South China Sea summer monsoon onset and tropical cyclone genesis over the western North Pacific. Int. J. Climatol. 2017, 37, 5206–5210. [Google Scholar] [CrossRef]
- Mao, J.; Wu, G. Influences of Typhoon Chanchu on the 2006 South China Sea summer monsoon onset. Geophys. Res. Lett. 2008, 35, L12809. [Google Scholar] [CrossRef]
- Huangfu, J.; Huang, R.; Chen, W. Statistical analysis and a case study of tropical cyclones that trigger the onset of the South China Sea summer monsoon. Sci. Rep. 2017, 7, 12732. [Google Scholar] [CrossRef] [Green Version]
- Tong, H.W.; Chan, J.C.L.; Zhou, W. The role of MJO and mid-latitude fronts in the South China Sea summer monsoon onset. Clim. Dyn. 2009, 33, 827–841. [Google Scholar] [CrossRef]
- Huangfu, J.; Chen, W.; Wang, X.; Huang, R. The role of synoptic-scale waves in the onset of the South China Sea summer monsoon. Atmos. Sci. Lett. 2018, 19, e858. [Google Scholar] [CrossRef]
- Shao, X.; Huang, P.; Huang, R. Role of the phase transition of intraseasonal oscillation on the South China Sea summer monsoon onset. Clim. Dyn. 2014, 45, 125–137. [Google Scholar] [CrossRef]
- Wang, H.; Liu, F.; Wang, B.; Li, T. Effects of intraseasonal oscillation on South China Sea summer monsoon onset. Clim. Dyn. 2018, 51, 2543–2558. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhou, W.; Chan, J.C.L.; Li, C. Impacts of the basin-wide Indian Ocean SSTA on the South China Sea summer monsoon onset. Int. J. Climatol. 2008, 28, 1579–1587. [Google Scholar] [CrossRef]
- Zhou, W.; Chan, J.C.L. ENSO and the South China Sea summer monsoon onset. Int. J. Climatol. 2007, 27, 157–167. [Google Scholar] [CrossRef]
- Zhu, Z.; Li, T. Empirical prediction of the onset dates of South China Sea summer monsoon. Clim. Dyn. 2017, 48, 1633–1645. [Google Scholar] [CrossRef]
- Martin, G.M.; Chevuturi, A.; Comer, R.E.; Dunstone, N.J.; Scaife, A.A.; Zhang, D. Predictability of South China Sea summer monsoon onset. Adv. Atmos. Sci. 2019, 36, 253–260. [Google Scholar] [CrossRef] [Green Version]
- Hu, P.; Chen, W.; Chen, S.; Liu, Y.; Wang, L.; Huang, R. Impact of the March Arctic Oscillation on the South China Sea summer monsoon onset. Int. J. Climatol. 2021, 41, E3239–E3248. [Google Scholar] [CrossRef]
- Luo, M.; Leung, Y.; Graf, H.F.; Herzog, M.; Zhang, W. Interannual variability of the onset of the South China Sea summer monsoon. Int. J. Climatol. 2016, 36, 550–562. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Min, Q.; Su, J. Impact of El Niño on atmospheric circulations over East Asia and rainfall in China: Role of the anomalous western North Pacific anticyclone. Sci. China Earth Sci. 2017, 60, 1124–1132. [Google Scholar] [CrossRef]
- Lu, R.Y.; Oh, J.H.; Kim, B.J. A teleconnection pattern in upper-level meridional wind over the North African and Eurasian continent in summer. Tellus A 2002, 54, 44–55. [Google Scholar] [CrossRef]
- Kosaka, Y.; Nakamura, H.; Watanabe, M.; Kimoto, M. Analysis on the dynamics of a wave-like teleconnection pattern along the summertime Asian jet based on a reanalysis dataset and climate model simulations. J. Meteor. Soc. Jpn. 2009, 87, 561–580. [Google Scholar] [CrossRef] [Green Version]
- Yasui, S.; Watanabe, M. Forcing Processes of the Summertime Circumglobal Teleconnection Pattern in a Dry AGCM. J. Clim. 2010, 23, 2093–2114. [Google Scholar] [CrossRef] [Green Version]
- Hong, X.W.; Lu, R.Y. The meridional displacement of the summer Asian jet, Silk Road Pattern, and tropical SST anomalies. J. Clim. 2016, 29, 3753–3766. [Google Scholar] [CrossRef]
- Xue, X.; Chen, W.; Hou, S. The long-term variation in the South Asia High intensity measured by 150-hPa eddy geopotential height. Meteorol. Atmos. Phys. 2020, 132, 833–844. [Google Scholar] [CrossRef]
- Guan, W.N.; Hu, H.B.; Ren, X.J.; Yang, X.Q. Subseasonal zonal variability of the western Pacific subtropical high in summer: Climate impacts and underlying mechanisms. Clim. Dyn. 2019, 53, 3325–3344. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Zhu, C. Extremely late onset of the 2018 South China Sea summer monsoon following a La Niña event: Efects of triple SST anomaly mode in the North Atlantic and a weaker Mongolian cyclone. Geophys. Res. Lett. 2019, 46, 2956–2963. [Google Scholar] [CrossRef]
- Huang, R.; Liu, Y.; Feng, T. Interdecadal change of summer precipitation over Eastern China around the late-1990s and associated circulation anomalies, internal dynamical causes. Chin. Sci. Bull. 2013, 58, 1339–1349. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Xu, P.Q.; Chen, W.; Liu, Y. Interdecadal Variations of the Silk Road Pattern. J. Clim. 2017, 30, 9915–9932. [Google Scholar] [CrossRef]
- Mai, R.; Wen, M.; Zhang, R.H.; Li, L. The influence of wave trains in mid-high latitudes on persistent heavy rain during the first rainy season over South China. Clim. Dyn. 2019, 53, 2949–2968. [Google Scholar]
- Hong, X.W.; Lu, R.Y.; Li, S.L. Asymmetric relationship between the meridional displacement of the Asian Westerly Jet and the Silk Road Pattern. Adv. Atmos. Sci. 2018, 35, 389–396. [Google Scholar] [CrossRef]
- Hsu, H.H.; Lin, S.M. Asymmetry of the Tripole Rainfall Pattern during the East Asian Summer. J. Clim. 2007, 20, 4443–4458. [Google Scholar] [CrossRef]
- Hu, P.; Chen, W.; Chen, S.; Liu, Y.; Wang, L.; Huang, R. Impact of the September Silk Road Pattern on the South China Sea summer monsoon withdrawal. Int. J. Climatol. 2020, 40, 6361–6368. [Google Scholar] [CrossRef]
- Deng, K.; Yang, S.; Gu, D. Record-breaking heat wave in southern China and delayed onset of South China Sea summer monsoon driven by the Pacific subtropical high. Clim. Dyn. 2020, 54, 3751–3764. [Google Scholar] [CrossRef] [Green Version]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J. The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef] [Green Version]
- Xie, P.; Arkin, P.A. Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc. 1997, 78, 2539–2558. [Google Scholar] [CrossRef]
- Chen, S.; Yu, B.; Chen, W. An analysis on the physical process of the influence of AO on ENSO. Clim. Dyn. 2014, 42, 973–989. [Google Scholar] [CrossRef]
- Chen, S.; Yu, B.; Chen, W. An interdecadal change in the influence of the spring Arctic oscillation on the subsequent ENSO around the early 1970s. Clim. Dyn. 2015, 44, 1109–1126. [Google Scholar] [CrossRef]
- Hu, P.; Chen, W.; Huang, R.; Nath, D. On the weakening relationship between the South China Sea summer monsoon onset and crossequatorial flow after the late 1990s. Int. J. Climatol. 2018, 38, 3202–3208. [Google Scholar] [CrossRef]
- Ding, S.Y.; Wen, Z.P.; Chen, W. Interdecadal change in the relationship between the South China Sea summer monsoon onset and two types of Pacific sea surface temperature anomaly. Chin. J. Atmos. Sci. 2016, 40, 243–256. [Google Scholar]
- Hu, P.; Chen, W.; Chen, S.; Liu, Y.; Huang, R. Extremely Early Summer Monsoon Onset in the South China Sea in 2019 Following an El Niño Event. Mon. Wea. Rev. 2020, 148, 1877–1890. [Google Scholar] [CrossRef]
- Xiang, B.; Wang, B. Mechanisms for the advanced Asian summer monsoon onset since the mid-to-late 1990s. J. Clim. 2013, 26, 1993–2009. [Google Scholar] [CrossRef]
- Grinsted, A.; Moore, J.C.; Jevrejeva, S. Application of the Cross Wavelet Transform and Wavelet Coherence to Geophysical Time Series. Nonlin. Process. Geophys. 2004, 11, 561–566. [Google Scholar] [CrossRef]
- Yuan, F.; Chen, W. Roles of the tropical convective activities over different regions in the earlier onset of the South China Sea summer monsoon after 1993. Theor. Appl. Climatol. 2013, 113, 175–185. [Google Scholar] [CrossRef]
- North, G.R.; Bell, T.L.; Cahalan, R.F.; Moend, F.J. Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev. 1982, 110, 699–706. [Google Scholar] [CrossRef]
- Takaya, K.; Nakamura, H. A Formulation of a Phase-Independent Wave-Activity Flux for Stationary and Migratory Quasigeostrophic Eddies on a Zonally Varying Basic Flow. J. Atmos. Sci. 2001, 58, 608–627. [Google Scholar] [CrossRef]
- Liu, B.; Zhu, C. A possible precursor of the South China Sea summer monsoon onset: Effect of the South Asian High. Geophys. Res. Lett. 2016, 43, 11072–11079. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, L.; Li, Z.-L. Impacts of the Wave Train along the Asian Jet on the South China Sea Summer Monsoon Onset. Atmosphere 2021, 12, 1227. https://doi.org/10.3390/atmos12091227
Xu L, Li Z-L. Impacts of the Wave Train along the Asian Jet on the South China Sea Summer Monsoon Onset. Atmosphere. 2021; 12(9):1227. https://doi.org/10.3390/atmos12091227
Chicago/Turabian StyleXu, Li, and Zi-Liang Li. 2021. "Impacts of the Wave Train along the Asian Jet on the South China Sea Summer Monsoon Onset" Atmosphere 12, no. 9: 1227. https://doi.org/10.3390/atmos12091227
APA StyleXu, L., & Li, Z. -L. (2021). Impacts of the Wave Train along the Asian Jet on the South China Sea Summer Monsoon Onset. Atmosphere, 12(9), 1227. https://doi.org/10.3390/atmos12091227