Effect of Extreme Temperatures and Driving Conditions on Gaseous Pollutants of a Euro 6d-Temp Gasoline Vehicle
Abstract
:1. Introduction
2. Materials and Methods
- WLTC (worldwide harmonized light vehicles test cycle) Type 1 approval cycle. As urban part, the low and medium phases were considered, according to the RDE regulation, while the extra high phase was used as motorway part [44].
- TfL (Transport for London urban interpeak) urban driving characterized by stop and go traffic in congested conditions. The cycle was developed by Millbrook Inc. in collaboration with the Traffic for London Authority [45].
- BAB 130 (Bundesautobahn, Federal highway) high speed driving on the motorway up to 130 km/h, with frequent and sharp accelerations. It was developed by ADAC (Allgemeiner Deutscher Automobil-Club e.V.) as part of the EcoTest car testing protocol [46].
- RDE short: A one-hour duration test with urban (time share 53%), rural (28%), and motorway conditions (19%), and road slope (range −9.6% to 9.2%) was provided by Ricardo Automotive & Industrial.
- RDE boundary: A two-hour cycle recreating the most dynamic drive possible within the RDE boundaries with a 90% payload, including road slope (range −8.1% to 6.5%), provided by FEV Europe. The urban/rural/motorway time shares were 66%/20%/15%.
- Uphill: A cycle (vehicle speed < 60 km/h) simulating (i) uphill driving with a 5% constant slope, while towing a 800 kg trailer (uphill tow); (ii) uphill driving with a 5% constant slope, car loaded to 85% payload and towing a 1700 kg trailer (85% of max trailer weight) (uphill tow 85%). The cycle was based on actual uphill driving data at the JRC premises.
- RDE road: Two different routes according to Type 1A on-road procedure (RDE road) with a portable emissions measurement system (PEMS) (MOVE from AVL); routes were actually driven on the road at the JRC premises.
3. Results
3.1. Type 1 (WLTC) and Type 1A (RDE) Emissions
3.2. Real Time Examples
3.3. Ambient Temperature and Cold Start Emissions
3.4. Ambient Temperature and Urban Emissions
3.5. Ambient Temperature and Motorway Emissions
4. Discussion
4.1. Cold Start
4.2. Urban Emissions
4.3. Ambient Temperature
4.4. Dynamic Driving
4.5. Towing and Uphill Driving
4.6. Motorway Emissions
4.7. Concluding Remarks
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- European Environment Agency. Air Quality in Europe: 2020 Report; Publications Office of the European Union: Luxembourg, 2020; ISBN 978-92-9480-292-7.
- Donzelli, G.; Cioni, L.; Cancellieri, M.; Llopis Morales, A.; Morales Suárez-Varela, M. The Effect of the Covid-19 Lockdown on Air Quality in Three Italian Medium-Sized Cities. Atmosphere 2020, 11, 1118. [Google Scholar] [CrossRef]
- Fu, F.; Purvis-Roberts, K.L.; Williams, B. Impact of the Covid-19 Pandemic Lockdown on Air Pollution in 20 Major Cities around the World. Atmosphere 2020, 11, 1189. [Google Scholar] [CrossRef]
- Kumari, P.; Toshniwal, D. Impact of Lockdown on Air Quality over Major Cities across the Globe during Covid-19 Pandemic. Urban Clim. 2020, 34, 100719. [Google Scholar] [CrossRef]
- Petetin, H.; Bowdalo, D.; Soret, A.; Guevara, M.; Jorba, O.; Serradell, K.; Pérez García-Pando, C. Meteorology-Normalized Impact of the COVID-19 Lockdown upon NO2 Pollution in Spain. Atmos. Chem. Phys. 2020, 20, 11119–11141. [Google Scholar] [CrossRef]
- Lonati, G.; Riva, F. Regional Scale Impact of the COVID-19 Lockdown on Air Quality: Gaseous Pollutants in the Po Valley, Northern Italy. Atmosphere 2021, 12, 264. [Google Scholar] [CrossRef]
- Sun, Y.; Zhou, X.; Wai, K.; Yuan, Q.; Xu, Z.; Zhou, S.; Qi, Q.; Wang, W. Simultaneous Measurement of Particulate and Gaseous Pollutants in an Urban City in North China Plain during the Heating Period: Implication of Source Contribution. Atmos. Res. 2013, 134, 24–34. [Google Scholar] [CrossRef]
- Wang, Q.; Jiang, N.; Yin, S.; Li, X.; Yu, F.; Guo, Y.; Zhang, R. Carbonaceous Species in PM 2.5 and PM 10 in Urban Area of Zhengzhou in China: Seasonal Variations and Source Apportionment. Atmos. Res. 2017, 191, 1–11. [Google Scholar] [CrossRef]
- Cichowicz, R.; Wielgosiński, G.; Fetter, W. Dispersion of Atmospheric Air Pollution in Summer and Winter Season. Environ. Monit. Assess. 2017, 189, 605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, Y.; Zhang, S.; He, L.; Yang, S.; Wu, X.; Wu, Y. Characterizing Start Emissions of Gasoline Vehicles and the Seasonal, Diurnal and Spatial Variabilities in China. Atmos. Environ. 2021, 245, 118040. [Google Scholar] [CrossRef]
- Giovannini, L.; Ferrero, E.; Karl, T.; Rotach, M.W.; Staquet, C.; Trini Castelli, S.; Zardi, D. Atmospheric Pollutant Dispersion over Complex Terrain: Challenges and Needs for Improving Air Quality Measurements and Modeling. Atmosphere 2020, 11, 646. [Google Scholar] [CrossRef]
- Borge, R.; Requia, W.J.; Yagüe, C.; Jhun, I.; Koutrakis, P. Impact of Weather Changes on Air Quality and Related Mortality in Spain over a 25 Year Period [1993–2017]. Environ. Int. 2019, 133, 105272. [Google Scholar] [CrossRef] [PubMed]
- Wikipedia European Heat Wave. 2019. Available online: https://en.wikipedia.org/wiki/2019_European_heat_wave (accessed on 5 August 2021).
- Kalisa, E.; Fadlallah, S.; Amani, M.; Nahayo, L.; Habiyaremye, G. Temperature and Air Pollution Relationship during Heatwaves in Birmingham, UK. Sustain. Cities Soc. 2018, 43, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Dadour, I.R.; Almanjahie, I.; Fowkes, N.D.; Keady, G.; Vijayan, K. Temperature Variations in a Parked Vehicle. Forensic Sci. Int. 2011, 207, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Grundstein, A.; Meentemeyer, V.; Dowd, J. Maximum Vehicle Cabin Temperatures under Different Meteorological Conditions. Int. J. Biometeorol. 2009, 53, 255–261. [Google Scholar] [CrossRef]
- Weilenmann, M.F.; Vasic, A.-M.; Stettler, P.; Novak, P. Influence of Mobile Air-Conditioning on Vehicle Emissions and Fuel Consumption: A Model Approach for Modern Gasoline Cars Used in Europe. Environ. Sci. Technol. 2005, 39, 9601–9610. [Google Scholar] [CrossRef]
- Shojaei, S.; McGordon, A.; Robinson, S.; Marco, J. Improving the Performance Attributes of Plug-in Hybrid Electric Vehicles in Hot Climates through Key-off Battery Cooling. Energies 2017, 10, 2058. [Google Scholar] [CrossRef] [Green Version]
- Joshi, A.; Johnson, T. Gasoline particulate filters—A review. Emiss. Control Sci. Technol. 2018, 4, 219–239. [Google Scholar] [CrossRef]
- Guan, B.; Zhan, R.; Lin, H.; Huang, Z. Review of State of the Art Technologies of Selective Catalytic Reduction of NOx from Diesel Engine Exhaust. Appl. Therm. Eng. 2014, 66, 395–414. [Google Scholar] [CrossRef]
- Hooftman, N.; Messagie, M.; Van Mierlo, J.; Coosemans, T. A Review of the European Passenger Car Regulations—Real Driving Emissions vs Local Air Quality. Renew. Sustain. Energy Rev. 2018, 86, 1–21. [Google Scholar] [CrossRef]
- Valverde, V.; Mora, B.A.; Clairotte, M.; Pavlovic, J.; Suarez-Bertoa, R.; Giechaskiel, B.; Astorga-LLorens, C.; Fontaras, G. Emission Factors Derived from 13 Euro 6b Light-Duty Vehicles Based on Laboratory and on-Road Measurements. Atmosphere 2019, 10, 243. [Google Scholar] [CrossRef] [Green Version]
- Suarez-Bertoa, R.; Valverde-Morales, V.; Clairotte, M.; Pavlovic, J.; Giechaskiel, B.; Franco, V.; Kregar, Z.; Astorga-LLorens, C. On-Road Emissions of Passenger Cars beyond the Boundary Conditions of the Real-Driving Emissions Test. Environ. Res. 2019, 176, 108572. [Google Scholar] [CrossRef]
- Zhai, Z.; Tu, R.; Xu, J.; Wang, A.; Hatzopoulou, M. Capturing the Variability in Instantaneous Vehicle Emissions Based on Field Test Data. Atmosphere 2020, 11, 765. [Google Scholar] [CrossRef]
- Roberts, A.; Brooks, R.; Shipway, P. Internal Combustion Engine Cold-Start Efficiency: A Review of the Problem, Causes and Potential Solutions. Energy Convers. Manag. 2014, 82, 327–350. [Google Scholar] [CrossRef] [Green Version]
- Reiter, M.S.; Kockelman, K.M. The Problem of Cold Starts: A Closer Look at Mobile Source Emissions Levels. Transp. Res. Part D Transp. Environ. 2016, 43, 123–132. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Tian, G.; Sorniotti, A.; Karci, A.E.; Di Palo, R. Review of Thermal Management of Catalytic Converters to Decrease Engine Emissions during Cold Start and Warm Up. Appl. Therm. Eng. 2019, 147, 177–187. [Google Scholar] [CrossRef]
- Williams, R.; Andersson, J.; Hamje, H.; Ziman, P.; Kar, K.; Fittavolini, C.; Pellegrini, L.; Gunther, G.; Oliva, F.; van de Heijning, P. Impact of Demanding Low Temperature Urban Operation on the Real Driving Emissions Performance of Three European Diesel Passenger Cars; SAE International: Warrendale, PA, USA, 2018. [Google Scholar] [CrossRef]
- Khalfan, A.; Li, H.; Andrews, G. Cold Start SI Passenger Car Emissions from Real World Urban Congested Traffic; SAE International: Warrendale, PA, USA, 2015. [Google Scholar] [CrossRef]
- Suarez-Bertoa, R.; Astorga, C. Impact of Cold Temperature on Euro 6 Passenger Car Emissions. Environ. Pollut. 2018, 234, 318–329. [Google Scholar] [CrossRef]
- Faria, M.V.; Varella, R.A.; Duarte, G.O.; Farias, T.L.; Baptista, P.C. Engine Cold Start Analysis Using Naturalistic Driving Data: City Level Impacts on Local Pollutants Emissions and Energy Consumption. Sci. Total Environ. 2018, 630, 544–559. [Google Scholar] [CrossRef]
- Suarez-Bertoa, R.; Valverde, V.; Pavlovic, J.; Clairotte, M.; Selleri, T.; Franco, V.; Kregar, Z.; Astorga, C. On-Road Emissions of Euro 6d-TEMP Passenger Cars on Alpine Routes during the Winter Period. Environ. Sci. Atmos. 2021, 1, 125–139. [Google Scholar] [CrossRef]
- Bielaczyc, P.; Szczotka, A.; Woodburn, J. The Effect of a Low Ambient Temperature on the Cold-Start Emissions and Fuel Consumption of Passenger Cars. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2011, 225, 1253–1264. [Google Scholar] [CrossRef]
- Dardiotis, C.; Martini, G.; Marotta, A.; Manfredi, U. Low-Temperature Cold-Start Gaseous Emissions of Late Technology Passenger Cars. Appl. Energy 2013, 111, 468–478. [Google Scholar] [CrossRef]
- Weber, C.; Sundvor, I.; Figenbaum, E. Comparison of Regulated Emission Factors of Euro 6 LDV in Nordic Temperatures and Cold Start Conditions: Diesel- and Gasoline Direct-Injection. Atmos. Environ. 2019, 206, 208–217. [Google Scholar] [CrossRef]
- Suarez-Bertoa, R.; Astorga, C. Isocyanic Acid and Ammonia in Vehicle Emissions. Transp. Res. Part D Transp. Environ. 2016, 49, 259–270. [Google Scholar] [CrossRef]
- Suarez-Bertoa, R.; Mendoza-Villafuerte, P.; Riccobono, F.; Vojtisek, M.; Pechout, M.; Perujo, A.; Astorga, C. On-Road Measurement of NH3 Emissions from Gasoline and Diesel Passenger Cars during Real World Driving Conditions. Atmos. Environ. 2017, 166, 488–497. [Google Scholar] [CrossRef]
- Huang, C.; Hu, Q.; Lou, S.; Tian, J.; Wang, R.; Xu, C.; An, J.; Ren, H.; Ma, D.; Quan, Y.; et al. Ammonia Emission Measurements for Light-Duty Gasoline Vehicles in China and Implications for Emission Modeling. Environ. Sci. Technol. 2018, 52, 11223–11231. [Google Scholar] [CrossRef] [PubMed]
- Valverde-Morales, V.; Clairotte, M.; Pavlovic, J.; Giechaskiel, B.; Bonnel, P. On-Road Emissions of Euro 6d-TEMP Vehicles: Consequences of the Entry into Force of the RDE Regulation in Europe; No. 2020-01-2219; SAE International: Warren, PA, USA, 2020. [Google Scholar]
- European Commission. European Sustainable and Smart Mobility Strategy. Available online: https://ec.europa.eu/transport/themes/mobilitystrategy_en (accessed on 5 August 2021).
- Giechaskiel, B.; Valverde, V.; Kontses, A.; Melas, A.; Martini, G.; Balazs, A.; Andersson, J.; Samaras, Z.; Dilara, P. Particle Number Emissions of a Euro 6d-Temp Gasoline Vehicle under Extreme Temperatures and Driving Conditions. Catalysts 2021, 11, 607. [Google Scholar] [CrossRef]
- Wiers, W.W.; Scheffler, C.E. Carbon Dioxide (CO2) Tracer Technique for Modal Mass Exhaust Emission Measurement; SAE International: Warrendale, PA, USA, 1972. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Zardini, A.A.; Lähde, T.; Clairotte, M.; Forloni, F.; Drossinos, Y. Identification and Quantification of Uncertainty Components in Gaseous and Particle Emission Measurements of a Moped. Energies 2019, 12, 4343. [Google Scholar] [CrossRef] [Green Version]
- Tutuianu, M.; Bonnel, P.; Ciuffo, B.; Haniu, T.; Ichikawa, N.; Marotta, A.; Pavlovic, J.; Steven, H. Development of the World-Wide Harmonized Light Duty Test Cycle (WLTC) and a Possible Pathway for Its Introduction in the European Legislation. Transp. Res. Part D Transp. Environ. 2015, 40, 61–75. [Google Scholar] [CrossRef]
- Transport for London. London Exhaust Emissions Study. A Summary of the Drive Cycle Development, Test Programme and Comparison of Test Data Compared with Type Approval Data; Transport for London: London, UK, 2013.
- ADAC. EcoTest: Testing and Assessment Protocol; ADAC: Munich, Germany, 2015. [Google Scholar]
- Giechaskiel, B.; Clairotte, M.; Valverde-Morales, V.; Bonnel, P.; Kregar, Z.; Franco, V.; Dilara, P. Framework for the Assessment of PEMS (Portable Emissions Measurement Systems) Uncertainty. Environ. Res. 2018, 166, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, A.A.; Inambao, F.L. Effect of Cold Start Emissions from Gasoline-Fueled Engines of Light-Duty Vehicles at Low and High Ambient Temperatures: Recent Trends. Case Stud. Therm. Eng. 2019, 14, 100417. [Google Scholar] [CrossRef]
- Lodi, F.; Zare, A.; Arora, P.; Stevanovic, S.; Jafari, M.; Ristovski, Z.; Brown, R.J.; Bodisco, T. Engine Performance and Emissions Analysis in a Cold, Intermediate and Hot Start Diesel Engine. Appl. Sci. 2020, 10, 3839. [Google Scholar] [CrossRef]
- Hedinger, R.; Elbert, P.; Onder, C. Optimal Cold-Start Control of a Gasoline Engine. Energies 2017, 10, 1548. [Google Scholar] [CrossRef] [Green Version]
- Engelmann, D.; Hüssy, A.; Comte, P.; Czerwinski, J.; Bonsack, P. Influences of Special Driving Situations on Emissions of Passenger Cars. Combust. Engines 2021, 184, 41–51. [Google Scholar] [CrossRef]
- Weilenmann, M.; Soltic, P.; Saxer, C.; Forss, A.-M.; Heeb, N. Regulated and Nonregulated Diesel and Gasoline Cold Start Emissions at Different Temperatures. Atmos. Environ. 2005, 39, 2433–2441. [Google Scholar] [CrossRef]
- Du, B.; Zhang, L.; Geng, Y.; Zhang, Y.; Xu, H.; Xiang, G. Testing and Evaluation of Cold-Start Emissions in a Real Driving Emissions Test. Transp. Res. Part D Transp. Environ. 2020, 86, 102447. [Google Scholar] [CrossRef]
- Chen, L.; Du, B.; Zhang, L.; Han, J.; Chen, B.; Zhang, X.; Li, Y.; Zhang, J. Analysis of Real-Driving Emissions from Light-Duty Gasoline Vehicles: A Comparison of Different Evaluation Methods with Considering Cold-Start Emissions. Atmos. Pollut. Res. 2021, 12, 101065. [Google Scholar] [CrossRef]
- Wang, X.; Jing, X.; Li, J. Cold start emission characteristics and its effects on real driving emission test. In Application of Intelligent Systems in Multi-Modal Information Analytics; Sugumaran, V., Xu, Z., Shankar, P., Hui, H., Eds.; Advances in Intelligent Systems and Computing; Springer International Publishing: Cham, Switzerland, 2019; Volume 929, pp. 873–882. ISBN 978-3-030-15738-8. [Google Scholar]
- Pielecha, J.; Skobiej, K.; Kurtyka, K. Testing and Evaluation of Cold-Start Emissions from a Gasoline Engine in RDE Test at Two Different Ambient Temperatures. Open Eng. 2021, 11, 425–434. [Google Scholar] [CrossRef]
- Wang, C.; Tan, J.; Harle, G.; Gong, H.; Xia, W.; Zheng, T.; Yang, D.; Ge, Y.; Zhao, Y. Ammonia Formation over Pd/Rh Three-Way Catalysts during Lean-to-Rich Fluctuations: The Effect of the Catalyst Aging, Exhaust Temperature, Lambda, and Duration in Rich Conditions. Environ. Sci. Technol. 2019, 53, 12621–12628. [Google Scholar] [CrossRef]
- Selleri, T.; Melas, A.D.; Joshi, A.; Manara, D.; Perujo, A.; Suarez-Bertoa, R. An Overview of Lean Exhaust DeNOx Aftertreatment Technologies and NOx Emission Regulations in the European Union. Catalysts 2021, 11, 404. [Google Scholar] [CrossRef]
- Żółtowski, A.; Gis, W. Ammonia Emissions in SI Engines Fueled with LPG. Energies 2021, 14, 691. [Google Scholar] [CrossRef]
- Demuynck, J.; Sileghem, L.; Verhelst, S.; Mendoza Villafuerte, P.; Bosteels, D. Insights for post-Euro 6, based on analysis of Euro 6d-TEMP PEMS data. In Proceedings of the International Transport and Air Pollution Conference, Webinar, 30 March 2021. [Google Scholar]
- Hu, J.; Wu, Y.; Wang, Z.; Li, Z.; Zhou, Y.; Wang, H.; Bao, X.; Hao, J. Real-World Fuel Efficiency and Exhaust Emissions of Light-Duty Diesel Vehicles and Their Correlation with Road Conditions. J. Environ. Sci. 2012, 24, 865–874. [Google Scholar] [CrossRef]
- Zhang, L.; Lin, J.; Qiu, R. Characterizing the Toxic Gaseous Emissions of Gasoline and Diesel Vehicles Based on a Real-World on-Road Investigation. J. Clean. Prod. 2021, 286, 124957. [Google Scholar] [CrossRef]
- Bielaczyc, P.; Woodburn, J.; Szczotka, A. Low Ambient Temperature Cold Start Emissions of Gaseous and Solid Pollutants from Euro 5 Vehicles Featuring Direct and Indirect Injection Spark-Ignition Engines. SAE Int. J. Fuels Lubr. 2013, 6, 968–976. [Google Scholar] [CrossRef]
- Zhu, R.; Hu, J.; Bao, X.; He, L.; Lai, Y.; Zu, L.; Li, Y.; Su, S. Tailpipe Emissions from Gasoline Direct Injection (GDI) and Port Fuel Injection (PFI) Vehicles at Both Low and High Ambient Temperatures. Environ. Pollut. 2016, 216, 223–234. [Google Scholar] [CrossRef] [PubMed]
- Zhu, R.; Hu, J.; He, L.; Zu, L.; Bao, X.; Lai, Y.; Su, S. Effects of Ambient Temperature on Regulated Gaseous and Particulate Emissions from Gasoline-, E10- and M15-Fueled Vehicles. Front. Environ. Sci. Eng. 2021, 15, 14. [Google Scholar] [CrossRef]
- Bielaczyc, P.; Szczotka, A.; Woodburn, J. An Overview of Cold Start Emissions from Direct Injection Spark-Ignition and Compression Ignition Engines of Light Duty Vehicles at Low Ambient Temperatures. Combust. Engines 2013, 154, 96–103. [Google Scholar] [CrossRef]
- Kwon, S.; Park, Y.; Park, J.; Kim, J.; Choi, K.-H.; Cha, J.-S. Characteristics of On-Road NOx Emissions from Euro 6 Light-Duty Diesel Vehicles Using a Portable Emissions Measurement System. Sci. Total Environ. 2017, 576, 70–77. [Google Scholar] [CrossRef]
- Kim, K.; Chung, W.; Kim, M.; Kim, C.; Myung, C.-L.; Park, S. Inspection of PN, CO2, and Regulated Gaseous Emissions Characteristics from a GDI Vehicle under Various Real-World Vehicle Test Modes. Energies 2020, 13, 2581. [Google Scholar] [CrossRef]
- Weilenmann, M.; Favez, J.-Y.; Alvarez, R. Cold-Start Emissions of Modern Passenger Cars at Different Low Ambient Temperatures and Their Evolution over Vehicle Legislation Categories. Atmos. Environ. 2009, 43, 2419–2429. [Google Scholar] [CrossRef]
- Clairotte, M.; Adam, T.W.; Zardini, A.A.; Manfredi, U.; Martini, G.; Krasenbrink, A.; Vicet, A.; Tournié, E.; Astorga, C. Effects of Low Temperature on the Cold Start Gaseous Emissions from Light Duty Vehicles Fuelled by Ethanol-Blended Gasoline. Appl. Energy 2013, 102, 44–54. [Google Scholar] [CrossRef]
- Sterlepper, S.; Claßen, J.; Pischinger, S.; Görgen, M.; Cox, J.; Nijs, M.; Scharf, J. Relevance of Exhaust Aftertreatment System Degradation for EU7 Gasoline Engine Applications; SAE International: Warrendale, PA, USA, 2020. [Google Scholar] [CrossRef]
- Ludykar, D.; Westerholm, R.; Almén, J. Cold Start Emissions at +22, −7 and −20 °C Ambient Temperatures from a Three-Way Catalyst (TWC) Car: Regulated and Unregulated Exhaust Components. Sci. Total Environ. 1999, 235, 65–69. [Google Scholar] [CrossRef]
- Shelef, M.; McCabe, R.W. Twenty-Five Yearsfigure after Introduction of Automotive Catalysts: What Next? Catal. Today 2000, 62, 35–50. [Google Scholar] [CrossRef]
- Liu, Y.; Ge, Y.; Tan, J.; Wang, H.; Ding, Y. Research on Ammonia Emissions Characteristics from Light-Duty Gasoline Vehicles. J. Environ. Sci. 2021, 106, 182–193. [Google Scholar] [CrossRef] [PubMed]
- Welstand, J.S.; Haskew, H.H.; Gunst, R.F.; Bevilacqua, O.M. Evaluation of the Effects of Air Conditioning Operation and Associated Environmental Conditions on Vehicle Emissions and Fuel Economy; SAE International: Warrendale, PA, USA, 2003. [Google Scholar] [CrossRef] [Green Version]
- Suarez-Bertoa, R.; Pechout, M.; Vojtíšek, M.; Astorga, C. Regulated and Non-Regulated Emissions from Euro 6 Diesel, Gasoline and CNG Vehicles under Real-World Driving Conditions. Atmosphere 2020, 11, 204. [Google Scholar] [CrossRef] [Green Version]
- Varella, R.A.; Faria, M.V.; Mendoza-Villafuerte, P.; Baptista, P.C.; Sousa, L.; Duarte, G.O. Assessing the Influence of Boundary Conditions, Driving Behavior and Data Analysis Methods on Real Driving CO2 and NOx Emissions. Sci. Total Environ. 2019, 658, 879–894. [Google Scholar] [CrossRef] [PubMed]
- Getsoian, A.B.; Ura, J.; Snow, R.; Wu, J.; Lymburner, J.; Kim, J.; Ruona, W.; Cavataio, G. Ammonia control: The next frontier in automotive emissions catalysis. In Proceedings of the 2020 CLEERS Virtual Workshop, Oak Ridge, TN, USA, 14–18 September 2020. [Google Scholar]
- Gallus, J.; Kirchner, U.; Vogt, R.; Benter, T. Impact of Driving Style and Road Grade on Gaseous Exhaust Emissions of Passenger Vehicles Measured by a Portable Emission Measurement System (PEMS). Transp. Res. Part D Transp. Environ. 2017, 52, 215–226. [Google Scholar] [CrossRef]
- Woodburn, J. Emissions of Reactive Nitrogen Compounds (RNCs) from Two Vehicles with Turbo-Charged Spark Ignition Engines over Cold Start Driving Cycles. Combust. Engines 2021, 185, 3–9. [Google Scholar] [CrossRef]
- Fischer, M.; Kreutziger, P.; Sun, Y.; Kotrba, A. Clean EGR for Gasoline Engines—Innovative Approach to Efficiency Improvement and Emissions Reduction Simultaneously; SAE International: Warrendale, PA, USA, 2017. [Google Scholar]
- Yang, Z.; Liu, Y.; Wu, L.; Martinet, S.; Zhang, Y.; Andre, M.; Mao, H. Real-World Gaseous Emission Characteristics of Euro 6b Light-Duty Gasoline- and Diesel-Fueled Vehicles. Transp. Res. Part D Transp. Environ. 2020, 78, 102215. [Google Scholar] [CrossRef]
- Santos, H.; Costa, M. Evaluation of the Conversion Efficiency of Ceramic and Metallic Three Way Catalytic Converters. Energy Convers. Manag. 2008, 49, 291–300. [Google Scholar] [CrossRef]
- Samaras, Z.; Andersson, J.; Aakko-Saksa, P.; Cuelenaere, R.; Mellios, G. Additional Technical Issues for Euro 7 (LDV) 2021. In Proceedings of the AGVES Meeting, Webex, 27 April 2021. [Google Scholar]
- Bielaczyc, P.; Woodburn, J.; Szczotka, A. Exhaust Emissions of Gaseous and Solid Pollutants Measured over the NEDC, FTP-75 and WLTC Chassis Dynamometer Driving Cycles; SAE International: Warrendale, PA, USA, 2016. [Google Scholar] [CrossRef]
- Bagheri, S.; Huang, Y.; Walker, P.D.; Zhou, J.L.; Surawski, N.C. Strategies for Improving the Emission Performance of Hybrid Electric Vehicles. Sci. Total Environ. 2021, 771, 144901. [Google Scholar] [CrossRef]
- Massaguer, A.; Pujol, T.; Comamala, M.; Massaguer, E. Feasibility Study on a Vehicular Thermoelectric Generator Coupled to an Exhaust Gas Heater to Improve Aftertreatment’s Efficiency in Cold-Starts. Appl. Therm. Eng. 2020, 167, 114702. [Google Scholar] [CrossRef]
- Bargman, B.; Jang, S.; Kramer, J.; Soliman, I.; Abubeckar Mohamed Sahul, A.A. Effects of Electrically Preheating Catalysts on Reducing High-Power Cold-Start Emissions; SAE International: Warrendale, PA, USA, 2021. [Google Scholar] [CrossRef]
- Hamedi, M.R.; Doustdar, O.; Tsolakis, A.; Hartland, J. Energy-Efficient Heating Strategies of Diesel Oxidation Catalyst for Low Emissions Vehicles. Energy 2021, 230, 120819. [Google Scholar] [CrossRef]
- Suarez-Bertoa, R.; Pavlovic, J.; Trentadue, G.; Otura-Garcia, M.; Tansini, A.; Ciuffo, B.; Astorga, C. Effect of Low Ambient Temperature on Emissions and Electric Range of Plug-in Hybrid Electric Vehicles. ACS Omega 2019, 4, 3159–3168. [Google Scholar] [CrossRef] [PubMed]
- Mc Grane, L.; Douglas, R.; Irwin, K.; Stewart, J.; Woods, A.; Muehlstaedt, F. A Study of the Effect of Light-off Temperatures and Light-off Curve Shape on the Cumulative Emissions Performance of 3-Way Catalytic Converters; SAE International: Warrendale, PA, USA, 2021. [Google Scholar] [CrossRef]
Urban | WLTC | TfL | Uphill Tow | Uphill Tow 85% | RDE Short | RDE Bound. | RDE Road 1 | RDE Road 2 | BAB |
---|---|---|---|---|---|---|---|---|---|
Duration (s) | 1800 | 2310 | 1110 | 1110 | 3600 | 7088 | 6812 | 6630 | 800 |
Distance (km) | 23.2 | 8.9 | 9.2 | 9.2 | 50 | 100 | 96 | 99 | 8.3 |
Mean speed (km/h) | 46.5 | 14.0 | 29.3 | 29.1 | 49.5 | 50.9 | 50.9 | 53.7 | 94.0 |
Max speed (km/h) | 131 | 52 | 54 | 53 | 120 | 136 | 149 | 135 | 131.3 |
Inertia (kg) | 1817 | 1817 | 2617 | 3570 | 1817 | 2150 | 1930 | 1930 | 1817 |
Payload car | (35%) | (35%) | (35%) | 85% | (35%) | 90% | (50%) | (50%) | (35%) |
Payload trailer | - | - | 40% | 85% | - | - | - | - | - |
Slope range (%) | No | No | 5% | 5% | −9.6 to 9.2% | −8.1 to 6.5% | −7.3 to 9.2% | −9.8 to 10.6% | No |
Cycle | Temp. (°C) | CO2 (g/km) | NOx (mg/km) | THC (mg/km) | NMHC (mg/km) | CO (mg/km) | NH3 (mg/km) | N2O (mg/km) |
---|---|---|---|---|---|---|---|---|
Limit WLTC (Euro 6) | 23 | - | 60 | 100 | 68 | 1000 | - | - |
WLTC | 23 | 164 | 10 | 18 | 15 | 187 | - | - |
RDE road 1 1 | 20 | 183 | 7 | - | - | 172 | - | - |
RDE road 2 1 | 17 | 181 | 6 | - | - | 114 | - | - |
RDE short | 50 | 234 | 8 | 13 | 11 | 497 | 5 | 0 |
RDE short | 23 | 187 | 9 | 17 | 15 | 331 | 9 | 1 |
RDE short | 5 | 184 | 7 | 24 | 22 | 295 | 4 | 1 |
RDE short | −10 | 188 | 11 | 48 | 44 | 526 | 8 | 0 |
RDE short | −30 | 208 | 12 | 127 | 117 | 1013 | 8 | 0 |
RDE boundary | −10 | 306 | 19 | 79 | 57 | 772 | 9 | 0 |
Cycle (Urban Part) | Temp. | Distance | Time | CO | THC | NOx | NH3 |
---|---|---|---|---|---|---|---|
WLTC (L + M) | 23 | 2.0/7.9 | 1022 | 88% | 95% | 82% | - |
RDE road 1 1 | 20 | 2.0/27.8 | 2850 | 65% | 32% | - | |
RDE road 2 1 | 17 | 2.0/26.5 | 2730 | 81% | - | 38% | - |
Uphill | −10 | 2.8/9.1 | 1115 | 70% | 93% | 92% | 57% |
Uphill 85% | −7 | 2.8/9.1 | 1115 | 56% | 90% | 90% | 73% |
RDE boundary | −10 | 2.7/38.5 | 4540 | 68% | 84% | 61% | 62% |
RDE short | −30 | 1.7/12.8 | 1855 | 93% | 98% | 81% | 70% |
RDE short | −10 | 1.7/12.8 | 1855 | 90% | 99% | 69% | 53% |
RDE short | 5 | 1.7/12.8 | 1855 | 87% | 98% | 60% | 52% |
RDE short | 23 | 1.7/12.8 | 1855 | 76% | 96% | 49% | 45% |
RDE short | 50 | 1.7/12.8 | 1855 | 54% | 96% | 42% | 70% |
TfL | −30 | 1.0/8.9 | 2315 | 96% | 98% | 80% | 66% |
TfL | −10 | 1.0/8.9 | 2315 | 96% | 99% | 90% | 59% |
TfL | −7 | 1.0/8.9 | 2315 | 87% | 99% | 88% | 49% |
TfL | 5 | 1.0/8.9 | 2315 | 87% | 92% | 80% | 38% |
TfL | 23 | 1.0/8.9 | 2315 | 93% | 78% | 92% | 45% |
TfL | 50 | 1.0/8.9 | 2315 | 31% | 78% | 88% | 42% |
Cycle (Urban Part) | Temp. | Distance | Time | CO | THC | NOx | NH3 |
---|---|---|---|---|---|---|---|
WLTC | 23 | 2.0/23.3 | 1800 | 56% | 89% | 64% | - |
RDE road 1 1 | 20 | 2.0/96 | 6812 | 6% | - | 14% | - |
RDE road 2 1 | 17 | 2.0/99 | 6630 | 9% | - | 19% | - |
RDE boundary | −10 | 2.7/100 | 7088 | 22% | 59% | 39% | 18% |
RDE short | −30 | 1.7/50 | 3600 | 74% | 94% | 58% | 46% |
RDE short | −10 | 1.7/50 | 3600 | 51% | 87% | 45% | 24% |
RDE short | 5 | 1.7/50 | 3600 | 30% | 80% | 37% | 26% |
RDE short | 23 | 1.7/50 | 3600 | 23% | 71% | 29% | 19% |
RDE short | 50 | 1.7/50 | 3600 | 11% | 49% | 23% | 24% |
TfL and BAB | RDE Short | ||||||
---|---|---|---|---|---|---|---|
−30 °C | −10 °C | 50 °C | −30 °C | −10 °C | 50 °C | ||
CO | Cold start | 8.82 | 2.58 | 0.68 | 8.39 | 3.50 | 0.73 |
Urban | 8.72 | 2.73 | 2.02 | 7.17 | 3.14 | 1.06 | |
Motorway | 0.61 | 0.58 | 1.94 | 0.74 | 1.03 | 1.78 | |
THC | Cold start | 7.07 | 2.77 | 0.34 | 9.04 | 3.08 | 0.45 |
Urban | 5.70 | 2.38 | 0.34 | 9.02 | 3.08 | 0.48 | |
Motorway | 0.78 | 0.57 | 0.92 | 1.13 | 1.34 | 1.42 | |
NOx | Cold start | 1.56 | 3.04 | 2.75 | 2.81 | 2.03 | 1.37 |
Urban | 1.70 | 3.37 | 2.83 | 1.63 | 1.28 | 1.13 | |
Motorway | 0.70 | 0.67 | 3.09 | 0.96 | 1.27 | 0.67 | |
NH3 | Cold start | 1.55 | 1.28 | 1.12 | 2.11 | 1.13 | 0.95 |
Urban | 1.05 | 1.13 | 0.95 | 1.36 | 0.96 | 0.50 | |
Motorway | 0.34 | 0.49 | 1.34 | 0.67 | 1.03 | 0.75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giechaskiel, B.; Valverde, V.; Kontses, A.; Suarez-Bertoa, R.; Selleri, T.; Melas, A.; Otura, M.; Ferrarese, C.; Martini, G.; Balazs, A.; et al. Effect of Extreme Temperatures and Driving Conditions on Gaseous Pollutants of a Euro 6d-Temp Gasoline Vehicle. Atmosphere 2021, 12, 1011. https://doi.org/10.3390/atmos12081011
Giechaskiel B, Valverde V, Kontses A, Suarez-Bertoa R, Selleri T, Melas A, Otura M, Ferrarese C, Martini G, Balazs A, et al. Effect of Extreme Temperatures and Driving Conditions on Gaseous Pollutants of a Euro 6d-Temp Gasoline Vehicle. Atmosphere. 2021; 12(8):1011. https://doi.org/10.3390/atmos12081011
Chicago/Turabian StyleGiechaskiel, Barouch, Victor Valverde, Anastasios Kontses, Ricardo Suarez-Bertoa, Tommaso Selleri, Anastasios Melas, Marcos Otura, Christian Ferrarese, Giorgio Martini, Andreas Balazs, and et al. 2021. "Effect of Extreme Temperatures and Driving Conditions on Gaseous Pollutants of a Euro 6d-Temp Gasoline Vehicle" Atmosphere 12, no. 8: 1011. https://doi.org/10.3390/atmos12081011
APA StyleGiechaskiel, B., Valverde, V., Kontses, A., Suarez-Bertoa, R., Selleri, T., Melas, A., Otura, M., Ferrarese, C., Martini, G., Balazs, A., Andersson, J., Samaras, Z., & Dilara, P. (2021). Effect of Extreme Temperatures and Driving Conditions on Gaseous Pollutants of a Euro 6d-Temp Gasoline Vehicle. Atmosphere, 12(8), 1011. https://doi.org/10.3390/atmos12081011