Atmospheric Rivers and Associated Precipitation over France and Western Europe: 1980–2020 Climatology and Case Study
Abstract
:1. Introduction
2. Data
2.1. ECMWF ERA5
2.2. Ground Based Data
2.3. Satellite Products
- Atmospheric InfraRed Sounder (AIRS) is a NASA instrument onboard the sun-synchronous Aqua satellite launched in 2002 on a near polar low orbit (~705 km high) among the A-train constellation [21]. AIRS provides vertical profiles of temperature, water vapor, ozone, carbon monoxide, and methane. In this study, we used the version 7 standard physical retrieval combining AIRS and AMSU, which provides data with a horizontal resolution of 50 km. Water vapor mixing ratio (hereafter WVMR) was retrieved on 15 pressure levels from 1100 hPa to 50 hPa. In this work, we used this product to provide 2D imagery of the AR structure on a given pressure level;
- raDAR/liDAR (DARDAR) is a satellite product obtained from a combination of the CPR radar onboard CloudSat and CALIOP liDAR onboard CALIPSO [22]. CloudSat and CALIPSO were launched in 2006 to study cloud structures and aerosol particles in the atmosphere. The two satellites follow the same orbit and belong to the same constellation as Aqua (A-train). DARDAR consists of three different products: CSXTRACT, DARDAR_MASK, and DARDAR_CLOUD. We will use the DARDAR_MASK simplified categorization product, which provides vertical cross sections of clouds (ice, liquid, or super cooled water), aerosols, and rain with a vertical resolution of 60 m [23];
- The large scale precipitation was provided by the Global Precipitation Climatology Project (GPCP [24]). GPCP is based on estimated precipitation by microwave polar-orbiting satellites and infrared imager onboard geostationary satellites. We used the product v1.3., which provides the mean daily precipitation at 1° × 1° resolution; and
- The large scale horizontal cloud structures were provided by the Geostationary Operational Environmental Satellite (GOES 13). GOES 13 was launched in 2006 and took imagery in infrared and visible channels with a best resolution of 1 km at nadir [25]. We used the true color product over the North Atlantic (10° N–70° N, 80° W–20° E). True color is a daily mosaic in the visible channel.
3. Methodology for Atmospheric Rivers Tracking: The ARiD (Atmospheric River Detector) Code
3.1. Integrated Vapor Transport and Threshold
3.2. Atmospheric Rivers Tracking
- Every grid point with an IVT less than the threshold value is set equal to 0;
- Along 10° W, the latitude of the IVT maximum, if identified, is called maxλ. If no value above the IVT threshold is found, the record is stopped. If an AR exists only westward of 10° W, it will not be detected by ARiD. If more than one AR is present at 10° W at different latitudes, only the AR with the higher IVT will be identified, but this situation is rare;
- A westward search is done, and the latitude of the IVT maximum along the new longitude maxλ+1 is found. If there is a discontinuity greater than 3° in latitude between the points maxλ and maxλ+1, the record is stopped;
- The record continues until a discontinuity is found in the longitude (IVT less than the threshold), or in the latitude (more than 3° of latitude between two adjacent IVT maxima). A same forward search is performed to the east. The mean latitude λ of the AR is determined and gives us a mean size of the grid point; and
- The number of recorded points is converted in kilometers. If the final length is greater than 2000 km, the time-step corresponds to an AR event.
3.3. Precipitation Associated with AR
3.4. Long Term Trend Estimation
4. Climatology and Long-Term Trends
4.1. Localization of ARs
4.2. Precipitation Related to AR
5. Case Study: 26 August 2014
5.1. Conceptual Schemes of Jet Stream Dynamics and Stratosphere-Troposphere Exchange
5.1.1. Jet Streams and Ageostrophic Circulations
5.1.2. Extratropical Cyclones
5.1.3. PV and Stratospheric Intrusions
5.2. Synoptic Context and Temporal Evolution
5.3. Atmospheric River, Jet Stream, and Tropopause Deformation
5.4. Vertical Description of Water Vapor and Liquid and Ice Clouds
5.5. Clouds and Precipitation, Evolution until Central France
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hodnebrog, Ø.; Myhre, G.; Samset, B.H.; Alterskjær, K.; Andrews, T.; Boucher, O.; Faluvegi, G.; Fläschner, D.; Forster, P.M.; Kasoar, M.; et al. Water Vapour Adjustments and Responses Differ between Climate Drivers. Atmos. Chem. Phys. 2019, 19, 12887–12899. [Google Scholar] [CrossRef] [Green Version]
- Voigt, A.; Bony, S.; Dufresne, J.-L.; Stevens, B. The Radiative Impact of Clouds on the Shift of the Intertropical Convergence Zone. Geophys. Res. Lett. 2014, 41, 4308–4315. [Google Scholar] [CrossRef] [Green Version]
- O’Gorman, P.A.; Muller, C.J. How Closely Do Changes in Surface and Column Water Vapor Follow Clausius–Clapeyron Scaling in Climate Change Simulations? Environ. Res. Lett. 2010, 5, 025207. [Google Scholar] [CrossRef]
- Baray, J.L.; Pointin, Y.; Van Baelen, J.; Lothon, M.; Campistron, B.; Cammas, J.P.; Masson, O.; Colomb, A.; Hervier, C.; Bezombes, Y.; et al. Case Study and Climatological Analysis of Upper-Tropospheric Jet Stream and Stratosphere-Troposphere Exchanges Using VHF Profilers and Radionuclide Measurements in France. J. Appl. Meteorol. Climatol. 2017, 56, 3081–3097. [Google Scholar] [CrossRef]
- Sherwood, S.C.; Roca, R.; Weckwerth, T.M.; Andronova, N.G. Tropospheric Water Vapor, Convection, and Climate. Rev. Geophys. 2010, 48, RG2001. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Newell, R.E. A Proposed Algorithm for Moisture Fluxes from Atmospheric Rivers. Mon. Weather Rev. 1998, 126, 725. [Google Scholar] [CrossRef]
- Knippertz, P.; Wernli, H. A Lagrangian Climatology of Tropical Moisture Exports to the Northern Hemispheric Extratropics. J. Clim. 2010, 23, 987–1003. [Google Scholar] [CrossRef] [Green Version]
- Ralph, F.M.; Cannon, F.; Tallapragada, V.; Davis, C.A.; Doyle, J.D.; Pappenberger, F.; Subramanian, A.; Wilson, A.M.; Lavers, D.A.; Reynolds, C.A.; et al. West Coast Forecast Challenges and Development of Atmospheric River Reconnaissance. Bull. Am. Meteorol. Soc. 2020, 101, E1357–E1377. [Google Scholar] [CrossRef]
- Behringer, D.; Chiao, S. Numerical Investigations of Atmospheric Rivers and the Rain Shadow over the Santa Clara Valley. Atmosphere 2019, 10, 114. [Google Scholar] [CrossRef] [Green Version]
- Bozkurt, D.; Rondanelli, R.; Marín, J.C.; Garreaud, R. Foehn Event Triggered by an Atmospheric River Underlies Record-Setting Temperature Along Continental Antarctica. J. Geophys. Res. Atmos. 2018, 123, 3871–3892. [Google Scholar] [CrossRef]
- Mattingly, K.S.; Mote, T.L.; Fettweis, X. Atmospheric River Impacts on Greenland Ice Sheet Surface Mass Balance. J. Geophys. Res. Atmos. 2018, 123, 8538–8560. [Google Scholar] [CrossRef] [Green Version]
- Douluri, D.L.; Chakraborty, A. Assessment of WRF-ARW Model Parameterization Schemes for Extreme Heavy Precipitation Events Associated with Atmospheric Rivers over West Coast of India. Atmos. Res. 2021, 249, 105330. [Google Scholar] [CrossRef]
- Lavers, D.A.; Villarini, G. The Nexus between Atmospheric Rivers and Extreme Precipitation across Europe. Geophys. Res. Lett. 2013, 40, 3259–3264. [Google Scholar] [CrossRef]
- Pasquier, J.T.; Pfahl, S.; Grams, C.M. Modulation of Atmospheric River Occurrence and Associated Precipitation Extremes in the North Atlantic Region by European Weather Regimes. Geophys. Res. Lett. 2019, 46, 1014–1023. [Google Scholar] [CrossRef] [Green Version]
- Ramos, A.M.; Trigo, R.M.; Tomé, R.; Liberato, M.L.R. Impacts of Atmospheric Rivers in Extreme Precipitation on the European Macaronesian Islands. Atmosphere 2018, 9, 325. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, L.; Günther, G.; Li, D.; Stein, O.; Wu, X.; Griessbach, S.; Heng, Y.; Konopka, P.; Müller, R.; Vogel, B.; et al. From ERA-Interim to ERA5: The Considerable Impact of ECMWF’s next-Generation Reanalysis on Lagrangian Transport Simulations. Atmos. Chem. Phys. 2019, 19, 3097–3124. [Google Scholar] [CrossRef] [Green Version]
- Baray, J.-L.; Deguillaume, L.; Colomb, A.; Sellegri, K.; Freney, E.; Rose, C.; Van Baelen, J.; Pichon, J.-M.; Picard, D.; Fréville, P.; et al. Cézeaux-Aulnat-Opme-Puy De Dôme: A Multi-Site for the Long-Term Survey of the Tropospheric Composition and Climate Change. Atmos. Meas. Tech. 2020, 13, 3413–3445. [Google Scholar] [CrossRef]
- Bevis, M.; Businger, S.; Herring, T.A.; Rocken, C.; Anthes, R.A.; Ware, R.H. GPS Meteorology: Remote Sensing of Atmospheric Water Vapor Using the Global Positioning System. J. Geophys. Res. Atmos. 1992, 97, 15787–15801. [Google Scholar] [CrossRef]
- Bock, O.; Bosser, P.; Bourcy, T.; David, L.; Goutail, F.; Hoareau, C.; Keckhut, P.; Legain, D.; Pazmino, A.; Pelon, J.; et al. Accuracy Assessment of Water Vapour Measurements from in Situ and Remote Sensing Techniques during the DEMEVAP 2011 Campaign at OHP. Atmos. Meas. Tech. 2013, 6, 2777–2802. [Google Scholar] [CrossRef] [Green Version]
- Raupach, T.H.; Berne, A. Correction of Raindrop Size Distributions Measured by Parsivel Disdrometers, Using a Two-Dimensional Video Disdrometer as a Reference. Atmos. Meas. Tech. 2015, 8, 343–365. [Google Scholar] [CrossRef] [Green Version]
- Parkinson, C.L. Aqua: An Earth-Observing Satellite Mission to Examine Water and Other Climate Variables. IEEE Trans. Geosci. Remote Sens. 2003, 41, 173–183. [Google Scholar] [CrossRef]
- Ceccaldi, M.; Delanoë, J.; Hogan, R.J.; Pounder, N.L.; Protat, A.; Pelon, J. From CloudSat-CALIPSO to EarthCare: Evolution of the DARDAR Cloud Classification and Its Comparison to Airborne Radar-Lidar Observations. J. Geophys. Res. Atmos. 2013, 118, 7962–7981. [Google Scholar] [CrossRef]
- Delanoë, J.; Hogan, R.J. Combined CloudSat-CALIPSO-MODIS Retrievals of the Properties of Ice Clouds. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Huffman, G.J.; Adler, R.F.; Morrissey, M.M.; Bolvin, D.T.; Curtis, S.; Joyce, R.; McGavock, B.; Susskind, J. Global Precipitation at One-Degree Daily Resolution from Multisatellite Observations. J. Hydrometeorol. 2001, 2, 36. [Google Scholar] [CrossRef] [Green Version]
- Hillger, D.W.; Schmit, T.J. Observing Systems: The GOES-13 Science Test: A Synopsis. Bull. Am. Meteorol. Soc. 2009, 90, 592–597. [Google Scholar] [CrossRef]
- Norris, J.R.; Ralph, F.M.; Demirdjian, R.; Cannon, F.; Blomquist, B.; Fairall, C.W.; Spackman, J.R.; Tanelli, S.; Waliser, D.E. The Observed Water Vapor Budget in an Atmospheric River over the Northeast Pacific. J. Hydrometeorol. 2020, 21, 2655–2673. [Google Scholar] [CrossRef]
- Ralph, F.M.; Dettinger, M.D. Storms, Floods, and the Science of Atmospheric Rivers. EOS Trans. Am. Geophys. Union 2011, 92, 265–266. [Google Scholar] [CrossRef] [Green Version]
- Rutz, J.J.; Steenburgh, W.J.; Ralph, F.M. Climatological Characteristics of Atmospheric Rivers and Their Inland Penetration over the Western United States. Mon. Weather Rev. 2014, 142, 905–921. [Google Scholar] [CrossRef]
- Rutz, J.J.; Shields, C.A.; Lora, J.M.; Payne, A.E.; Guan, B.; Ullrich, P.; O’Brien, T.; Leung, L.R.; Ralph, F.M.; Wehner, M.; et al. The Atmospheric River Tracking Method Intercomparison Project (ARTMIP): Quantifying Uncertainties in Atmospheric River Climatology. J. Geophys. Res. Atmos. 2019, 124, 13,777–13,802. [Google Scholar] [CrossRef]
- Guan, B.; Waliser, D.E. Detection of Atmospheric Rivers: Evaluation and Application of an Algorithm for Global Studies. J. Geophys. Res. Atmos. 2015, 120, 12514–12535. [Google Scholar] [CrossRef]
- Rutz, J.J.; Steenburgh, W.J.; Ralph, F.M. The Inland Penetration of Atmospheric Rivers over Western North America: A Lagrangian Analysis. Mon. Weather Rev. 2015, 143, 1924–1944. [Google Scholar] [CrossRef]
- Lora, J.M.; Shields, C.A.; Rutz, J.J. Consensus and Disagreement in Atmospheric River Detection: ARTMIP Global Catalogues. Geophys. Res. Lett. 2020, 47, e2020GL089302. [Google Scholar] [CrossRef]
- Ralph, F.M.; Rutz, J.J.; Cordeira, J.M.; Dettinger, M.D.; Anderson, M.; Reynolds, D.; Schick, L.J.; Smallcomb, C. A Scale to Characterize the Strength and Impacts of Atmospheric Rivers. Bull. Am. Meteorol. Soc. 2019, 100, 269–289. [Google Scholar] [CrossRef]
- Lavers, D.A.; Villarini, G. The Contribution of Atmospheric Rivers to Precipitation in Europe and the United States. J. Hydrol. 2015, 522, 382–390. [Google Scholar] [CrossRef]
- Palmen, E.; Newton, C.W. A Study of the Mean Wind and Temperature Distributionin the Vicinity of the Polar Front in Winter. J. Meteorol. 1948, 5, 220–223. [Google Scholar] [CrossRef] [Green Version]
- Mattocks, C.; Bleck, R. Jet Streak Dynamics and Geostrophic Adjustment Processes during the Initial Stages of Lee Cyclogenesis. Mon. Weather Rev. 1986, 114, 2033–2056. [Google Scholar] [CrossRef] [Green Version]
- Holton, J.R.; Haynes, P.H.; McIntyre, M.E.; Douglass, A.R.; Rood, R.B.; Pfister, L. Stratosphere-Troposphere Exchange. Rev. Geophys. 1995, 33, 403–439. [Google Scholar] [CrossRef]
- Sprenger, M.; Wernli, H.; Bourqui, M. Stratosphere Troposphere Exchange and Its Relation to Potential Vorticity Streamers and Cutoffs near the Extratropical Tropopause. J. Atmos. Sci. 2007, 64, 1587. [Google Scholar] [CrossRef]
- Boettcher, M.; Schäfler, A.; Sprenger, M.; Sodemann, H.; Kaufmann, S.; Voigt, C.; Schlager, H.; Summa, D.; Di Girolamo, P.; Nerini, D.; et al. Lagrangian Matches between Observations from Aircraft, Lidar and Radar in a Warm Conveyor Belt Crossing Orography. Atmos. Chem. Phys. 2021, 21, 5477–5498. [Google Scholar] [CrossRef]
- Gettelman, A.; Hoor, P.; Pan, L.L.; Randel, W.J.; Hegglin, M.I.; Birner, T. The Extratropicam Upper Troposphere and Lower Stratosphere. Rev. Geophys. 2011, 49. [Google Scholar] [CrossRef] [Green Version]
- Hoskins, B.J.; McIntyre, M.E.; Robertson, A.W. On the Use and Significance of Isentropic Potential Vorticity Maps. Q. J. R. Meteorol. Soc. 1985, 111, 877–946. [Google Scholar] [CrossRef]
- Homeyer, C.R.; Bowman, K.P.; Pan, L.L.; Zondlo, M.A.; Bresch, J.F. Convective Injection into Stratospheric Intrusions. J. Geophys. Res. Atmos. 2011, 116, D23304. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, L.T.; Rogers, R.F.; Reasor, P.D. Thermodynamic and Kinematic Influences on Precipitation Symmetry in Sheared Tropical Cyclones: Bertha and Cristobal (2014). Mon. Weather Rev. 2017, 145, 4423–4446. [Google Scholar] [CrossRef]
- Funatsu, B.M.; Waugh, D.W. Connections between Potential Vorticity Intrusions and Convection in the Eastern Tropical Pacific. J. Atmos. Sci. 2008, 65, 987. [Google Scholar] [CrossRef]
- Labbouz, L.; Van Baelen, J.; Duroure, C. Investigation of the Links between Water Vapor Field Evolution and Rain Rate Based on 5 Years of Measurements at a Midlatitude Site. Geophys. Res. Lett. 2015, 42, 9538–9545. [Google Scholar] [CrossRef]
- Baray, J.-L.; Courcoux, Y.; Keckhut, P.; Portafaix, T.; Tulet, P.; Cammas, J.-P.; Hauchecorne, A.; Godin Beekmann, S.; De Mazière, M.; Hermans, C.; et al. Maïdo Observatory: A New High-Altitude Station Facility at Reunion Island (21° S, 55° E) for Long-Term Atmospheric Remote Sensing and in Situ Measurements. Atmos. Meas. Tech. 2013, 6, 2865–2877. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doiteau, B.; Dournaux, M.; Montoux, N.; Baray, J.-L. Atmospheric Rivers and Associated Precipitation over France and Western Europe: 1980–2020 Climatology and Case Study. Atmosphere 2021, 12, 1075. https://doi.org/10.3390/atmos12081075
Doiteau B, Dournaux M, Montoux N, Baray J-L. Atmospheric Rivers and Associated Precipitation over France and Western Europe: 1980–2020 Climatology and Case Study. Atmosphere. 2021; 12(8):1075. https://doi.org/10.3390/atmos12081075
Chicago/Turabian StyleDoiteau, Benjamin, Meredith Dournaux, Nadège Montoux, and Jean-Luc Baray. 2021. "Atmospheric Rivers and Associated Precipitation over France and Western Europe: 1980–2020 Climatology and Case Study" Atmosphere 12, no. 8: 1075. https://doi.org/10.3390/atmos12081075
APA StyleDoiteau, B., Dournaux, M., Montoux, N., & Baray, J. -L. (2021). Atmospheric Rivers and Associated Precipitation over France and Western Europe: 1980–2020 Climatology and Case Study. Atmosphere, 12(8), 1075. https://doi.org/10.3390/atmos12081075