On the Relationship of Cold Pool and Bulk Shear Magnitudes on Upscale Convective Growth in the Great Plains of the United States
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Cases
2.2. WRF Simulation Setup
2.3. Idealized CM1 Simulations
2.4. Cold Pool Parameters
3. Results
3.1. WRF Predictability of UCG
3.2. WRF Simulated Cold Pool Strength
3.3. WRF Bulk Wind Difference
3.4. WRF UCG Sensitivity to Microphysics
3.5. CM1 Tests of UCG
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blanchard, D.O. Mesoscale convective patterns of the Southern High Plains. Bull. Am. Meteor. Soc. 1990, 71, 994–1005. [Google Scholar] [CrossRef] [Green Version]
- Thompson, R.L.; Edwards, R.; Hart, J.A.; Elmore, K.L.; Markowski, P. Close proximity soundings within supercell environments obtained from the Rapid Update Cycle. Weather Forecast. 2003, 18, 1243–1261. [Google Scholar] [CrossRef] [Green Version]
- Doswell, C.A.; Brooks, H.E.; Kay, M.P. Climatological estimates of daily nontornadic severe thunderstorm probability for the United States. Weather Forecast. 2005, 20, 577–595. [Google Scholar] [CrossRef] [Green Version]
- Gallus, W.A., Jr.; Snook, N.A.; Johnson, E.V. Spring and summer severe weather reports over the Midwest as a function of convective mode: A preliminary study. Weather Forecast. 2008, 23, 101–113. [Google Scholar] [CrossRef] [Green Version]
- Smith, B.T.; Thompson, R.L.; Grams, J.S.; Broyles, C.; Brooks, H.E. Convective modes for significant severe thunderstorms in the contiguous United States. Part I: Storm classification and climatology. Weather Forecast. 2012, 27, 1114–1135. [Google Scholar] [CrossRef] [Green Version]
- Thompson, R.L.; Smith, B.T.; Grams, J.S.; Dean, A.R.; Broyles, C. Convective modes for significant severe thunderstorms in the contiguous United States. Part II: Supercell and QLCS tornado environments. Weather Forecast. 2012, 18, 1243–1261. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, E.R.; Herman, G.R.; Tournay, R.C.; Peters, J.M.; Schumacher, R.S. Double impact: When both tornadoes and flash floods threaten the same place at the same time. Weather Forecast. 2015, 30, 1673–1693. [Google Scholar] [CrossRef]
- Clark, A.J.; Gallus, W.A., Jr.; Xue, M.; Kong, F. A comparison of precipitation forecast skill between small convection-allowing and large convection-parameterizing ensembles. Weather Forecast. 2009, 24, 1121–1140. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, C.S.; Kain, J.S.; Weiss, S.J.; Xue, M.; Bright, D.R.; Kong, F.; Thomas, K.V.; Levit, J.J.; Coniglio, M.C. Next-day convection-allowing WRF model guidance: A second look at 2-km versus 4-km grid spacing. Mon. Weather Rev. 2009, 137, 3351–3372. [Google Scholar] [CrossRef]
- Kain, J.S.; Coniglio, M.C.; Correia, J.; Clark, A.J.; Marsh, P.T.; Ziegler, C.; Lakshmanan, V.; Miller, S.D., Jr.; Dembek, S.R.; Weiss, S.J.; et al. LA feasibility study for probabilistic convection initiation forecasts based on explicit numerical guidance. Bull. Am. Meteor. Soc. 2013, 94, 1213–1225. [Google Scholar] [CrossRef] [Green Version]
- Jirak, I.L.; Cotton, W.R. Observational analysis of the predictability of mesoscale convective systems. Weather Forecast. 2007, 22, 813–838. [Google Scholar] [CrossRef]
- Cohen, A.E.; Coniglio, M.C.; Corfidi, S.F.; Corfidi, S.J. Discrimination of mesoscale convective system environments using sounding observations. Weather Forecast. 2007, 22, 1045–1062. [Google Scholar] [CrossRef] [Green Version]
- Coniglio, M.C.; Hwang, Y.; Stensrud, D.J. Environmental factors in the upscale growth and longevity of MCSs derived from Rapid Update Cycle analyses. Mon. Weather Rev. 2010, 138, 3514–3539. [Google Scholar] [CrossRef]
- Coniglio, M.C.; Corfidi, S.F.; Kain, J.S. Environment and early evolution of the 8 May 2009 derecho-producing convective system. Mon. Weather Rev. 2011, 139, 1083–1102. [Google Scholar] [CrossRef] [Green Version]
- Dial, G.L.; Racy, J.P.; Thompson, R.L.J. Short-term convective mode evolution along synoptic boundaries. Weather Forecast. 2010, 25, 1430–1446. [Google Scholar] [CrossRef] [Green Version]
- Bluestein, H.B.; Jain, M.H. Formation of mesoscale lines of precipitation: Severe squall lines in Oklahoma during the spring. J. Atmos. Sci. 1985, 42, 1711–1732. [Google Scholar] [CrossRef]
- Bluestein, H.B.; Marx, G.T.; Jain, M.H. Formation of mesoscale lines of precipitation: Nonsevere squall lines in Oklahoma during the spring. Mon. Weather Rev. 1987, 115, 2719–2727. [Google Scholar] [CrossRef] [Green Version]
- Duda, J.D.; Gallus, W.A., Jr. The impact of large-scale forcing on skill of simulated convective initiation and upscale evolution with convection-allowing grid spacings in the WRF. Weather Forecast. 2013, 28, 994–1018. [Google Scholar] [CrossRef] [Green Version]
- Peters, J.M.; Schumacher, R.S. The simulated structure and evolution of a quasi-idealized warm-season convective system with a training convective line. J. Atmos. Sci. 2015, 72, 1987–2010. [Google Scholar] [CrossRef]
- Weisman, M.L.; Skamarock, W.C.; Klemp, J.B. The resolution dependence of explicitly modeled convective systems. Mon. Weather Rev. 1997, 125, 527–548. [Google Scholar] [CrossRef]
- Fowle, M.A.; Roebber, P.J. Short-range (0–48h) numerical prediction of convective occurrence, mode, and location. Weather Forecast. 2003, 18, 782–794. [Google Scholar] [CrossRef]
- Done, J.; Davis, C.A.; Weisman, M. The next generation of NWP: Explicit forecasts of convection using the weather research and forecasting (WRF) model. Atmos. Sci. Lett. 2004, 5, 110–117. [Google Scholar] [CrossRef]
- Weisman, M.L.; Davis, C.; Wang, W.; Manning, K.W.; Klemp, J.B. Experiences with 0-36-h explicit convective forecasts with the WRF-ARW model. Weather Forecast. 2008, 23, 407–437. [Google Scholar] [CrossRef]
- Weiss, S.J.; Pyle, M.E.; Janjic, Z.; Bright, D.R.; DiMego, G.J. The Operational High Resolution Window WRF Model Runs at NCEP: Advantages of Multiple Model Runs for Severe Convective Weather Forecasting. In Proceedings of the 24th Conference on Severe Local Storms, Savannah, GA, USA, 27–31 October 2008; American Meteorological Society: Boston, MA, USA, 2008. Available online: https://ams.confex.com/ams/pdfpapers/142192.pdf (accessed on 22 February 2019).
- Clark, A.J.; Kain, J.S.; Marsh, P.T.; Correia, J.; Xue, M.; Kong, F. Forecasting tornado pathlengths using a three-dimensional object identification algorithm applied to convection-allowing forecasts. Weather Forecast. 2012, 27, 1090–1113. [Google Scholar] [CrossRef]
- Guyer, J.L.; Jirak, I.L. The utility of storm-scale ensemble forecasts of cool season severe weather events from the SPC perspective. In Proceedings of the 27th Conference on Severe Local Storms, Madison, WI, USA, 3–7 November 2008; American Meteorological Society: Boston, MA, USA, 2014. Available online: https://ams.confex.com/ams/27SLS/webprogram/Paper254640.html (accessed on 9 July 2019).
- Gallo, B.T.; Clark, A.J.; Jirak, I.; Kain, J.S.; Weiss, S.J.; Coniglio, M.; Knopfmeier, K.; Correia, J., Jr.; Melick, C.J.; Karstens, C.D.; et al. Breaking new ground in severe weather prediction: The 2015 NOAA/Hazardous Weather Testbed Spring Forecasting Experiment. Weather Forecast. 2017, 32, 1541–1568. [Google Scholar] [CrossRef]
- Hawblitzel, D.P.; Zhang, F.; Meng, Z.; Davis, C.A. Probabilistic evaluation of the dynamics and predictability of the mesoscale convective vortex of 10–13 June 2003. Mon. Weather Rev. 2007, 135, 1544–1563. [Google Scholar] [CrossRef] [Green Version]
- Schumacher, R.S. Resolution dependence of initiation and upscale growth of deep convection in convection-allowing forecasts of the 31 May–1 June 2013 supercell and MCS. Mon. Weather Rev. 2015, 143, 4331–4354. [Google Scholar] [CrossRef]
- Thielen, J.E.; Gallus, W.A., Jr. Influences of horizontal grid spacing and microphysics on WRF forecasts of convective morphology evolution for nocturnal MCSs in weakly forced environments. Weather Forecast. 2019, 34, 1495–1517. [Google Scholar] [CrossRef]
- Droegemeier, K.K.; Wilhelmson, R.B. Three-dimensional numerical modeling of convection produced by interacting thunderstorm outflows. Part II: Variations in vertical wind shear. J. Atmos. Sci. 1985, 42. [Google Scholar] [CrossRef]
- Weisman, M.L. The role of convectively generated rear-inflow jets in the evolution of long-lived mesoconvective systems. J. Atmos. Sci. 1992, 49, 1826–1847. [Google Scholar] [CrossRef] [Green Version]
- Rotunno, R.J.; Klemp, J.B.; Weisman, M.L. A theory for strong, long-lived squall lines. J. Atmos. Sci. 1988, 45, 463–485. [Google Scholar] [CrossRef] [Green Version]
- Corfidi, S.F. Cold pools and MCS propagation: Forecasting the motion of downwind-developing MCSs. Weather Forecast. 2003, 18, 997–1017. [Google Scholar] [CrossRef]
- McAnelly, R.L.; Nachamkin, J.E.; Cotton, W.R.; Nicholls, M.E. Upscale evolution of MCSs: Doppler radar analysis and analytical investigation. Mon. Weather Rev. 1997, 125, 1083–1110. [Google Scholar] [CrossRef]
- Bryan, G.H.; Rotunno, R. The optimal state for gravity currents in shear. J. Atmos. Sci. 2014, 71, 448–468. [Google Scholar] [CrossRef]
- Parker, M.D. External vs. Self-Organization of Nocturnal MCSs from PECAN. In Proceedings of the 29th Conference on Severe Local Storms, Stowe, VT, USA, 22–26 October 2018; American Meteorological Society: Boston, MA, USA, 2018. Available online: https://ams.confex.com/ams/29SLS/meetingapp.cgi/Paper/348312 (accessed on 9 July 2019).
- Peters, J.M.; Schumacher, R.S. Dynamics governing a simulated mesoscale convective system with a training convective line. J. Atmos. Sci. 2016, 73, 2643–2664. [Google Scholar] [CrossRef]
- Mulholland, J.P.; Nesbitt, S.W.; Trapp, R.J. A case study of terrain influences on upscale convective growth of a supercell. Mon. Weather Rev. 2019, 147, 4305–4324. [Google Scholar] [CrossRef]
- Parker, M.D. Self-organization and maintenance of simulated nocturnal convective systems from PECAN. Mon. Weather Rev. 2021, 149, 999–1022. [Google Scholar] [CrossRef]
- Parker, M.D.; Borchardt, B.S.; Miller, R.L.; Ziegler, C.L. Simulated evolution and severe wind production by the 25–26 June 2015 nocturnal MCS from PECAN. Mon. Weather Rev. 2020, 148, 183–209. [Google Scholar] [CrossRef]
- Marion, G.R.; Trapp, R.J. The dynamical coupling of convective updrafts, downdrafts, and cold pools in simulated supercell thunderstorms. J. Geophys. Res. Atmos. 2019, 124, 664–683. [Google Scholar] [CrossRef]
- Adams-Selin, R.D.; van den Heever, S.C.; Johnson, R.H. Sensitivity of bow-echo simulation to microphysical parameterizations. Weather Forecast. 2013, 28, 1188–1209. [Google Scholar] [CrossRef]
- Mallison, H.M.; Lasher-Trapp, S.G. An investigation of hydrometeor latent cooling upon convective cold pool formation, sustainment, and properties. Mon. Weather Rev. 2019, 147, 3205–3222. [Google Scholar] [CrossRef]
- Borque, P.S.; Nesbitt, W.; Trapp, R.J.; Lasher-Trapp, S.G.; Oue, M. Observational study of the thermodynamics and morphological characteristics of a midlatitude continental cold pool event. Mon. Weather Rev. 2020, 148, 719–737. [Google Scholar] [CrossRef]
- Peters, J.M.; Eure, K.C.; Schumacher, R.S. Factors that Drive MCS Growth from Supercells. In Proceedings of the 17th Conference on Mesoscale Processes, San Diego, CA, USA, 24–27 July 2017; American Meteorological Society: Boston, MA, USA, 2017. Available online: https://ams.confex.com/ams/17MESO/webprogram/Paper320248.html (accessed on 9 July 2019).
- Geerts, B.; Parsons, D.; Ziegler, C.L.; Weckwerth, T.M.; Biggerstaff, M.I.; Clark, R.D.; Coniglio, M.C.; Demoz, B.B.; Ferrare, R.A.; Gallus, W.A., Jr.; et al. The 2015 Plains Elevated Convection at Night field project. Bull. Am. Meteor. Soc. 2017, 98, 767–786. [Google Scholar] [CrossRef]
- Hitchcock, S.M.; Schumacher, R.S.; Herman, G.R.; Coniglio, M.C.; Parker, M.D.; Ziegler, C.L. Evolution of pre- and postconvective environmental profiles from mesoscale convective systems during PECAN. Mon. Weather Rev. 2019, 147, 2329–2354. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 4; NCAR Technical Notes. NCAR/TN-556+STR2019; UCAR: Boulder, CO, USA, 2021; 145p. [Google Scholar] [CrossRef]
- Bryan, G.H.; Fritsch, J.M. A benchmark simulation for moist nonhydrostatic numerical models. Mon. Weather Rev. 2002, 130, 2917–2928. [Google Scholar] [CrossRef]
- Pinto, J.O.; Grim, J.A.; Steiner, M. Assessment of the high-resolution Rapid Refresh model’s ability to predict mesoscale convective systems using object-based evaluation. Weather Forecast. 2015, 30, 892–913. [Google Scholar] [CrossRef]
- James, R.P.; Markowski, P.M.; Fritsch, J.M. Bow echo sensitivity to ambient moisture and cold pool strength. Mon. Weather Rev. 2006, 134, 950–964. [Google Scholar] [CrossRef] [Green Version]
- Duda, J.D.; Gallus, W.A., Jr. Spring and summer Midwestern severe weather reports in supercells compared to other morphologies. Weather Forecast. 2010, 25, 190–206. [Google Scholar] [CrossRef] [Green Version]
- Mauri, E.L.; Gallus, W.A., Jr. Differences between Severe and Non-Severe Warm-Season Nocturnal Bow Echo Environments. Weather Forecast. 2021, 36, 53–74. [Google Scholar] [CrossRef]
- NOAA/NCEI. NCEP Numerical Weather Prediction Models Global Forecast System (GFS) Grid 004. Subset Used: May–June 2016. Available online: https://nomads.ncdc.noaa.gov/data/gfsanl/ (accessed on 1 August 2019).
- Squitieri, B.J.; Gallus, W.A., Jr. WRF forecasts of Great Plains nocturnal low-level jet-driven MCSs. Part I: Correlation between low-level jet forecast accuracy and MCS precipitation forecast skill. Weather Forecast. 2016, 31, 1301–1323. [Google Scholar] [CrossRef]
- Squitieri, B.J.; Gallus, W.A., Jr. On the forecast sensitivity of MCS cold pools and related features to horizontal grid spacing in convection-allowing WRF simulations. Weather Forecast. 2020, 35, 325–346. [Google Scholar] [CrossRef]
- Morrison, H.; Thompson, G.; Tatarskii, V. Impact of cloud microphysics on the development of trailing stratiform in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Weather Rev. 2009, 137, 991–1007. [Google Scholar] [CrossRef] [Green Version]
- Thompson, G.; Field, P.R.; Rasmussen, R.M.; Hall, W.D. Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Weather Rev. 2008, 136, 5095–5115. [Google Scholar] [CrossRef]
- Hong, S.-Y.; Lim, J.-O.J. The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc. 2006, 42, 129–151. [Google Scholar]
- Mansell, E.R.; Ziegler, C.L.; Bruning, E.C. Simulated electrification of a small thunderstorm with two-moment bulk microphysics. J. Atmos. Sci. 2010, 67, 171–194. [Google Scholar] [CrossRef]
- Bryan, G.H.; Wyngaard, J.C.; Fritsch, J.M. Resolution requirements for the simulation of deep moist convection. Mon. Weather Rev. 2003, 131, 2394–2416. [Google Scholar] [CrossRef]
- Adams-Selin, R.D. Impact of convectively generated low-frequency gravity waves on evolution of mesoscale convective systems. J. Atmos. Sci. 2020, 77, 3441–3460. [Google Scholar] [CrossRef]
- Adams-Selin, R.D. Sensitivity of MCS low-frequency gravity waves to microphysical variations. J. Atmos. Sci. 2020, 77, 3461–3477. [Google Scholar] [CrossRef]
- Weisman, M.L.; Rotunno, R. “A theory for strong long-lived squall lines” revisited. J. Atmos. Sci. 2004, 61, 361–382. [Google Scholar] [CrossRef]
- James, R.P.; Fritsch, J.M.; Markowski, P.M. Environmental distinctions between cellular and slabular convective lines. Mon. Weather Rev. 2005, 133, 2669–2691. [Google Scholar] [CrossRef] [Green Version]
- Mendenhall, W.; Sincich, T. Statistics for Engineering and the Sciences, 5th ed.; Pearson-Prentice Hall: Hoboken, NJ, USA, 2007; p. 1060. [Google Scholar]
- Thompson, R.L.; Edwards, R.; Mead, C. An update to the Supercell Composite and Significant Tornado Parameters. In Proceedings of the 22nd Conference Severe Local Storms, Hyannis, MA, USA, 3–4 October 2004; American Meteorological Society: Boston, MA, USA, 2004. Preprints. Available online: https://ams.confex.com/ams/11aram22sls/techprogram/paper_82100.htm (accessed on 23 June 2019).
- Helmus, J.J.; Collis, S.M. The Python ARM radar toolkit (Py-ART), a library for working with radar data in the python programming language. J. Open Softw. Res. 2016, 4. [Google Scholar] [CrossRef] [Green Version]
Parameter | Outer Nests | Inner Nests | Notes/Reference |
---|---|---|---|
Horizontal Grid Spacing | 27 km/9 km | 3 km | Inner Grid 1500 × 1500 km, two-way feedback enabled |
Vertical Sigma Levels | 50 | 50 | Squitieri and Gallus (2016) |
Model top pressure | 50 hPa | 50 hPa | |
IC/LBCs | GFS (0.5°) | GFS (0.5°) | |
Cumulus Physics | Kain-Fritsch | None | Kain (2004) |
Microphysics | Morrison | Morrison | Morrison et al. (2009) |
Radiation | RRTM|Dudhia | RRTM|Dudhia | Mlawer et al. (1997)|Dudhia (1989) |
PBL Physics | YSU | YSU | Hong et al. (2006) |
Surface Layer Physics | MM5 | MM5 | Jiménez et al. (2012) |
Land Surface | NOAH | NOAH | Tewari et al. (2004) |
Simulation Time | 24 h | 24 h | 12:00 UTC–12:00 UTC |
Model Timestep | 54 s | 18 s | 6 s | Write to output file every 30 min. |
Parameter | CM1 Simulation |
---|---|
Horizontal Grid Spacing | 0.25 km (200 × 150 km) |
Vertical Levels | 98 |
Vertical Grid Spacing | 100–250 m, stretched from 3–10 km |
Model Top | 17 km |
Microphysics | Morrison |
Turbulence | TKE-based subgrid closure |
Land-surface | Free-slip bottom boundary |
Initialization | Horizontally homogenous (based on input sounding), vertical line of 4 warm bubbles |
Lateral Boundary | Open radiative |
Simulation Time | 6 h |
Other | Coriolis omitted |
Observations | |||
---|---|---|---|
MCS | Non-MCS | ||
Forecasts | MCS | 13 | 4 |
Non-MCS | 2 | 11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hiris, Z.A.; Gallus, W.A., Jr. On the Relationship of Cold Pool and Bulk Shear Magnitudes on Upscale Convective Growth in the Great Plains of the United States. Atmosphere 2021, 12, 1019. https://doi.org/10.3390/atmos12081019
Hiris ZA, Gallus WA Jr. On the Relationship of Cold Pool and Bulk Shear Magnitudes on Upscale Convective Growth in the Great Plains of the United States. Atmosphere. 2021; 12(8):1019. https://doi.org/10.3390/atmos12081019
Chicago/Turabian StyleHiris, Zachary A., and William A. Gallus, Jr. 2021. "On the Relationship of Cold Pool and Bulk Shear Magnitudes on Upscale Convective Growth in the Great Plains of the United States" Atmosphere 12, no. 8: 1019. https://doi.org/10.3390/atmos12081019
APA StyleHiris, Z. A., & Gallus, W. A., Jr. (2021). On the Relationship of Cold Pool and Bulk Shear Magnitudes on Upscale Convective Growth in the Great Plains of the United States. Atmosphere, 12(8), 1019. https://doi.org/10.3390/atmos12081019