Evaluation of Using Satellite-Derived Aerosol Optical Depth in Land Use Regression Models for Fine Particulate Matter and Its Elemental Composition
Abstract
:1. Introduction
2. Material and Methods
2.1. PM2.5 Sample Collection and Chemical Analysis
2.2. Collection of LUR Predictors
2.3. Model Constructions
3. Results and Discussion
3.1. Summary Statistics of PM Measures
3.2. LUR Modeling Results
4. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pope, C.A., III; Dockery, D.W. Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manag. Assoc. 2006, 56, 709–742. [Google Scholar] [CrossRef] [PubMed]
- Kampa, M.; Castanas, E. Human health effects of air pollution. Environ. Pollut. 2008, 151, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Seagrave, J.; McDonald, J.D.; Bedrick, E.; Edgerton, E.S.; Gigliotti, A.P.; Jansen, J.J.; Ke, L.; Naeher, L.P.; Seilkop, S.K.; Zheng, M.; et al. Lung Toxicity of Ambient Particulate Matter from Southeastern U.S. Sites with Different Contributing Sources: Relationships between Composition and Effects. Environ. Health Perspect. 2006, 114, 1387–1393. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, M.; Stayner, L.; Slama, R.; Sørensen, M.; Figueras, F.; Nieuwenhuijsen, M.J.; Raaschou-Nielsen, O.; Dadvand, P. Ambient Air Pollution and Pregnancy-Induced Hypertensive Disorders. Hypertension 2014, 64, 494–500. [Google Scholar] [CrossRef] [Green Version]
- Kelly, F.J.; Fussell, J.C. Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmospheric Environ. 2012, 60, 504–526. [Google Scholar] [CrossRef]
- Stanek, L.W.; Sacks, J.D.; Dutton, S.J.; Dubois, J.-J.B. Attributing health effects to apportioned components and sources of particulate matter: An evaluation of collective results. Atmospheric Environ. 2011, 45, 5655–5663. [Google Scholar] [CrossRef]
- Thurston, G.D.; Burnett, R.T.; Turner, M.C.; Shi, Y.; Krewski, D.; Lall, R.; Ito, K.; Jerrett, M.; Gapstur, S.M.; Diver, W.R.; et al. Ischemic Heart Disease Mortality and Long-Term Exposure to Source-Related Components of U.S. Fine Particle Air Pollution. Environ. Health Perspect. 2016, 124, 785–794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Achilleos, S.; Kioumourtzoglou, M.-A.; Wu, C.-D.; Schwartz, J.D.; Koutrakis, P.; Papatheodorou, S.I. Acute effects of fine particulate matter constituents on mortality: A systematic review and meta-regression analysis. Environ. Int. 2017, 109, 89–100. [Google Scholar] [CrossRef]
- Yang, J.; Zhou, M.; Li, M.; Yin, P.; Hu, J.; Zhang, C.; Wang, H.; Liu, Q.; Wang, B. Fine particulate matter constituents and cause-specific mortality in China: A nationwide modelling study. Environ. Int. 2020, 143, 105927. [Google Scholar] [CrossRef]
- Hoek, G.; Beelen, R.; De Hoogh, K.; Vienneau, D.; Gulliver, J.; Fischer, P.; Briggs, D. A review of land-use regression models to assess spatial variation of outdoor air pollution. Atmospheric Environ. 2008, 42, 7561–7578. [Google Scholar] [CrossRef]
- ESCAPE. ESCAPE Exposure Assessment Manual. Available online: http://www.escapeproject.eu/manuals/ESCAPE_Exposure-manualv9.pdf (accessed on 26 January 2019).
- Eeftens, M.; Beelen, R.; De Hoogh, K.; Bellander, T.; Cesaroni, G.; Cirach, M.; Declercq, C.; Dėdelė, A.; Dons, E.; de Nazelle, A.; et al. Development of Land Use Regression Models for PM2.5, PM2.5 Absorbance, PM10 and PMcoarse in 20 European Study Areas; Results of the ESCAPE Project. Environ. Sci. Technol. 2012, 46, 11195–11205. [Google Scholar] [CrossRef]
- Lee, J.-H.; Wu, C.-F.; Hoek, G.; de Hoogh, K.; Beelen, R.; Brunekreef, B.; Chan, C.-C. Land use regression models for estimating individual NOx and NO2 exposures in a metropolis with a high density of traffic roads and population. Sci. Total. Environ. 2014, 472, 1163–1171. [Google Scholar] [CrossRef]
- Wu, C.-D.; Chen, Y.-C.; Pan, W.-C.; Zeng, Y.-T.; Chen, M.-J.; Guo, Y.L.; Lung, S.-C.C. Land-use regression with long-term satellite-based greenness index and culture-specific sources to model PM2.5 spatial-temporal variability. Environ. Pollut. 2017, 224, 148–157. [Google Scholar] [CrossRef]
- Wu, C.-F.; Lin, H.-I.; Ho, C.-C.; Yang, T.-H.; Chen, C.-C.; Chan, C.-C. Modeling horizontal and vertical variation in intraurban exposure to PM2.5 concentrations and compositions. Environ. Res. 2014, 133, 96–102. [Google Scholar] [CrossRef] [PubMed]
- de Hoogh, K.; Wang, M.; Adam, M.; Badaloni, C.; Beelen, R.; Birk, M.; Cesaroni, G.; Cirach, M.; Declercq, C.; Dėdelė, A.; et al. Development of Land Use Regression Models for Particle Composition in Twenty Study Areas in Europe. Environ. Sci. Technol. 2013, 47, 5778–5786. [Google Scholar] [CrossRef]
- Hsu, C.-Y.; Wu, C.-D.; Hsiao, Y.-P.; Chen, Y.-C.; Chen, M.-J.; Lung, S.-C.C. Developing Land-Use Regression Models to Estimate PM2.5—Bound Compound Concentrations. Remote Sens. 2018, 10, 1971. [Google Scholar] [CrossRef] [Green Version]
- Ito, K.; Johnson, S.; Kheirbek, I.; Clougherty, J.; Pezeshki, G.; Ross, Z.; Eisl, H.; Matte, T.D. Intraurban Variation of Fine Particle Elemental Concentrations in New York City. Environ. Sci. Technol. 2016, 50, 7517–7526. [Google Scholar] [CrossRef] [PubMed]
- Tunno, B.J.; Shmool, J.L.; Michanowicz, D.R.; Tripathy, S.; Chubb, L.; Kinnee, E.; Cambal, L.; Roper, C.; Clougherty, J.E. Spatial variation in diesel-related elemental and organic PM2.5 components during workweek hours across a downtown core. Sci. Total. Environ. 2016, 573, 27–38. [Google Scholar] [CrossRef] [Green Version]
- Brokamp, C.; Jandarov, R.; Rao, M.; LeMasters, G.; Ryan, P. Exposure assessment models for elemental components of particulate matter in an urban environment: A comparison of regression and random forest approaches. Atmospheric Environ. 2017, 151, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dirgawati, M.; Heyworth, J.; Wheeler, A.; McCaul, K.A.; Blake, D.; Boeyen, J.; Cope, M.; Yeap, B.B.; Nieuwenhuijsen, M.; Brunekreef, B.; et al. Development of Land Use Regression models for particulate matter and associated components in a low air pollutant concentration airshed. Atmospheric Environ. 2016, 144, 69–78. [Google Scholar] [CrossRef]
- Chen, J.; De Hoogh, K.; Gulliver, J.; Hoffmann, B.; Hertel, O.; Ketzel, M.; Weinmayr, G.; Bauwelinck, M.; Van Donkelaar, A.; Hvidtfeldt, U.A.; et al. Development of Europe-Wide Models for Particle Elemental Composition Using Supervised Linear Regression and Random Forest. Environ. Sci. Technol. 2020, 54, 15698–15709. [Google Scholar] [CrossRef] [PubMed]
- Tripathy, S.; Tunno, B.J.; Michanowicz, D.R.; Kinnee, E.; Shmool, J.L.; Gillooly, S.; Clougherty, J.E. Hybrid land use regression modeling for estimating spatio-temporal exposures to PM2.5, BC, and metal components across a metropolitan area of complex terrain and industrial sources. Sci. Total. Environ. 2019, 673, 54–63. [Google Scholar] [CrossRef]
- Huang, C.-S.; Lin, T.-H.; Hung, H.; Kuo, C.-P.; Ho, C.-C.; Guo, Y.-L.; Chen, K.-C.; Wu, C.-F. Incorporating satellite-derived data with annual and monthly land use regression models for estimating spatial distribution of air pollution. Environ. Model. Softw. 2019, 114, 181–187. [Google Scholar] [CrossRef]
- QGIS Development Team. QGIS Geographic Information System. Available online: https://qgis.osgeo.org (accessed on 16 April 2019).
- Gugamsetty, B.; Wei, H.; Liu, C.-N.; Awasthi, A.; Hsu, S.-C.; Tsai, C.-J.; Roam, G.-D.; Wu, Y.-C.; Chen, C.-F. Source Characterization and Apportionment of PM10, PM2.5 and PM0.1 by Using Positive Matrix Factorization. Aerosol Air Qual. Res. 2012, 12, 476–491. [Google Scholar] [CrossRef]
- Liu, W.; Wang, Y.; Russell, A.; Edgerton, E.S. Atmospheric aerosol over two urban–rural pairs in the southeastern United States: Chemical composition and possible sources. Atmospheric Environ. 2005, 39, 4453–4470. [Google Scholar] [CrossRef]
- Vallius, M.; Lanki, T.; Tiittanen, P.; Koistinen, K.; Ruuskanen, J.; Pekkanen, J.; Vallius, M.; Lanki, T.; Tiittanen, P.; Koistinen, K.; et al. Source apportionment of urban ambient PM2.5 in two successive measurement campaigns in Helsinki, Finland. Atmospheric Environ. 2003, 37, 615–623. [Google Scholar] [CrossRef]
- Sternbeck, J.; Sjödin, Å.; Andréasson, K. Metal emissions from road traffic and the influence of resuspension—Results from two tunnel studies. Atmospheric Environ. 2002, 36, 4735–4744. [Google Scholar] [CrossRef]
- Hjortenkrans, D.; Bergbäck, B.; Häggerud, A. New Metal Emission Patterns in Road Traffic Environments. Environ. Monit. Assess. 2006, 117, 85–98. [Google Scholar] [CrossRef]
- Birmili, W.; Allen, A.G.; Bary, F.; Harrison, R.M. Trace Metal Concentrations and Water Solubility in Size-Fractionated Atmospheric Particles and Influence of Road Traffic. Environ. Sci. Technol. 2006, 40, 1144–1153. [Google Scholar] [CrossRef]
- Heo, J.-B.; Hopke, P.; Yi, S.-M. Source apportionment of PM2.5 in Seoul, Korea. Atmospheric Chem. Phys. Discuss. 2009, 9, 4957–4971. [Google Scholar] [CrossRef] [Green Version]
- Han, J.S.; Moon, K.J.; Lee, S.J.; Kim, Y.J.; Ryu, S.Y.; Cliff, S.S.; Yi, S.M. Size-resolved source apportionment of ambient particles by positive matrix factorization at Gosan background site in East Asia. Atmospheric Chem. Phys. Discuss. 2006, 6, 211–223. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; Hopke, P.K. Apportioning sources of PM2.5 in St. Louis, MO using speciation trends network data. Atmospheric Environ. 2006, 40, 360–377. [Google Scholar] [CrossRef]
- Du, W.; Hong, Y.-W.; Xiao, H.; Zhang, Y.; Chen, Y.; Xu, L.; Chen, J.; Deng, J. Chemical Characterization and Source Apportionment of PM2.5 during Spring and Winter in the Yangtze River Delta, China. Aerosol Air Qual. Res. 2017, 17, 2165–2180. [Google Scholar] [CrossRef]
- Dimitriou, K.; Remoundaki, E.; Mantas, E.; Kassomenos, P. Spatial distribution of source areas of PM2.5 by Concentration Weighted Trajectory (CWT) model applied in PM2.5 concentration and composition data. Atmospheric Environ. 2015, 116, 138–145. [Google Scholar] [CrossRef]
- Liu, B.; Song, N.; Dai, Q.; Mei, R.; Sui, B.; Bi, X.; Feng, Y. Chemical composition and source apportionment of ambient PM2.5 during the non-heating period in Taian, China. Atmospheric Res. 2016, 170, 23–33. [Google Scholar] [CrossRef]
- Ho, C.-C.; Chan, C.-C.; Cho, C.-W.; Lin, H.-I.; Lee, J.-H.; Wu, C.-F. Land use regression modeling with vertical distribution measurements for fine particulate matter and elements in an urban area. Atmospheric Environ. 2015, 104, 256–263. [Google Scholar] [CrossRef]
- Yu, T.-Y.; Chang, I.-C. Spatiotemporal Features of Severe Air Pollution in Northern Taiwan (8 pp). Environ. Sci. Pollut. Res. 2006, 13, 268–275. [Google Scholar] [CrossRef]
- Adam, M.; Schikowski, T.; Carsin, A.E.; Cai, Y.; Jacquemin, B.; Sanchez, M.; Vierkötter, A.; Marcon, A.; Keidel, D.; Sugiri, D.; et al. Adult lung function and long-term air pollution exposure. ESCAPE: A multicentre cohort study and meta-analysis. Eur. Respir. J. 2014, 45, 38–50. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.-Y.; Wu, C.-F.; Lee, J.-H.; Hoffmann, B.; Peters, A.; Brunekreef, B.; Chu, D.-C.; Chan, C.-C. Associations between Long-Term Air Pollutant Exposures and Blood Pressure in Elderly Residents of Taipei City: A Cross-Sectional Study. Environ. Health Perspect. 2015, 123, 779–784. [Google Scholar] [CrossRef]
- Morgenstern, V.; Zutavern, A.; Cyrys, J.; Brockow, I.; Gehring, U.; Koletzko, S.; Bauer, C.P.; Reinhardt, D.; Wichmann, H.-E.; Heinrich, J. Respiratory health and individual estimated exposure to traffic-related air pollutants in a cohort of young children. Occup. Environ. Med. 2006, 64, 8–16. [Google Scholar] [CrossRef] [Green Version]
- Wolf, K.; Stafoggia, M.; Cesaroni, G.; Andersen, Z.J.; Beelen, R.; Galassi, C.; Hennig, F.; Migliore, E.; Penell, J.; Ricceri, F.; et al. Long-term Exposure to Particulate Matter Constituents and the Incidence of Coronary Events in 11 European Cohorts. Epidemiology 2015, 26, 565–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
PM Measures | Annual Model: Evaluating AOD and AOD_PER Efficacy in LUR | Scenario 1: High PM2.5 Season (HPS) | Scenario 2: Low PM2.5 Season (LPS) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Method 1: Base | Method 2: Base + AOD | Method 3: Base + AOD + AOD_PER | Method 3: Base + AOD + AOD_PER | Method 3: Base + AOD + AOD_PER | ||||||||
LOOCV R2 | LOOCV R2 | AOD a | LOOCV R2 | AOD | AOD_PER a | LOOCV R2 | AOD | AOD_PER | LOOCV R2 | AOD | AOD_PER | |
PM2.5 | 0.35 | 0.44 | Y | 0.69 | Y | Y | 0.91 | Y | Y | 0.40 | Y | |
Al | 0.33 | 0.44 | Y | 0.26 | 0.70 | Y | 0.55 | Y | ||||
Ca | 0.58 | 0.58 | 0.58 | 0.73 | Y | 0.59 | ||||||
Cr | 0.24 | 0.24 | 0.07 | Y | 0.62 | Y | 0.29 | Y | ||||
Fe | 0.40 | 0.63 | Y | 0.77 | Y | Y | 0.80 | Y | 0.43 | Y | ||
K | 0.40 | 0.30 | Y | 0.71 | Y | 0.67 | Y | 0.33 | Y | |||
Mn | 0.05 | 0.70 | Y | 0.69 | Y | 0.90 | Y | 0.80 | Y | |||
S | 0.34 | 0.40 | Y | 0.86 | Y | Y | 0.87 | Y | 0.36 | Y | ||
Si | 0.39 | 0.47 | Y | 0.92 | Y | 0.49 | Y | 0.76 | Y | |||
Ti | 0.41 | 0.41 | 0.80 | Y | 0.86 | Y | 0.49 | Y | ||||
V | 0.07 | 0.07 | 0.07 | 0.53 | Y | 0.07 | ||||||
Zn | 0.44 | 0.57 | Y | 0.83 | Y | Y | 0.91 | Y | 0.71 | Y | ||
Mean | 0.33 | 0.44 | 0.60 | 0.75 | 0.48 | |||||||
Median | 0.37 | 0.44 | 0.70 | 0.76 | 0.46 | |||||||
>0.40 b | 5 | 9 | 9 | 12 | 8 |
PM Measures | LUR Model a | R2 of Model | Adjusted R2 | LOOCV R2 | LOOCV RMSE b | p-Value of Moran’s I |
---|---|---|---|---|---|---|
PM2.5 | −1.05 − 542.39 × URBANGREEN_100 + 0.03 × POINT_N_5000 + 23.71 × AOD + 120.10 × AOD_PER | 0.84 | 0.78 | 0.69 | 4.28 | 0.43 |
Al | 145.24 + 1061.16 × URBANGREEN_500 | 0.40 | 0.36 | 0.26 | 39.93 | 0.57 |
Ca | 76.97 + 457.55 × MAJORRAODAREA_500 + 96.48 × MAJORROADLEN_100 | 0.70 | 0.66 | 0.58 | 14.02 | 0.58 |
Cr | 12.26 + 6.22 × INDUSTRY_1000 − 155.46 × SEMINATURAL + 16.86 × AOD_PER | 0.54 | 0.44 | 0.07 | 1.90 | 0.12 |
Fe | −30.58 + 1230.54 × MAJORROADAREA_500 − 5168.54 × URBANGREEN_100 + 0.25 × POINT_N_5000 + 275.39 × AOD + 595.94 × AOD_PER | 0.87 | 0.81 | 0.77 | 32.44 | 0.46 |
K | 78.31 − 8741.33 × URBANGREEN_100 + 0.49 × POINT_N_5000 + 0.66 × TEMPLE_5000 + 3511.40 × AOD_PER | 0.88 | 0.85 | 0.71 | 81.01 | 0.16 |
Mn | 2.36 + 54.86 × INDUSTRY_1000 + 0.02 × POINT_N_5000 + 106.78 × AOD_PER | 0.84 | 0.80 | 0.69 | 5.07 | 0.77 |
S | 1044.46 − 50105.99 × URBANGREEN_100 + 2.54 × HOUSEHOLD_5000 + 162.53 × TEMPLE_300 + 1585.70 × AOD + 14110.58 × AOD_PER | 0.92 | 0.88 | 0.86 | 234.74 | 0.85 |
Si | 37.56 + 1406.59 × ALLROADAREA_300 + 37.15 × INDUSTRY_5000 − 11749.47 × URBANGREEN_100 + 9661.14 × DISTINVMR2 + 14.00 × TEMPLE_300 + 1977.17 × AOD_PER | 0.97 | 0.96 | 0.92 | 29.29 | 0.77 |
Ti | −0.88 + 6.50 × ALLROADAREA_1000 − 393.67 × URBANGREEN_100 + 0.01 × POINT_N_5000 + 0.03 × TEMPLE_5000 + 69.08× AOD_PER | 0.90 | 0.86 | 0.80 | 1.83 | 0.90 |
V | 7.25 + 1.62 × TEMPLE_300 | 0.35 | 0.31 | 0.07 | 3.28 | 0.80 |
Zn | −3.72 + 2750.53 × ALLROADAREA_100 + 43.53 × MAJORROADAREA_1000 + 7.12 × INDUSTRY_5000 − 2163.13 × URBANGREEN_100 + 66.32 × AOD + 277.57 × AOD_PER | 0.92 | 0.88 | 0.83 | 10.48 | 0.76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, C.-S.; Liao, H.-T.; Lin, T.-H.; Chang, J.-C.; Lee, C.-L.; Yip, E.C.-W.; Wu, Y.-L.; Wu, C.-F. Evaluation of Using Satellite-Derived Aerosol Optical Depth in Land Use Regression Models for Fine Particulate Matter and Its Elemental Composition. Atmosphere 2021, 12, 1018. https://doi.org/10.3390/atmos12081018
Huang C-S, Liao H-T, Lin T-H, Chang J-C, Lee C-L, Yip EC-W, Wu Y-L, Wu C-F. Evaluation of Using Satellite-Derived Aerosol Optical Depth in Land Use Regression Models for Fine Particulate Matter and Its Elemental Composition. Atmosphere. 2021; 12(8):1018. https://doi.org/10.3390/atmos12081018
Chicago/Turabian StyleHuang, Chun-Sheng, Ho-Tang Liao, Tang-Huang Lin, Jung-Chi Chang, Chien-Lin Lee, Eric Cheuk-Wai Yip, Yee-Lin Wu, and Chang-Fu Wu. 2021. "Evaluation of Using Satellite-Derived Aerosol Optical Depth in Land Use Regression Models for Fine Particulate Matter and Its Elemental Composition" Atmosphere 12, no. 8: 1018. https://doi.org/10.3390/atmos12081018
APA StyleHuang, C. -S., Liao, H. -T., Lin, T. -H., Chang, J. -C., Lee, C. -L., Yip, E. C. -W., Wu, Y. -L., & Wu, C. -F. (2021). Evaluation of Using Satellite-Derived Aerosol Optical Depth in Land Use Regression Models for Fine Particulate Matter and Its Elemental Composition. Atmosphere, 12(8), 1018. https://doi.org/10.3390/atmos12081018