Ambient Air Pollution Exposure and Risk of Developmental Delay in Children and Teenagers in Taiwan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Study Subjects
2.3. Exposure Assessment
2.4. Demographics and Baseline Comorbidity
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Davis, M.E.; Laden, F.; Hart, J.E.; Garshick, E.; Smith, T.J. Economic activity and trends in ambient air pollution. Environ. Health Perspect. 2010, 118, 614–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, K.; Batterman, S. Air pollution and health risks due to vehicle traffic. Sci. Total Environ. 2013, 450–451, 307–316. [Google Scholar] [CrossRef] [Green Version]
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef] [Green Version]
- Lelieveld, J.; Evans, J.S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 2015, 525, 367–371. [Google Scholar] [CrossRef] [PubMed]
- Block, M.L.; Calderon-Garciduenas, L. Air pollution: Mechanisms of neuroinflammation and CNS disease. Trends Neurosci. 2009, 32, 506–516. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, R.W.; Carey, I.M.; Kent, A.J.; van Staa, T.P.; Anderson, H.R.; Cook, D.G. Long-term exposure to outdoor air pollution and incidence of cardiovascular diseases. Epidemiology 2013, 24, 44–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gehring, U.; Heinrich, J.; Kramer, U.; Grote, V.; Hochadel, M.; Sugiri, D.; Kraft, M.; Rauchfuss, K.; Eberwein, H.G.; Wichmann, H.E. Long-term exposure to ambient air pollution and cardiopulmonary mortality in women. Epidemiology 2006, 17, 545–551. [Google Scholar] [CrossRef] [PubMed]
- Tiotiu, A.I.; Novakova, P.; Nedeva, D.; Chong-Neto, H.J.; Novakova, S.; Steiropoulos, P.; Kowal, K. Impact of Air Pollution on Asthma Outcomes. Int. J. Environ. Res. Public Health 2020, 17, 6212. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.H.; Hsu, P.Y.; Lin, C.J.; Lin, C.L.; Juo, S.H.; Liang, C.L. Traffic-related air pollutants increase the risk for age-related macular degeneration. J. Investig. Med. 2019, 67, 1076–1081. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.C.; Chen, C.Y.; Hsu, Y.C.; Chou, R.H.; Teng, C.J.; Chiu, C.H.; Hsu, C.Y.; Muo, C.H.; Chang, M.Y.; Chang, K.H. Increased risk of incident nasopharyngeal carcinoma with exposure to air pollution. PLoS ONE 2018, 13, e0204568. [Google Scholar] [CrossRef] [PubMed]
- Dickey, J.H. Part VII. Air pollution: Overview of sources and health effects. Dis. Mon. 2000, 46, 566–589. [Google Scholar] [CrossRef]
- Lewtas, J. Air pollution combustion emissions: Characterization of causative agents and mechanisms associated with cancer, reproductive, and cardiovascular effects. Mutat. Res. 2007, 636, 95–133. [Google Scholar] [CrossRef]
- Kim, E.; Park, H.; Park, E.A.; Hong, Y.C.; Ha, M.; Kim, H.C.; Ha, E.H. Particulate matter and early childhood body weight. Environ. Int. 2016, 94, 591–599. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.; Stieb, D.M.; Chen, Y. Coarse particulate matter and hospitalization for respiratory infections in children younger than 15 years in Toronto: A case-crossover analysis. Pediatrics 2005, 116, e235–e240. [Google Scholar] [CrossRef] [Green Version]
- Roy, A.; Hu, W.; Wei, F.; Korn, L.; Chapman, R.S.; Zhang, J.J. Ambient particulate matter and lung function growth in Chinese children. Epidemiology 2012, 23, 464–472. [Google Scholar] [CrossRef] [Green Version]
- Cui, X.; Li, Z.; Teng, Y.; Barkjohn, K.K.; Norris, C.L.; Fang, L.; Daniel, G.N.; He, L.; Lin, L.; Wang, Q.; et al. Association Between Bedroom Particulate Matter Filtration and Changes in Airway Pathophysiology in Children With Asthma. JAMA Pediatr. 2020, 174, 533–542. [Google Scholar] [CrossRef] [PubMed]
- Jung, K.H.; Hsu, S.I.; Yan, B.; Moors, K.; Chillrud, S.N.; Ross, J.; Wang, S.; Perzanowski, M.S.; Kinney, P.L.; Whyatt, R.M.; et al. Childhood exposure to fine particulate matter and black carbon and the development of new wheeze between ages 5 and 7 in an urban prospective cohort. Environ. Int. 2012, 45, 44–50. [Google Scholar] [CrossRef] [Green Version]
- Zhu, N.; Li, H.; Han, M.; Guo, L.; Chen, L.; Yun, Y.; Guo, Z.; Li, G.; Sang, N. Environmental nitrogen dioxide (NO2) exposure influences development and progression of ischemic stroke. Toxicol. Lett. 2012, 214, 120–130. [Google Scholar] [CrossRef]
- Li, H.; Xin, X. Nitrogen dioxide (NO(2)) pollution as a potential risk factor for developing vascular dementia and its synaptic mechanisms. Chemosphere 2013, 92, 52–58. [Google Scholar] [CrossRef]
- Becerra, T.A.; Wilhelm, M.; Olsen, J.; Cockburn, M.; Ritz, B. Ambient air pollution and autism in Los Angeles county, California. Environ. Health Perspect. 2013, 121, 380–386. [Google Scholar] [CrossRef]
- Volk, H.E.; Kerin, T.; Lurmann, F.; Hertz-Picciotto, I.; McConnell, R.; Campbell, D.B. Autism spectrum disorder: Interaction of air pollution with the MET receptor tyrosine kinase gene. Epidemiology 2014, 25, 44–47. [Google Scholar] [CrossRef] [Green Version]
- Grandjean, P.; Landrigan, P.J. Neurobehavioural effects of developmental toxicity. Lancet Neurol. 2014, 13, 330–338. [Google Scholar] [CrossRef] [Green Version]
- Guxens, M.; Sunyer, J. A review of epidemiological studies on neuropsychological effects of air pollution. Swiss Med. Wkly. 2012, 141, w13322. [Google Scholar] [CrossRef] [PubMed]
- Perera, F.P.; Wang, S.; Rauh, V.; Zhou, H.; Stigter, L.; Camann, D.; Jedrychowski, W.; Mroz, E.; Majewska, R. Prenatal exposure to air pollution, maternal psychological distress, and child behavior. Pediatrics 2013, 132, e1284–e1294. [Google Scholar] [CrossRef] [Green Version]
- Lovasi, G.S.; Eldred-Skemp, N.; Quinn, J.W.; Chang, H.W.; Rauh, V.A.; Rundle, A.; Orjuela, M.A.; Perera, F.P. Neighborhood Social Context and Individual Polycyclic Aromatic Hydrocarbon Exposures Associated with Child Cognitive Test Scores. J. Child. Fam. Stud. 2014, 23, 785–799. [Google Scholar] [CrossRef] [Green Version]
- Gong, T.; Almqvist, C.; Bolte, S.; Lichtenstein, P.; Anckarsater, H.; Lind, T.; Lundholm, C.; Pershagen, G. Exposure to air pollution from traffic and neurodevelopmental disorders in Swedish twins. Twin Res. Hum. Genet. 2014, 17, 553–562. [Google Scholar] [CrossRef] [Green Version]
- Suades-Gonzalez, E.; Gascon, M.; Guxens, M.; Sunyer, J. Air Pollution and Neuropsychological Development: A Review of the Latest Evidence. Endocrinology 2015, 156, 3473–3482. [Google Scholar] [CrossRef] [Green Version]
- Faniran, A.O.; Peat, J.K.; Woolcock, A.J. Measuring persistent cough in children in epidemiological studies: Development of a questionnaire and assessment of prevalence in two countries. Chest 1999, 115, 434–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.-Y.; Hung, Y.-T.; Chuang, Y.-L.; Chen, Y.-J.; Weng, W.-S.; Liu, J.-S.; Liang, K.-Y. Incorporating Development Stratification of Taiwan Townships into Sampling Design of Large Scale Health Interview Surve. J. Health Manag. 2006, 4, 1–22. [Google Scholar] [CrossRef]
- Franchini, M.; Mannucci, P.M. Thrombogenicity and cardiovascular effects of ambient air pollution. Blood 2011, 118, 2405–2412. [Google Scholar] [CrossRef]
- Brook, R.D.; Rajagopalan, S.; Pope, C.A., 3rd; Brook, J.R.; Bhatnagar, A.; Diez-Roux, A.V.; Holguin, F.; Hong, Y.; Luepker, R.V.; Mittleman, M.A.; et al. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation 2010, 121, 2331–2378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nemmar, A.; Hoet, P.H.; Dinsdale, D.; Vermylen, J.; Hoylaerts, M.F.; Nemery, B. Diesel exhaust particles in lung acutely enhance experimental peripheral thrombosis. Circulation 2003, 107, 1202–1208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucking, A.J.; Lundback, M.; Mills, N.L.; Faratian, D.; Barath, S.L.; Pourazar, J.; Cassee, F.R.; Donaldson, K.; Boon, N.A.; Badimon, J.J.; et al. Diesel exhaust inhalation increases thrombus formation in man. Eur. Heart J. 2008, 29, 3043–3051. [Google Scholar] [CrossRef]
- Nadel, J.A.; Tamplin, B.; Tokiwa, Y. Mechanism of Bronchoconstriction. During Inhalation of Sulfur Dioxide; Reflex Involving Vagus Nerves. Arch. Environ. Health 1965, 10, 175–178. [Google Scholar] [CrossRef] [PubMed]
- Nadel, J.A.; Salem, H.; Tamplin, B.; Tokiwa, Y. Mechanism of Bronchoconstriction during Inhalation of Sulfur Dioxide. J. Appl. Physiol. 1965, 20, 164–167. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Wang, Y.; Wang, H.; Cao, J. Sesamol alleviates chronic intermittent hypoxia-induced cognitive deficits via inhibiting oxidative stress and inflammation in rats. Neuroreport 2021, 32, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Rumman, M.; Pandey, S.; Singh, B.; Gupta, M.; Ubaid, S.; Mahdi, A.A. Genistein Prevents Hypoxia-Induced Cognitive Dysfunctions by Ameliorating Oxidative Stress and Inflammation in the Hippocampus. Neurotox. Res. 2021. [Google Scholar] [CrossRef] [PubMed]
- Merelli, A.; Repetto, M.; Lazarowski, A.; Auzmendi, J. Hypoxia, Oxidative Stress, and Inflammation: Three Faces of Neurodegenerative Diseases. J. Alzheimers Dis. 2021, 82, S109–S126. [Google Scholar] [CrossRef]
- McGarry, T.; Biniecka, M.; Veale, D.J.; Fearon, U. Hypoxia, oxidative stress and inflammation. Free Radic. Biol. Med. 2018, 125, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Migliore, L.; Coppede, F. Environmental-induced oxidative stress in neurodegenerative disorders and aging. Mutat. Res. 2009, 674, 73–84. [Google Scholar] [CrossRef]
- Berr, C.; Balansard, B.; Arnaud, J.; Roussel, A.M.; Alpérovitch, A. Cognitive decline is associated with systemic oxidative stress: The EVA study. Etude du Vieillissement Artériel. J. Am. Geriatr. Soc. 2000, 48, 1285–1291. [Google Scholar] [CrossRef]
- Bayir, H.; Kagan, V.E.; Tyurina, Y.Y.; Tyurin, V.; Ruppel, R.A.; Adelson, P.D.; Graham, S.H.; Janesko, K.; Clark, R.S.; Kochanek, P.M. Assessment of antioxidant reserves and oxidative stress in cerebrospinal fluid after severe traumatic brain injury in infants and children. Pediatr. Res. 2002, 51, 571–578. [Google Scholar] [CrossRef] [Green Version]
- Hamed, S.A.; Hamed, E.A.; Zakary, M.M. Oxidative stress and S-100B protein in children with bacterial meningitis. BMC Neurol. 2009, 9, 51. [Google Scholar] [CrossRef] [Green Version]
- Maher, P.; Schubert, D. Signaling by reactive oxygen species in the nervous system. Cell Mol. Life Sci. 2000, 57, 1287–1305. [Google Scholar] [CrossRef] [PubMed]
- Emerit, J.; Edeas, M.; Bricaire, F. Neurodegenerative diseases and oxidative stress. Biomed. Pharm. 2004, 58, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.L.; Chen, P.C.; Lu, C.H.; Hsu, N.W.; Chou, K.H.; Lin, C.P.; Wu, R.W.; Li, S.H.; Cheng, Y.F.; Lin, W.C. Structural and cognitive deficits in chronic carbon monoxide intoxication: A voxel-based morphometry study. BMC Neurol. 2013, 13, 129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, K.H.; Chang, M.Y.; Muo, C.H.; Wu, T.N.; Chen, C.Y.; Kao, C.H. Increased risk of dementia in patients exposed to nitrogen dioxide and carbon monoxide: A population-based retrospective cohort study. PLoS ONE 2014, 9, e103078. [Google Scholar] [CrossRef] [PubMed]
- Linsell, L.; Malouf, R.; Morris, J.; Kurinczuk, J.J.; Marlow, N. Prognostic Factors for Poor Cognitive Development in Children Born Very Preterm or With Very Low Birth Weight: A Systematic Review. JAMA Pediatr. 2015, 169, 1162–1172. [Google Scholar] [CrossRef] [Green Version]
- Aarnoudse-Moens, C.S.; Weisglas-Kuperus, N.; van Goudoever, J.B.; Oosterlaan, J. Meta-analysis of neurobehavioral outcomes in very preterm and/or very low birth weight children. Pediatrics 2009, 124, 717–728. [Google Scholar] [CrossRef]
- Pepes, S.E.; Draper, A.; Jackson, G.M.; Jackson, S.R. Effects of age on motor excitability measures from children and adolescents with Tourette syndrome. Dev. Cogn. Neurosci. 2016, 19, 78–86. [Google Scholar] [CrossRef]
- Martino, D.; Johnson, I.; Leckman, J.F. What Does Immunology Have to Do With Normal Brain Development and the Pathophysiology Underlying Tourette Syndrome and Related Neuropsychiatric Disorders? Front. Neurol. 2020, 11, 567407. [Google Scholar] [CrossRef]
- Carlsten, C.; Rider, C.F. Traffic-related air pollution and allergic disease: An update in the context of global urbanization. Curr. Opin. Allergy Clin. Immunol. 2017, 17, 85–89. [Google Scholar] [CrossRef]
- Shou-Hsia, C.; Tung-Liang, C. The Effect of Universal Health Insurance on Health Care Utilization in Taiwan: Results From a Natural Experiment. JAMA 1997, 278, 89–93. [Google Scholar] [CrossRef]
- Huang, N.; Yip, W.; Chang, H.J.; Chou, Y.J. Trends in rural and urban differentials in incidence rates for ruptured appendicitis under the National Health Insurance in Taiwan. Public Health 2006, 120, 1055–1063. [Google Scholar] [CrossRef] [PubMed]
- Hudnell, H.K.; Skalik, I.; Otto, D.; House, D.; Subrt, P.; Sram, R. Visual contrast sensitivity deficits in Bohemian children. Neurotoxicology 1996, 17, 615–628. [Google Scholar] [PubMed]
- Carratu, M.R.; Cagiano, R.; De Salvia, M.A.; Trabace, L.; Cuomo, V. Developmental neurotoxicity of carbon monoxide. Arch. Toxicol. Suppl. 1995, 17, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Lertxundi, A.; Andiarena, A.; Martinez, M.D.; Ayerdi, M.; Murcia, M.; Estarlich, M.; Guxens, M.; Sunyer, J.; Julvez, J.; Ibarluzea, J. Prenatal exposure to PM2.5 and NO2 and sex-dependent infant cognitive and motor development. Environ. Res. 2019, 174, 114–121. [Google Scholar] [CrossRef]
Without DD (n = 11,857) | With DD (n = 2888) | p | Total (n = 14,745) | |||||
---|---|---|---|---|---|---|---|---|
Age (years) | Mean ± SD | 8.07 ± 2.04 | 8.10 ± 2.03 | 0.479 | 8.08 ± 2.04 | |||
Male | 8523 | 71.9% | 2074 | 71.8% | 0.961 | 10,597 | 71.9% | |
Urbanization | ||||||||
High | 7492 | 63.2% | 2033 | 70.4% | <0.001 | 9525 | 64.6% | |
Medium | 3520 | 29.7% | 717 | 24.8% | 4237 | 28.7% | ||
Low | 845 | 7.1% | 138 | 4.8% | 983 | 6.7% | ||
Parental occupation | ||||||||
White-collar | 7752 | 65.4% | 1911 | 66.2% | 0.506 | 9663 | 65.5% | |
Blue-collar | 2268 | 19.1% | 525 | 18.2% | 2793 | 18.9% | ||
Others | 1837 | 15.5% | 452 | 15.7% | 2289 | 15.5% | ||
Low birth weight | 49 | 0.4% | 23 | 0.8% | 0.012 | 72 | 0.5% | |
Premature birth | 304 | 2.6% | 122 | 4.2% | <0.001 | 426 | 2.9% | |
Tourette syndrome | 34 | 0.3% | 33 | 1.1% | <0.001 | 67 | 0.5% | |
Yearly average of SO2 (ppb) | ||||||||
Low | 3993 | 33.7% | 922 | 31.9% | 0.004 | 4915 | 33.3% | |
Medium | 3988 | 33.6% | 927 | 32.1% | 4915 | 33.3% | ||
High | 3876 | 32.7% | 1039 | 36.0% | 4915 | 33.3% | ||
Yearly average of CO (ppm) | ||||||||
Low | 4049 | 34.1% | 866 | 30.0% | <0.001 | 4915 | 33.3% | |
Medium | 3951 | 33.3% | 964 | 33.4% | 4915 | 33.3% | ||
High | 3857 | 32.5% | 1058 | 36.6% | 4915 | 33.3% | ||
Yearly average of NO2 (ppb) | ||||||||
Low | 4117 | 34.7% | 798 | 27.6% | <0.001 | 4915 | 33.3% | |
Medium | 3923 | 33.1% | 992 | 34.3% | 4915 | 33.3% | ||
High | 3817 | 32.2% | 1098 | 38.0% | 4915 | 33.3% |
Pollutant Levels | SO2 | CO | NO2 | |||||
---|---|---|---|---|---|---|---|---|
aOR | 95% CI | aOR | 95% CI | aOR | 95% CI | |||
Low birth weight | ||||||||
no | Low | 1.00 | 1.00 | 1.00 | ||||
Medium | 0.98 | 0.89–1.09 | 1.10 | 0.99–1.22 | 1.26 | 1.14–1.40 | ||
High | 1.12 | 1.01–1.24 | 1.21 | 1.09–1.34 | 1.40 | 1.26–1.56 | ||
Yes | Low | 1.00 | 1.00 | 1.00 | ||||
Medium | 0.09 | 0.01–0.61 | 0.77 | 0.16–3.61 | 0.83 | 0.19–3.62 | ||
High | 0.52 | 0.14–1.93 | 0.72 | 0.18–2.86 | 0.81 | 0.20–3.32 | ||
Premature birth | ||||||||
no | Low | 1.00 | 1.00 | 1.00 | ||||
Medium | 0.95 | 0.86–1.06 | 1.08 | 0.98–1.20 | 1.25 | 1.12–1.39 | ||
High | 1.10 | 0.99–1.22 | 1.17 | 1.06–1.30 | 1.36 | 1.22–1.51 | ||
Yes | Low | 1.00 | 1.00 | 1.00 | ||||
Medium | 1.57 | 0.91–2.71 | 1.80 | 1.02–3.18 | 1.72 | 0.98–3.02 | ||
High | 1.68 | 0.98–2.87 | 2.71 | 1.54–4.77 | 2.87 | 1.62–5.10 | ||
Tourette syndrome | ||||||||
no | Low | 1.00 | 1.00 | 1.00 | ||||
Medium | 0.97 | 0.87–1.07 | 1.11 | 1.00–1.23 | 1.27 | 1.14–1.40 | ||
High | 1.11 | 1.01–1.23 | 1.20 | 1.09–1.33 | 1.39 | 1.25–1.54 | ||
Yes | Low | 1.00 | 1.00 | 1.00 | ||||
Medium | 2.09 | 0.50–8.72 | 0.63 | 0.16–2.54 | 1.03 | 0.25–4.33 | ||
High | 2.72 | 0.69–10.79 | 2.39 | 0.60–9.52 | 3.87 | 0.84–17.83 |
cOR | Model 1 | Model 2 | Model 3 | |||||
---|---|---|---|---|---|---|---|---|
aOR | 95% CI | aOR | 95% CI | aOR | 95% CI | |||
Age | 1.01 | 1.01 | 0.99–1.03 | 1.01 | 0.99–1.03 | 1.01 | 0.99–1.03 | |
Sex | ||||||||
Male | 1.00 | 1.00 | 1.00 | 1.00 | ||||
Female | 1.00 | 1.01 | 0.92–1.10 | 1.01 | 0.92–1.10 | 1.01 | 0.92–1.10 | |
Urbanization | ||||||||
High | 1.00 | 1.00 | 1.00 | 1.00 | ||||
Medium | 0.71 | 0.75 | 0.68–0.82 | 0.76 | 0.70–0.84 | 0.78 | 0.70–0.85 | |
Low | 0.60 | 0.62 | 0.51–0.75 | 0.63 | 0.52–0.77 | 0.67 | 0.55–0.81 | |
Parental occupation | ||||||||
White-collar | 1.00 | 1.00 | 1.00 | 1.00 | ||||
Blue-collar | 0.94 | 0.99 | 0.88–1.10 | 0.99 | 0.89–1.11 | 1.01 | 0.90–1.13 | |
Others | 1.00 | 1.05 | 0.94–1.18 | 1.06 | 0.94–1.19 | 1.06 | 0.94–1.19 | |
Low birth weight | ||||||||
No | 1.00 | 1.00 | 1.00 | 1.00 | ||||
Yes | 1.94 | 1.46 | 0.87–2.43 | 1.44 | 0.86–2.41 | 1.45 | 0.87–2.42 | |
Premature birth | ||||||||
No | 1.00 | 1.00 | 1.00 | 1.00 | ||||
Yes | 1.68 | 1.64 | 1.32–2.04 | 1.64 | 1.32–2.05 | 1.64 | 1.32–2.05 | |
Tourette syndrome | ||||||||
No | 1.00 | 1.00 | 1.00 | 1.00 | ||||
Yes | 4.02 | 3.95 | 2.44–6.40 | 3.93 | 2.43–6.38 | 3.92 | 2.42–6.36 | |
SO2 | ||||||||
Low | 1.00 | 1.00 | ||||||
Medium | 1.01 | 0.97 | 0.88–1.08 | |||||
High | 1.16 | 1.12 | 1.01–1.24 | |||||
CO | ||||||||
Low | 1.00 | 1.00 | ||||||
Medium | 1.14 | 1.10 | 1.00–1.22 | |||||
High | 1.28 | 1.21 | 1.09–1.34 | |||||
NO2 | ||||||||
Low | 1.00 | 1.00 | ||||||
Medium | 1.31 | 1.26 | 1.14–1.40 | |||||
High | 1.48 | 1.40 | 1.26–1.55 |
cOR | 95% CI | p | aOR | 95% CI | p | |
---|---|---|---|---|---|---|
SO2 | ||||||
Low | 1.00 | 1.00 | ||||
Medium | 1.01 | 0.91–1.11 | 0.897 | 0.97 | 0.88–1.08 | 0.594 |
High | 1.16 | 1.06–1.28 | 0.003 | 1.12 | 1.01–1.23 | 0.031 |
CO | ||||||
Low | 1.00 | 1.00 | ||||
Medium | 1.14 | 1.03–1.26 | 0.011 | 1.10 | 1.00–1.22 | 0.060 |
High | 1.28 | 1.16–1.42 | <0.001 | 1.21 | 1.09–1.34 | <0.001 |
NO2 | ||||||
Low | 1.00 | 1.00 | ||||
Medium | 1.31 | 1.18–1.45 | <0.001 | 1.27 | 1.14–1.41 | <0.001 |
High | 1.48 | 1.34–1.64 | <0.001 | 1.40 | 1.26–1.55 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.-L.; Zhang, R.; Tsai, S.C.-S.; Chou, R.-H.; Hsu, Y.-C.; Fan, H.-C.; Muo, C.-H.; Hsu, C.Y.; Chang, K.-H. Ambient Air Pollution Exposure and Risk of Developmental Delay in Children and Teenagers in Taiwan. Atmosphere 2021, 12, 1039. https://doi.org/10.3390/atmos12081039
Chen H-L, Zhang R, Tsai SC-S, Chou R-H, Hsu Y-C, Fan H-C, Muo C-H, Hsu CY, Chang K-H. Ambient Air Pollution Exposure and Risk of Developmental Delay in Children and Teenagers in Taiwan. Atmosphere. 2021; 12(8):1039. https://doi.org/10.3390/atmos12081039
Chicago/Turabian StyleChen, Hung-Lin, Ruihong Zhang, Stella Chin-Shaw Tsai, Ruey-Hwang Chou, Yi-Chao Hsu, Hueng-Chuen Fan, Chih-Hsin Muo, Chung Y. Hsu, and Kuang-Hsi Chang. 2021. "Ambient Air Pollution Exposure and Risk of Developmental Delay in Children and Teenagers in Taiwan" Atmosphere 12, no. 8: 1039. https://doi.org/10.3390/atmos12081039
APA StyleChen, H. -L., Zhang, R., Tsai, S. C. -S., Chou, R. -H., Hsu, Y. -C., Fan, H. -C., Muo, C. -H., Hsu, C. Y., & Chang, K. -H. (2021). Ambient Air Pollution Exposure and Risk of Developmental Delay in Children and Teenagers in Taiwan. Atmosphere, 12(8), 1039. https://doi.org/10.3390/atmos12081039