Health Risk and Environmental Assessment of Cement Production in Nigeria
Abstract
:1. Introduction
2. The Growing Nigerian Cement Industry
3. Cement Production on Climate Change and Global Warming
4. Impacts of Water Pollution from Cement Production on Public Health
5. Impacts of Air Pollution from Cement Production on Public Health
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adeniran, J.A.; Yusuf, R.O.; Fakinle, B.S.; Sonibare, J.A. Air quality assessment and modelling of pollutants emission from a major cement plant complex in Nigeria. Atmos. Pollut. Res. 2019, 10, 257–266. [Google Scholar] [CrossRef] [Green Version]
- Oni, A.; Fadare, D.; Adeboye, L. Thermoeconomic and environmental analyses of a dry process cement manufacturing in Nigeria. Energy 2017, 135, 128–137. [Google Scholar] [CrossRef]
- Dunuweera, S.P.; Rajapakse, R.M.G. Cement Types, Composition, Uses and Advantages of Nanocement, Environmental Impact on Cement Production, and Possible Solutions. Adv. Mater. Sci. Eng. 2018, 2018, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Arachchige, U.S.; Amakm, A.; Balasuriya, B.M.C.M.; Chathumini, K.K.G.L.; Dassanayake, N.P.; Devasurendra, J.W. Environmental Pollution by Cement Industry. Int. J. Res. 2019, 6, 631–635. [Google Scholar]
- Schneider, M.; Romer, M.; Tschudin, M.; Bolio, H. Sustainable cement production—present and future. Cem. Concr. Res. 2011, 41, 642–650. [Google Scholar] [CrossRef]
- U. National Minerals Information Center, “CEMENT”. 2020. Available online: https://pubs.usgs.gov/periodicals/mcs2020/mcs2020-cement.pdf (accessed on 6 January 2021).
- International Energy Agency (IEA). Cement Technology Roadmap Plots Path to Cutting CO2 Emissions 24% by 2050. 2018. Available online: https://www.iea.org/news/cement-technology-roadmap-plots-path-to-cutting-co2-emissions-24-by-2050 (accessed on 6 January 2021).
- Global Cement. CEMENT 101—An Introduction to the World’s Most Important Building Material. 2011. Available online: https://www.globalcement.com/magazine/articles/490-cement-101-an-introduction-to-the-worlds-most-important-building-material (accessed on 6 January 2021).
- Ndefo, O. The contribution of the nigerian cement industry to global warming. Int. J. Eng. Sci. Technol. 2012, 4, 4691–4694. [Google Scholar]
- Raw Material Research and Development Council. Chemical Analysis of Major Limestone and Marble in Nigeria.
- WHO. 9 Out of 10 People Worldwide Breathe Polluted Air, but More Countries Are Taking Action. 2018. Available online: https://www.who.int/news/item/02-05-2018-9-out-of-10-people-worldwide-breathe-polluted-air-but-more-countries-are-taking-action (accessed on 6 January 2021).
- Sánchez-Soberón, F.; Rovira, J.; Mari, M.; Sierra, J.; Nadal, M.; Domingo, J.L.; Schuhmacher, M. Main components and human health risks assessment of PM10, PM2.5, and PM1 in two areas influenced by cement plants. Atmos. Environ. 2015, 120, 109–116. [Google Scholar] [CrossRef]
- Adeyanju, E.; Okeke, C.A.U. Exposure effect to cement dust pollution: A mini review. SN Appl. Sci. 2019, 1, 1572. [Google Scholar] [CrossRef] [Green Version]
- Olaniyi, O.A.; Olutimehin, I.O.; Funmilayo, O.A. Review of climate change and its effect on Nigeria ecosystem. Int. J. Rural Dev. Environ. Health Res. 2019, 3. [Google Scholar] [CrossRef]
- Salas, D.A.; Ramirez, A.D.; Rodriguez, C.; Petroche, D.M.; Boero, A.; Duque-Rivera, J. Environmental impacts, life cycle assessment and potential improvement measures for cement production: A literature review. J. Clean. Prod. 2016, 113, 114–122. [Google Scholar] [CrossRef]
- Ministry of Mines and Steel Development. Nigeria’s Mining and Metal Sector—Investment Promotion Brochure. 2017. Available online: https://www.minesandsteel.gov.ng/wp-content/uploads/2017/10/Nigeria-Ministry-of-Solid-Minerals-Investment-BrochureV14.pdf (accessed on 11 January 2021).
- Shakirat, A.; Oluwashina, A. Nigeria Cement Sector Update—Increasing Competition amid Long-term Opportunities. 2019. Available online: https://www.unitedcapitalplcgroup.com/wp-content/uploads/2019/09/Nigeria-Cement-Sector-Update-3.pdf (accessed on 10 January 2021).
- USGS. What is the Difference between Global Warming and Climate Change? 2021. Available online: https://www.usgs.gov/faqs/what-difference-between-global-warming-and-climate-change-1?qt-news_science_products=0#qt-news_science_products (accessed on 8 January 2021).
- Raajasubramanian, D.; Sundaramoorthy, P.; Baskaran, L.; Ganesh, K.S.; Chidambaram, A.A.; Jeganathan, M. Cement dust pollution on growth and yield attributes of groundnut (Arachis hypogaea L.). Int. Multidiscip. Res. J. 2011, 1, 31–36. [Google Scholar]
- Garg, A.; Shukla, P.; Bhattacharya, S.; Dadhwal, V. Sub-region (district) and sector level SO2 and NOx emissions for India: Assessment of inventories and mitigation flexibility. Atmos. Environ. 2001, 35, 703–713. [Google Scholar] [CrossRef]
- Wilson, J.; Law, S. Global Warming; Magpie Books: London, UK, 2007. [Google Scholar]
- Olivier, J.G.J.; Peters, J.A.H.W. Trends in Global CO2 and Total Greenhouse Gas Emissions 2020. Report. Available online: www.pbl.nl/en (accessed on 7 January 2021).
- Hossain, U.; Poon, C.S.; Lo, I.M.C.; Cheng, J.C. Comparative LCA on using waste materials in the cement industry: A Hong Kong case study. Resour. Conserv. Recycl. 2017, 120, 199–208. [Google Scholar] [CrossRef]
- Ighalo, J.O.; Adeniyi, A.G. A perspective on environmental sustainability in the cement industry. Waste Dispos. Sustain. Energy 2020, 2, 1–4. [Google Scholar] [CrossRef]
- Feiz, R.; Ammenberg, J.; Baas, L.; Eklund, M.; Helgstrand, A.; Marshall, R. Improving the CO2 performance of cement, part I: Utilizing life-cycle assessment and key performance indicators to assess development within the cement industry. J. Clean. Prod. 2015, 98, 272–281. [Google Scholar] [CrossRef] [Green Version]
- Hamouda, A.S.; Eldien, M.; Abadir, M. Carbon dioxide capture by ammonium hydroxide solution and its possible application in cement industry. Ain Shams Eng. J. 2020, 11, 1061–1067. [Google Scholar] [CrossRef]
- World Business Council for Sustainable Development. Cement Technology Roadmap, Paris. 2009. Available online: https://cement.mineralproducts.org/documents/wbcsd-iea%20cement%20roadmap%202009.pdf (accessed on 3 August 2021).
- Wang, T.; Hovland, J.; Jens, K.J. Amine reclaiming technologies in post-combustion carbon dioxide capture. J. Environ. Sci. 2015, 27, 276–289. [Google Scholar] [CrossRef]
- Feng, Y.; Yang, B.; Hou, Y.; Duan, T.-H.; Yang, L.; Wang, Y. Comparative environmental benefits of power generation from underground and surface coal gasification with carbon capture and storage. J. Clean. Prod. 2021, 310, 127383. [Google Scholar] [CrossRef]
- Shen, L.; Gao, T.; Zhao, J.; Wang, L.; Wang, L.; Liu, L.; Chen, F.; Xue, J. Factory-level measurements on CO2 emission factors of cement production in China. Renew. Sustain. Energy Rev. 2014, 34, 337–349. [Google Scholar] [CrossRef]
- Çankaya, S.; Pekey, B. A comparative life cycle assessment for sustainable cement production in Turkey. J. Environ. Manag. 2019, 249, 109362. [Google Scholar] [CrossRef]
- Valderrama, C.; Granados, R.; Cortina, J.L.; Gasol, C.M.; Guillem, M.; Josa, A. Implementation of best available techniques in cement manufacturing: A life-cycle assessment study. J. Clean. Prod. 2012, 25, 60–67. [Google Scholar] [CrossRef]
- Galvez-Martos, J.-L.; Schoenberger, H. An analysis of the use of life cycle assessment for waste co-incineration in cement kilns. Resour. Conserv. Recycl. 2014, 86, 118–131. [Google Scholar] [CrossRef]
- Georgiopoulou, M.; Lyberatos, G. Life cycle assessment of the use of alternative fuels in cement kilns: A case study. J. Environ. Manag. 2018, 216, 224–234. [Google Scholar] [CrossRef]
- Water Quality Monitoring and Assessment in a Developing Country. 2012, pp. 481–494. Available online: https://books.google.com/books?hl=en&lr=&id=z-uZDwAAQBAJ&oi=fnd&pg=PA481&ots=pbRxU74Q8E&sig=HwLEw5llFFLospqJUdnL3tYs7VQ (accessed on 16 March 2021).
- Ighalo, J.O.; Adeniyi, A.G. A comprehensive review of water quality monitoring and assessment in Nigeria. Chemosphere 2020, 260, 127569. [Google Scholar] [CrossRef] [PubMed]
- Ekere, N.R.; Agbazue, V.E.; Ngang, B.U.; Ihedioha, J.N. Hydrochemistry and Water Quality Index of groundwater resources in Enugu north district, Enugu, Nigeria. Environ. Monit. Assess. 2019, 191, 150. [Google Scholar] [CrossRef] [PubMed]
- Olukanni, D.O.; Ebuetse, M.A.; Anake, W.U. Drinking Water Quality and Sanitation Issues: A Survey of a Semi-Urban Setting in Nigeria. 2014. Available online: http://covenantuniversity.edu.ng/Profiles/OLUKANNI-David-O (accessed on 16 March 2021).
- Omole, D.O.; Isiorho, S.A. Waste Management and Water Quality Issues in Coastal States of Nigeria. The Ogun State Experience. J. Sustain. Dev. Afr. 2011, 13, 1–11. [Google Scholar]
- Inegbenebor, A.I.; Mordi, R.C.; Idowu, A.O.; Siyanbola, T.O.; Akanle, B.; Evbuoma, I.K.; Inegbenebor, A.O. Consequences of the activities of a Nigerian cement industry on the environment. Int. J. Appl. Nat. Sci. 2018, 7, 67–74. [Google Scholar]
- Seiyaboh, E.I. A Review of Impacts of Gas Flaring on Vegetation and Water Resources in the Niger Delta Region of Nigeria. Int. J. Econ. Energy Environ. 2017, 2, 48. [Google Scholar] [CrossRef] [Green Version]
- Galadima, A.; Garba, Z.N.; Leke, L.; Almustapha, M.N. Domestic Water Pollution among Local Communities in Nigeria-Causes and Consequences. 2011. Available online: http://www.eurojournals.com/ejsr.htm (accessed on 16 March 2021).
- Izah, S.C.; Srivastav, A.L. Level of arsenic in potable water sources in Nigeria and their potential health impacts: A review Scientifc research production of India and China in environmental chemistry: A bibliometric assessment View project Level of arsenic in potable water sources in Nigeria and their potential health impacts: A review. J. Environ. Treat. Tech. 2015, 3, 15–24. [Google Scholar]
- Umoh, J.; Ikwa, L.; Uchendu, U. Effects of effluent discharge on man and soil ecosystem in Calabar, south southern Nigeria. J. Appl. Sci. Environ. Manag. 2019, 23, 1061. [Google Scholar] [CrossRef] [Green Version]
- Sesugh, A.; Idowu, O.E.; Titus, A.; Zack, A.; Mavis, O.; Joseph, T. Physicochemical and Heavy Metal Analysis of Well Water obtained from Selected Settlements around Dangote Cement Factory in Gboko, Nigeria. ChemSearch J. 2019, 10, 94–99. [Google Scholar]
- Meme, F.K.; Arimoro, F.O.; Nwadukwe, F.O. Analyses of Physical and Chemical Parameters in Surface Waters nearby a Cement Factory in North Central, Nigeria. J. Environ. Prot. 2014, 5, 826–834. [Google Scholar] [CrossRef] [Green Version]
- Parithielamvazhuthi, R. Analysis of Air Pollutant Emission and Control System in Cement Industries around Ariyalur District. 2013. Available online: www.ijsr.net (accessed on 13 January 2021).
- Ibanga, I.J.; Umoh, N.B.; Iren, O.B. Effects of Cement Dust on Soil Chemical Properties in the Calabar Environment, Southeastern Nigeria. Commun. Soil Sci. Plant Anal. 2008, 39, 551–558. [Google Scholar] [CrossRef]
- Maina, H.M.; Egila, J.N.; Nkafamiya, I.I.; Shagal, M.H. Impact of cement dust deposition on the elemental composition of soils in the vicinity of Ashaka cement factory, Nigeria. Int. Res. J. Agric. Sci. Soil Sci. 2013, 3, 66–74. [Google Scholar]
- Egbe, E.R.; Nsonwu-Anyanwu, A.C.; Offor, S.J.; Opara Usoro, C.A.; Etukudo, M.H. Heavy metal content of the soil in the vicinity of the united cement factory in Southern Nigeria. J. Adv. Environ. Health Res. 2019, 7, 122–130. [Google Scholar] [CrossRef]
- Asubiojo, O.I.; Aina, P.O.; Oluwole, A.F.; Arshed, W.; Akanle, O.A.; Spyrou, N.M. Effects of cement production on the elemental composition of soils in the neighborhood of two cement factories. Water Air Soil Pollut. 1991, 57, 819–828. [Google Scholar] [CrossRef]
- Wufem, M.B.; Ibrahim, A.Q.; Maina, H.M.; Nangbes, J.G.; Nvau, J.B. Speciation of Some Heavy Metals in Soils Around a Cement Factory in Gombe State, Nigeria. Available online: http://repository.plasu.ngren.edu.ng:8080/xmlui/handle/123456789/346 (accessed on 12 January 2021).
- Hua, S.; Tian, H.; Wang, K.; Zhu, C.; Gao, J.; Ma, Y.; Xue, Y.; Wang, Y.; Duan, S.; Zhou, J. Atmospheric emission inventory of hazardous air pollutants from China’s cement plants: Temporal trends, spatial variation characteristics and scenario projections. Atmos. Environ. 2016, 128, 1–9. [Google Scholar] [CrossRef]
- Zhang, T.; Wu, C.; Li, B.; Wang, J.; Ravat, R.; Chen, X.; Wei, J.; Yu, Q. Linking the SO2 emission of cement plants to the sulfur characteristics of their limestones: A study of 80 NSP cement lines in China. J. Clean. Prod. 2019, 220, 200–211. [Google Scholar] [CrossRef] [Green Version]
- Amin, R.M. A study of radon emitted from building materials using solid state nuclear track detectors. J. Radiat. Res. Appl. Sci. 2015, 8, 516–522. [Google Scholar] [CrossRef] [Green Version]
- Abdul-Wahab, S.A. Impact of fugitive dust emissions from cement plants on nearby communities. Ecol. Model. 2006, 195, 338–348. [Google Scholar] [CrossRef]
- Gbadebo, A.; Amos, A. Assessment of Radionuclide Pollutants in Bedrocks and Soils from Ewekoro Cement Factory, Southwest Nigeria. Asian J. Appl. Sci. 2010, 3, 135–144. [Google Scholar] [CrossRef] [Green Version]
- Cassee, F.R.; Héroux, M.-E.; Gerlofs-Nijland, M.E.; Kelly, F.J. Particulate matter beyond mass: Recent health evidence on the role of fractions, chemical constituents and sources of emission. Inhal. Toxicol. 2013, 25, 802–812. [Google Scholar] [CrossRef]
- Schlesinger, R.B. The Health Impact of Common Inorganic Components of Fine Particulate Matter (PM2.5) in Ambient Air: A Critical Review. Inhal. Toxicol. 2007, 19, 811–832. [Google Scholar] [CrossRef] [PubMed]
- World Bank. A Plea for Action against Pollution in Nigeria. 2015. Available online: https://www.worldbank.org/en/news/feature/2015/06/16/in-lagos-nigeria-a-plea-for-action-against-pollution (accessed on 13 January 2021).
- Croitoru, L.; Chang, J.C.; Kelly, A. The Cost of Air Pollution in Lagos. 2020. Available online: https://openknowledge.worldbank.org/handle/10986/33038 (accessed on 12 January 2021).
- Emetere, M.; Dania, E. Short review on air pollution from cement factories. J. Physics Conf. Ser. 2019, 1299, 012033. [Google Scholar] [CrossRef]
- Abimbola, A.F.; Kehinde-Phillips, O.O.; Olatunji, A. The Sagamu cement factory, SW Nigeria: Is the dust generated a potential health hazard? Environ. Geochem. Health 2007, 29, 163–167. [Google Scholar] [CrossRef]
- Nwachukwu, A.N.; Chukwuocha, E.O.; Igbudu, O. A survey on the effects of air pollution on diseases of the people of Rivers State, Nigeria. Afr. J. Environ. Sci. Technol. 2012, 6, 371–379. [Google Scholar] [CrossRef]
- Olaleye, V.F.; Oluyemi, E.A. Effects of cement flue dusts from a Nigerian cement plant on air, water and planktonic quality. Environ. Monit. Assess. 2009, 162, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Ugwuanyi, J.U.; Obi, F.C. A Survey of Health Effects Of Air Pollution On Peasant Farmers In Benue State, Nigeria. Int. J. Environ. Stud. 2002, 59, 665–677. [Google Scholar] [CrossRef]
- Otaru, A.J.; Odigure, J.O.; Okafor, J.O.; Abdulkareem, A.S. Investigation into Particulate Pollutant Concentration From A Cement Plant: A Case Study Of Obajana Cement Plc, Lokoja, Nigeria. IOSR J. Environ. Sci. Toxicol. Food Technol. 2013, 3, 56–62. [Google Scholar] [CrossRef]
- Temitope, P.; Ogochukwu, E.I. Impact of Air Pollution on the Microbiological Quality of Ready to Eat Hawked Foods Sold around a Cement Factory in Lokoja, Nigeria. 2014. Available online: www.usa-journals.com (accessed on 12 January 2021).
- Ideriah, T.; O Stanley, H. Air quality around some cement industries in Port Harcourt, Nigeria. Sci. Afr. 2009, 7, 27–34. [Google Scholar] [CrossRef]
- Otaru, O.; Okafor, J.O.; Abdulkareem, A.S. Model Prediction of Particulate Dispersion from a Cement Mill Stack: Case Study of a Cement Plant in Nigeria. 2013. Available online: www.Iosrjournals.Org (accessed on 12 January 2021).
Calcium, Ca | Limestone involving quick-lime from treating wastewater, caustic-lime |
Silicon, Si | Sand such as harnessed mould (silica sand-clay-liquid mixture) |
Silicon–Aluminium, Si–Al | Kaolinite, bentonite, and similar forms of terra-cotta clay |
Iron, Fe | Iron-based metals, including heated pyrite and adulterated metallic minerals |
Silicon–Aluminium–Calcium, Si–Al–Ca | Powdered blast furnace slag such as ashes from fuel combustion ashes, oil-soluble |
Aluminium, Al | Raw metallic apparatus constituting recycling salt slag, aluminium hydroxide |
Sulphur, S | Non-artificial gypsum such as Natural anhydrite Gypsum from flue gas desulfurization |
Countries | 2018 | 2019 |
---|---|---|
United States | 87,000 | 89,000 |
Brazil | 53,000 | 55,000 |
China | 2,200,000 | 2,200,000 |
Egypt | 81,200 | 76,000 |
India | 300,000 | 320,000 |
Indonesia | 75,200 | 74,000 |
Iran | 58,000 | 60,000 |
Japan | 55,300 | 54,000 |
Korea, Republic of | 57,500 | 55,000 |
Russia | 53,700 | 57,000 |
Turkey | 72,500 | 51,000 |
Vietnam | 90,200 | 95,000 |
Other Countries | 870,000 | 900,000 |
Years | Carbon Dioxide (CO2) Emission | Methane (CH4) Emission | Nitrous Oxide, (N2O) Emission | Greenhouse Gases (F-Gases): (HFCs, PFCs and SF6) Emission |
---|---|---|---|---|
1970 | 0.03 | 130 | 12 | - |
1971 | 0.04 | 190 | 12 | - |
1972 | 0.06 | 230 | 12 | - |
1973 | 0.07 | 280 | 13 | - |
1974 | 0.08 | 350 | 14 | - |
1975 | 0.06 | 260 | 14 | - |
1976 | 0.08 | 290 | 14 | - |
1977 | 0.07 | 250 | 15 | - |
1978 | 0.07 | 240 | 15 | - |
1979 | 0.10 | 370 | 16 | - |
1980 | 0.09 | 310 | 16 | - |
1981 | 0.07 | 230 | 16 | 0.1 |
1982 | 0.07 | 200 | 17 | 0.1 |
1983 | 0.07 | 200 | 17 | 0.1 |
1984 | 0.07 | 210 | 17 | 0.1 |
1985 | 0.07 | 220 | 18 | 0.1 |
1986 | 0.07 | 220 | 18 | 0.1 |
1987 | 0.07 | 200 | 18 | 0.1 |
1988 | 0.08 | 230 | 19 | 0.2 |
1989 | 0.08 | 240 | 19 | 0.2 |
1990 | 0.07 | 240 | 19 | 0.2 |
1991 | 0.08 | 250 | 20 | 0.2 |
1992 | 0.09 | 250 | 20 | 0.1 |
1993 | 0.09 | 260 | 21 | 0.1 |
1994 | 0.08 | 250 | 21 | 0.1 |
1995 | 0.09 | 260 | 22 | - |
1996 | 0.10 | 280 | 22 | 0.1 |
1997 | 0.10 | 250 | 23 | 0.1 |
1998 | 0.09 | 210 | 24 | 0.2 |
1999 | 0.09 | 190 | 24 | 0.2 |
2000 | 0.10 | 190 | 25 | 0.3 |
2001 | 0.11 | 200 | 25 | 0.3 |
2002 | 0.10 | 170 | 26 | 0.4 |
2003 | 0.11 | 190 | 26 | 0.5 |
2004 | 0.10 | 190 | 26 | 0.6 |
2005 | 0.10 | 190 | 29 | 0.7 |
2006 | 0.09 | 180 | 28 | 0.8 |
2007 | 0.08 | 180 | 28 | 0.8 |
2008 | 0.09 | 170 | 29 | 0.9 |
2009 | 0.08 | 170 | 29 | 1.0 |
2010 | 0.09 | 180 | 30 | 1.1 |
2011 | 0.10 | 180 | 32 | 1.2 |
2012 | 0.09 | 190 | 32 | 1.3 |
2013 | 0.09 | 180 | 32 | 1.3 |
2014 | 0.09 | 180 | 32 | 1.4 |
2015 | 0.09 | 180 | 34 | 1.5 |
2016 | 0.09 | 180 | 35 | 1.6 |
2017 | 0.09 | 180 | 36 | 1.7 |
2018 | 0.10 | 180 | 37 | 1.7 |
2019 | 0.10 | 180 | 38 | 1.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Etim, M.-A.; Babaremu, K.; Lazarus, J.; Omole, D. Health Risk and Environmental Assessment of Cement Production in Nigeria. Atmosphere 2021, 12, 1111. https://doi.org/10.3390/atmos12091111
Etim M-A, Babaremu K, Lazarus J, Omole D. Health Risk and Environmental Assessment of Cement Production in Nigeria. Atmosphere. 2021; 12(9):1111. https://doi.org/10.3390/atmos12091111
Chicago/Turabian StyleEtim, Mmemek-Abasi, Kunle Babaremu, Justin Lazarus, and David Omole. 2021. "Health Risk and Environmental Assessment of Cement Production in Nigeria" Atmosphere 12, no. 9: 1111. https://doi.org/10.3390/atmos12091111
APA StyleEtim, M. -A., Babaremu, K., Lazarus, J., & Omole, D. (2021). Health Risk and Environmental Assessment of Cement Production in Nigeria. Atmosphere, 12(9), 1111. https://doi.org/10.3390/atmos12091111