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Abstract: Gaseous emissions of modern Euro 6d vehicles, when tested within real driving emissions
(RDE) boundaries, are, in most cases, at low levels. There are concerns, though, about their emission
performance when tested at or above the boundaries of ambient and driving conditions requirements
of RDE regulations. In this study, a Euro 6d-Temp gasoline direct injection (GDI) vehicle with three-
way catalyst and gasoline particulate filter was tested on the road and in a laboratory at temperatures
ranging between −30 ◦C and 50 ◦C, with cycles simulating urban congested traffic, uphill driving
while towing a trailer at 85% of the vehicle’s maximum payload, and dynamic driving. The vehicle
respected the Euro 6 emission limits, even though they were not applicable to the specific cycles,
which were outside of the RDE environmental and trip boundary conditions. Most of the emissions
were produced during cold starts and at low ambient temperatures. Heavy traffic, dynamic driving,
and high payload were found to increase emissions depending on the pollutant. Even though this
car was one of the lowest emitting cars found in the literature, the proposed future Euro 7 limits
will require a further decrease in cold start emissions in order to ensure low emission levels under
most ambient and driving conditions, particularly in urban environments. Nevertheless, motorway
emissions will also have to be controlled well.

Keywords: vehicle emissions; cold start; low temperature; real driving emissions (RDE); ammonia

1. Introduction

Air pollution, specifically particulate matter (PM), nitrogen dioxide (NO2), and
ground-level ozone (O3), has significant impacts on the health of the European population,
particularly in urban areas [1]. The lockdown measures introduced by most European
countries to reduce the transmission of COVID-19 in the spring of 2020 led to significant
reductions in the emission of air pollutants, particularly from road transport, aviation,
and international shipping. In particular, NO2 concentrations were significantly reduced,
independent of meteorological conditions [2–6], highlighting the important contribution of
road transport to air quality, particularly in cities.

The winter season and low temperatures are usually correlated with high ambient air
pollution due to increased emissions (household heating, coal burning, and road transport
being the main contributors) [7–10]. Weather conditions that limit the advection and
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diffusion of pollutants in the atmosphere are also important (atmospheric stability, low
planetary boundary layer height) [11]. The winter period is typically associated with
increased tropospheric concentrations of NO2, particularly PM [12].

As well as cold operating conditions, warm weather has also been associated with
increases in emissions. In the last decade, heat wave temperatures >40 ◦C were recorded in
many cities, with the temperature exceeding 46 ◦C in one city in France in 2019 [13]. During
heatwaves, pollutant concentrations rise, with the maximum temperature coinciding with
the peak of O3 and PM10 [14]. During hot days, the cabin temperature of parked cars
can exceed ambient air temperature due to solar radiation. Temperatures above 60 ◦C,
and up to 76 ◦C, have been reported [15,16]. Such high temperatures require the use of
air-conditioning (A/C) systems, which increase fuel consumption and emissions [17]. Fur-
thermore, high temperatures require sufficient cooling for the batteries of hybrid vehicles,
impacting their range and performance [18].

Road transport is one of the main sources of nitrogenous oxide (NOx) emissions in
the European Union (EU), contributing to 39% of total emissions [1]. There has been
great progress in engine combustion and aftertreatment devices since the 1970s, and
emissions have been significantly reduced [19,20]. Nevertheless, until recently, there
were cases reporting high emissions under real driving conditions, with Dieselgate being
the most discussed [21]. High emissions (i.e., above the type approval levels) have also
been reported for gasoline vehicles during highway driving [22]. Aggressive driving
or traffic conditions have also been reported to produce high emissions [23,24]. One of
the most difficult challenges for which improvements are still needed is the cold engine
start [25,26]. During the first one to two minutes of operation, emissions are high because
the aftertreatment devices have not reached the appropriate temperature and are not
efficient in removing gaseous pollutants [27,28]. It has been shown that, in real-world
congested urban traffic, due to low load and long idling, it takes longer for the catalyst
to reach the optimum temperature, resulting in high emissions [29]. The issue is more
pronounced at low ambient temperatures, where it takes more time to reach thermal
stability of the engine and the aftertreatment devices [30–32]. Higher urban emissions,
by a factor of five, have been reported at low ambient temperatures [31,33]. For gasoline
vehicles, the most significant increases in emissions due to cold starts are traditionally seen
in relation to carbon monoxide (CO) and total hydrocarbon (THC) pollutants. Concerns
for NOx have also been raised [34,35]. Non-regulated pollutants, such as isocyanic acid,
can also be high [36]. Furthermore, ammonia (NH3) can be formed at the three-way
catalyst (TWC) of stoichiometric engines at rich conditions, at levels up to hundreds of
mg/km [37,38].

In Europe the real driving emissions (RDE) regulation requires that vehicles respect
the respective emission limits under normal operations of use. The introduction of this
regulation in 2017 resulted in low on-road emissions of modern vehicles [39]. As announced
in the European Green Deal and the recent communication on sustainable and smart
mobility strategy, the Commission will propose more stringent air pollutant emissions
standards by the end of 2021 (Euro 7) [40]. It is expected that future internal combustion
engines will be based on the best available technologies and will be clean under most
operating conditions.

This paper aims to present emissions of a state-of-the-art gasoline vehicle under
extreme temperature and driving conditions, both of which are missing from the literature.
It provides indications of the emission performance of some of the current gasoline vehicles’
technologies under challenging ambient and driving conditions, while it also quantifies
the contribution of cold starts and low and high ambient temperatures on emissions. In
this paper, gaseous pollutants are presented. Particle number emissions are presented in a
companion paper [41].
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2. Materials and Methods

The test campaign was carried out in the European Commission’s Joint Research
Centre (JRC) vehicle emissions laboratory (VELA 8). Details can be found at the companion
paper on particle number emissions [41]. Here, only the basic information necessary for
understanding the result is repeated.

The vehicle was a 2019 model-year (Euro 6d-Temp-Evap-ISC), direct-injection gasoline
passenger car with a 135 kW four cylinder in-line 2.0 l engine, equipped with a close-
coupled three-way catalyst (TWC) and an uncoated underfloor gasoline particle filter (GPF).
The TWC converter was approximately 2.2 l, divided in two parts with different platinum-
group metals (PGM) loadings. The odometer reading at start of the test campaign was
24130 km. The vehicle’s air conditioning (A/C) system was used and set at a temperature
of 21.5 ◦C for all tests. Gasoline (E10) market fuel was used for all tests.

For all tests conducted, regulated gaseous emissions (CO, NOx and THC) were mea-
sured from the full dilution tunnel in real-time with commercial analyzers (AMA i60, AVL,
Graz, Austria). Bag results were available on a set of tests (BAB, RDE short, uphill cycles;
see below details for cycles) and were used to confirm the emissions calculated from the
dilution tunnel instantaneous data. Non-regulated pollutants (e.g., NH3, N2O, CH4) were
measured from the tailpipe with a Fourier-transform infrared (FTIR) spectrometer Sesam
(AVL). To convert the FTIR concentrations to mass emissions, an exhaust mass flow was
necessary (time-aligned with each other). The exhaust mass flow was calculated using the
CO2 tracer method [42,43]. The FTIR CO2 tailpipe signal and the AMA i60 CO2 dilution
tunnel signals were used to calculate the dilution factor second-by-second. The total dilu-
tion tunnel flow rate was divided by the second-by-second calculated dilution factor to
give the second-by-second exhaust flow rate. A few artificial high values that appeared
during decelerations due to the different response times of the signals were cut-off. The
mean difference between FTIR and diluted values were 0.2% (±0.8%) for CO2, without any
particular trend depending on the ambient temperature.

A thermocouple was used to measure the temperature at the tailpipe. A connection
to the vehicle’s on-board diagnostics OBD port provided information such as coolant
temperature and engine speed. Various cycles were driven (Table 1):

• WLTC (worldwide harmonized light vehicles test cycle) Type 1 approval cycle. As
urban part, the low and medium phases were considered, according to the RDE
regulation, while the extra high phase was used as motorway part [44].

• TfL (Transport for London urban interpeak) urban driving characterized by stop and
go traffic in congested conditions. The cycle was developed by Millbrook Inc. in
collaboration with the Traffic for London Authority [45].

• BAB 130 (Bundesautobahn, Federal highway) high speed driving on the motorway up
to 130 km/h, with frequent and sharp accelerations. It was developed by ADAC (Allge-
meiner Deutscher Automobil-Club e.V.) as part of the EcoTest car testing protocol [46].

• RDE short: A one-hour duration test with urban (time share 53%), rural (28%), and
motorway conditions (19%), and road slope (range −9.6% to 9.2%) was provided by
Ricardo Automotive & Industrial.

• RDE boundary: A two-hour cycle recreating the most dynamic drive possible within
the RDE boundaries with a 90% payload, including road slope (range −8.1% to
6.5%), provided by FEV Europe. The urban/rural/motorway time shares were
66%/20%/15%.

• Uphill: A cycle (vehicle speed < 60 km/h) simulating (i) uphill driving with a 5%
constant slope, while towing a 800 kg trailer (uphill tow); (ii) uphill driving with a 5%
constant slope, car loaded to 85% payload and towing a 1700 kg trailer (85% of max
trailer weight) (uphill tow 85%). The cycle was based on actual uphill driving data at
the JRC premises.

• RDE road: Two different routes according to Type 1A on-road procedure (RDE road)
with a portable emissions measurement system (PEMS) (MOVE from AVL); routes
were actually driven on the road at the JRC premises.
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Table 1. Main characteristics of the cycles and routes.

Urban WLTC TfL Uphill
Tow

Uphill
Tow 85%

RDE
Short

RDE
Bound.

RDE
Road 1

RDE
Road 2 BAB

Duration (s) 1800 2310 1110 1110 3600 7088 6812 6630 800
Distance (km) 23.2 8.9 9.2 9.2 50 100 96 99 8.3
Mean speed (km/h) 46.5 14.0 29.3 29.1 49.5 50.9 50.9 53.7 94.0
Max speed (km/h) 131 52 54 53 120 136 149 135 131.3

Inertia (kg) 1817 1817 2617 3570 1817 2150 1930 1930 1817
Payload car (35%) (35%) (35%) 85% (35%) 90% (50%) (50%) (35%)
Payload trailer - - 40% 85% - - - - -
Slope range (%) No No 5% 5% −9.6 to 9.2% −8.1 to 6.5% −7.3 to 9.2% −9.8 to 10.6% No

The WLTC tests were conducted using the test mass and roadload coefficients declared
on the CoC (Certificate of Conformity) of the vehicle, after roadload derivation on the
dyno. For the other cycles, the dyno coefficients were adjusted depending on the simulated
conditions (e.g., slope, extra weight, etc.). The 95th percentile of the product of vehicle
speed per positive acceleration greater than 0.1 m/s2 (v × a) for urban, rural, and motorway
shares is plotted in Figure 1.
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Figure 1. The 95th percentile of the product of vehicle speed per positive acceleration greater than 0.1 m/s2 (v × a) for
urban, rural, and motorway shares. Arrows show the theoretical mean speed range for motorway and rural parts and the
obligatory range for the urban part, according to the Euro 6 RDE regulation.

Ambient temperatures tested were −30 ◦C, −10 ◦C, −7 ◦C, 5 ◦C, 23 ◦C, and 50 ◦C for
the TfL, BAB, and RDE short cycles. The RDE boundary and the uphill cycles were driven
at −7 ◦C and/or −10 ◦C, as these were considered the most challenging situations at or
slightly above the permitted RDE boundary conditions. The WLTC test temperature was
23 ◦C, as required in the regulation, while the ambient temperature during the on-road tests
was 1720 ◦C. Temperatures of −30 ◦C and 50 ◦C were selected because these conditions
are far from the normal operative conditions for which the vehicle might be calibrated.
Note that such temperatures are not expected in Europe and compliance with any limits is
highly unlikely.

3. Results

Initially, the laboratory type-approval Type 1 results are given, followed by real-
time examples. Special attention will be given to cold start emissions. Then, urban and
motorway emissions will be presented. Our focus is on regulated pollutants (CO, NOx,



Atmosphere 2021, 12, 1011 5 of 25

THC) and only NH3 from non-regulated pollutants. Other non-regulated pollutants were
low for the specific vehicle (e.g., N2O < 3 mg/km). The emissions per km or kg of fuel can
be found in the Supplementary Material.

3.1. Type 1 (WLTC) and Type 1A (RDE) Emissions

Table 2 summarizes the results for the on-road Type 1A (RDE), the laboratory Type 1
(WLTC), and the laboratory RDE-like cycles at different ambient temperatures. The WLTC
emissions were three to six times lower than the respective Euro 6 limits applicable to the
specific Euro 6d-Temp vehicle. The official tests (RDE road) were in agreement with the
laboratory tests and much below the respective limit for NOx, where a conformity factor of
2.1 would be applicable for the specific vehicle to take into account the PEMS measurement
uncertainty [47].

Table 2. Measured and declared emissions and applicable emission limits for the vehicle of this study.

Cycle Temp.
(◦C)

CO2
(g/km)

NOx
(mg/km)

THC
(mg/km)

NMHC
(mg/km)

CO
(mg/km)

NH3
(mg/km)

N2O
(mg/km)

Limit WLTC (Euro 6) 23 - 60 100 68 1000 - -
WLTC 23 164 10 18 15 187 - -

RDE road 1 1 20 183 7 - - 172 - -
RDE road 2 1 17 181 6 - - 114 - -

RDE short 50 234 8 13 11 497 5 0
RDE short 23 187 9 17 15 331 9 1
RDE short 5 184 7 24 22 295 4 1
RDE short −10 188 11 48 44 526 8 0
RDE short −30 208 12 127 117 1013 8 0

RDE boundary −10 306 19 79 57 772 9 0
1 A conformity factor is applicable to the NOx limit to take into account the measurement uncertainty of PEMS (portable emissions
measurement system) for the on-road tests. NMHC = non-methane hydrocarbons (NMHC = THC-CH4); THC = total hydrocarbons;
RDE = real driving emissions; WLTC = worldwide harmonized light vehicles test cycle.

Various short (1 h) RDE-like cycles, which were not RDE compliant due to their short
duration, at different temperatures also had emissions below the respective limits (although
not applicable). The only exception was the −30 ◦C test, which had CO just at the Euro
6 limit, and THC 27% higher than the applicable limit at 23 ◦C. All these tests at −30 ◦C
and −10 ◦C (and 50 ◦C) were outside the boundaries of the RDE regulation. The RDE at
the boundaries (−10 ◦C, 90% payload, and dynamic driving at the limits of RDE) was also
within the emission limits.

It should be mentioned that a correction of 1.6 would be applicable to emissions
on RDE cycles at extended conditions (−7 ◦C to 0 ◦C, 30 ◦C to 35 ◦C) if the emissions
calculation method was conducted according to RDE regulation (EU) 2017/1151. This
correction was not applied to our analysis. Furthermore, an “RDE evaluation factor”
should be applied at each test. It is calculated as the ratio of the test (trip) CO2 and the
type-approval cycle CO2, and takes into account the severity of the trip. For ratios < 1.3, no
correction is applied while, for ratios > 1.5, the inverse of the ratio is applied to the final
emission result. For the specific vehicle, which was type-approved before January 2020, the
respective ratios were 1.2 and 1.25. Again, no such corrections were applied to the results
presented in this study. With such corrections, the results of the −30 ◦C would be well
within the emission limits.

3.2. Real Time Examples

As an example, Figure 2 provides the speed profile and the cumulative emissions
for the TfL (Transport for London) and BAB (Bundesautobahn, Federal highway) cycles
for various ambient temperatures. More information regarding coolant temperatures can
be found in Appendix A Figure A1. The temperature profiles indicate a different engine
thermal management strategy after 1700 s for the 50 ◦C test. There was no additional infor-
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mation available about air-to-fuel ratios or TWC temperatures. Exhaust gas temperatures
can be found in the companion paper.
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Figure 2a shows cumulative CO emissions. CO cold start emissions were higher for
lower ambient temperatures. After the first minute (three minutes for −30 ◦C), the cumu-
lative emissions remained almost constant until the motorway BAB cycles. The dynamic
accelerations of the BAB contributed substantially less than the cold start emissions of the
extreme low temperature (−30 ◦C), were comparable to the cold start emissions of low
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temperatures (−10 and −7 ◦C), more than the cold start emissions of mild temperatures
(23 and 5 ◦C), and substantially more than the cold start emissions at high temperature
(50 ◦C). Similar behavior was also seen for THC (Figure 2b) and NOx (Figure 2c). While
ambient temperature had a clear effect on cold start emissions for CO and THC, this trend
was not clear for NOx. For CO and NOx, there was a clear increase in emissions during
accelerations, but not for THC.

NH3 emissions (Figure 2d) followed a similar trend. Although there was an increase
during cold start, the step increase was noticed at 200 s, after the catalyst had reached its
light-off temperature (as indicated by the stabilization of the cumulative emissions for the
regulated pollutants). Increased emissions during the accelerations of the BAB cycle were
also noticed.

In general, cumulative emissions stabilized much faster than the coolant temperature
(compare with Figure A1), indicating that the TWC reached its efficient operating tempera-
ture faster than the engine. Of particular interest was the increase in emissions (in particular
CO and NH3) at the last part of the 50 ◦C TfL test (around 1700 s), which coincided with
the coolant temperature decrease which indicated a different engine thermal management.

The trends were similar for the RDE short cycles. After the cold start increase, cumu-
lative emissions were flat (or smoothly increasing) at the urban part, and then increased
slightly at the rural part and increased significantly at the motorway part. Examples are
given in Appendix A Figures A2 and A3.

Figure 3 plots the cumulative emissions during the first 15 min for the various urban
cycles. Figure A4 in the Appendix A plots the coolant temperatures (no TWC temperatures
were available). Most of the emissions of the urban part took place during the first one–two
minutes, with a few exceptions. For the TfL at −7 ◦C, it took three minutes to reach a
“plateau” in CO cumulative emissions (Figure 3a). Another notable exception was uphill
driving with a simulated trailer with an 85% of maximum payload, where the CO emissions
continued to increase almost linearly after the first two minutes (Figure 3a). The dynamic
RDE boundary had the highest cold start CO emissions. THC emissions (Figure 3b) showed
a similar trend, with the exception that uphill driving did not further increase the emissions
after the first minute. Similarly, for NOx, after the first minute, the cumulative emissions
were constant (Figure 3c). Uphill and dynamic driving had similarly high emissions, while
the short RDE was the lowest. For NH3, as mentioned before, the increase appeared after
the catalyst light-off, with the highest increase taking place somewhere between 80 s and
180 s (Figure 3d). The emissions continued to increase after the first three minutes. The
highest emissions were noticed in uphill high load driving, followed by the dynamic cycle.
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3.3. Ambient Temperature and Cold Start Emissions

Figure 4 summarizes the cumulative emissions (in g) during the first 300 s of cold start
test cycles at various ambient temperatures. A duration of 300 s was selected in order to
ensure the “plateau” region was reached (i.e., a small increase in the emissions afterwards),
even in the extreme case of the −30 ◦C for the great majority of test cycles and pollutants,
as presented in the previous section. For the other temperatures, the plateau region was
reached within one to two minutes (see also Figures 2 and 3). Furthermore, a cold start in
the RDE regulation is defined as the first 300 s. The distance driven in the first 300 s varied
from 1 km (TfL) to 2.8 km (uphill and RDE boundary). In the case of the RDE, the distance
covered was 1.7 km.

There is a clear increasing trend with decreasing ambient temperature for CO and THC
emissions (Figure 4a,b). The cold start (i.e., first 5 min) CO mass was <4.5 g at temperatures
<5 ◦C, 10–18 g at −10 ◦C and 32–40 g at −30 ◦C. For the same temperature (−10 ◦C), the
dynamic RDE boundary cycle had the highest emissions.

The cold start THC mass was <1 g at temperatures above 5 ◦C, 2–4 g at −10 ◦C and
7 g at −30 ◦C. For the same temperature (−10 ◦C), the dynamic RDE boundary cycle had
the highest emissions. At low ambient temperatures, the TfL had higher emissions than
the RDE short.
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Figure 4. Cumulative cold start emissions (300 s) for various cycles in function of ambient temperature: (a) CO; (b) THC;
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For NOx, the trend in function of temperature was less evident, and the emissions had
a bathtub-like curve, especially in the case of the TfL cycle; high emissions were seen at
both low and high temperatures, and the TfL was higher than the RDE short (Figure 4c).
The dynamic RDE boundary and the high load uphill cycles also showed high emissions.
Comparing the CO and NOx graphs (e.g., for TfL), the NOx–CO trade-off related to lambda
control could be seen; when CO was high, NOx was usually low, and vice versa.

For NH3 (Figure 4d), the temperature dependence was almost non-existent. For a
specific temperature, there was an influence of the cycle: (i) the dynamic cycle had high
emissions; (ii) the stop and go TfL had higher emissions than the moderate RDE short; (iii)
the high load uphill cycle had high emissions (~140 mg/km over the first 2.8 km).

3.4. Ambient Temperature and Urban Emissions

Figure 5 presents the emissions (in mg/km) of the vehicle for the urban cycles and
urban parts of the rest cycles. The TfL was an 8.9 km urban cycle and the urban part of the
RDE short urban cycle was 12.7 km, while the urban parts of the dynamic RDE boundary
and actual RDE on-road cycles were around 35 km long. The uphill cycles were 9 km long,
representing uphill driving towing a trailer with 85% of the maximum weight. The WLTC
low and medium part were 7.8 km long. It should be recalled that the minimum urban
distance in the current regulations is 16 km; thus, any comparison with limits of non-RDE
compliant tests (e.g., TfL, uphill) is only for illustrative reasons.
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emissions are plotted for illustration purposes only, as no on-road limit for those species is applicable for Euro 6 vehicles.

To put the results into context, the RDE limits were also plotted for moderate con-
ditions (0 ◦C to 30 ◦C) (shown as a green box). At the extended conditions of the RDE
(−7 ◦C to 0 ◦C, 30 ◦C to 35 ◦C), a 1.6 correction factor should be applied to the emissions.
Here, instead of reducing the emissions with this factor, we increased the moderate limit
(adjusted limits shown as red boxes) for better visualization and to leave the actual emis-
sions of the vehicle intact. In addition to this correction to the emission limits (red box), the
RDE evaluation factors (CO2 corrections) were plotted as purple boxes. For urban trips
the on-road, CO2 was divided by the CO2 of the L + M phases of the WLTC. For our tests,
the ratios were 1.4–1.9 for the RDE short urban and 1.7–2.5 for the TfL. The higher values
were for the low temperature and high temperature tests. For the uphill driving cycles, the
ratios were 2.8–3.5, confirming the high-power demand of the specific cycles.

For NOx measured on the road with PEMS, a conformity factor of 2.1 was applicable
to the specific Euro 6d-Temp vehicle [47]. The conformity factor for Euro 6d vehicles is 1.43
and will be lowered in the future. The other gaseous pollutants have no conformity factors
because they are not yet regulated and verified on the road. As all our tests were conducted
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on the chassis dynamometer with laboratory grade equipment (except RDE road), no
conformity factor was applied, and all results were compared with the laboratory limits.

The results are quite similar to Figure 4. The reason for this is that, for the urban
section of the tests, most of the emissions are produced during the first minutes, so any
difference is mainly due to the different length of the urban cycle.

The CO emissions (Figure 5a) from 550 mg/km at moderate conditions increased up
to 2400 mg/km at the uphill cycles at −7 ◦C and 4700 mg/km at the TfL at −30 ◦C. At
50 ◦C, CO was 1100 mg/km. The TfL emissions were, in general, higher than the short
RDE, with the differences increasing at the extreme temperatures. The RDE boundary was
lower than the rest cycles, but the urban distance was three times longer. Considering only
the first 10 km, the emissions were 2000 mg/km, close to the uphill cycles, which had the
highest emissions at the same ambient temperature (−7 ◦C or −10 ◦C).

The THC emissions (Figure 5b) showed an increasing trend with decreasing ambient
temperature. From 50 mg/km at 50 ◦C and 50–150 mg/km at 5–23 ◦C, they reached
150–400 mg/km at −10 ◦C and 500–800 mg/km at −30 ◦C. The loaded uphill cycles were
between the TfL and short RDE, while the RDE boundary had the lowest emissions for the
same temperature (or the highest when considering only the first 10 km). CH4 emissions
(no figure shown) were generally <10% of THC emissions (20% for THC <20 mg/km).
Percentages around 30% were measured for the RDE boundary and TfL at positive ambi-
ent temperatures.

The NOx emissions showed a bathtub-like curve in function of the ambient temper-
ature (Figure 5c). They ranged from 10 mg/km to 35 mg/km at the 5–23 ◦C region, and
up to 70–110 mg/km at −10 ◦C or 50 ◦C on the TfL cycle. The high load uphill cycles
at −10 ◦C were also around 80 mg/km. However, emissions were kept at 30 mg/km
at −10 ◦C for the urban part of the short RDE and the dynamic RDE (but at 75 mg/km
considering only the first 10 km). Interestingly, they were <55 mg/km at −30 ◦C for the
same cycle (RDE short).

The NH3 emissions (Figure 5d) were relatively constant for different temperatures.
High ammonia emissions (30 mg/km) were measured at the TfL, irrespective of ambient
temperature and the uphill towing cycles (40–60 mg/km). The RDE boundary also had
30 mg/km when only the first 10 km were considered. Lower levels (10–20 mg/km) were
measured with the RDE short. Currently, there are no limits on this pollutant. For TfL, the
average 35 mg/km NH3 emissions resulted from slightly less than 20 ppm average NH3
concentrations, with peaks of 200–400 ppm during the first minutes.

The N2O emissions (no figure shown) were <3 mg/km, except for the TfL tests, which
were around 5 mg/km; these were always confined to the temperature window of the
catalyst light-off.

3.5. Ambient Temperature and Motorway Emissions

Figure 6 summarizes the emissions during the motorway cycles at various tempera-
tures. The distances were 8.3 km (WLTC), 19.1 km (RDE short), 25 km (BAB), and 29–34 km
(RDE road, boundary). There are no limits applicable only for the motorway part; thus,
only the complete RDE limits at moderate conditions (0–30 ◦C) are given in green boxes for
illustrative purposes.

CO emissions (Figure 6a) were approximately 400 mg/km, with the exception of
the RDE boundary at −10 ◦C and the cycles at 50 ◦C, where the emissions reached
1000 mg/km (still below the laboratory limit, even though they were not applicable).
The THC (Figure 6b) were below 20 mg/km in all tests, except at the RDE boundary, where
they reached 35 mg/km. At the RDE boundary, THC spikes were evident in the motorway
part, but the emissions were still three times below the laboratory limit of 100 mg/km. The
NOx emissions (Figure 6c) were only 5 mg/km, reaching 20 mg/km in the BAB cycle at 50
◦C. The dynamic RDE boundary at −10 ◦C had 15 mg/km. All results were lower than
the (non-applicable) limit of 60 mg/km. The NH3 emissions (Figure 6d) were below 10
mg/km for all cycles and temperatures.
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4. Discussion

This study assessed the emissions of a Euro 6d-Temp gasoline vehicle with a close-
coupled TWC and an underfloor uncoated GPF, focusing on extreme temperatures and
driving conditions. The results confirmed previous findings, i.e., (i) during urban operation,
the majority of emissions comes from cold starts; (ii) the lower the ambient temperature,
the higher the cold start emissions, namely for CO and THC (not so evident for NH3);
(iii) dynamic driving and/or high engine load increase the emissions of most pollutants.
The major contribution of this study is the extension of these findings to extreme ambi-
ent temperatures (−30 ◦C and 50 ◦C) and driving conditions (traffic, dynamic driving,
trailer towing).

4.1. Cold Start

Higher emissions during a cold start are known and attributed to higher engine-out
emissions and low efficiency of the aftertreatment devices [48–50]. It was shown that,
even though it took long time for the coolant temperature to stabilize, the cumulative
emissions, in most cases, stabilized within a few minutes; this highlights the importance
of aftertreatment devices’ status on tailpipe emissions, which is in agreement with other
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studies [51]. Cold start emissions, defined here as emissions in the first 300 s (and not the
difference between cold and hot start emissions [52]), contributed, in many cases, >80% of
CO, THC, and NOx urban emissions (Table 3). For CO, the contribution was lower in the
50 ◦C tests and the high load uphill towing cycles because there were also considerable
emissions during the rest of the urban phase. For NOx, the contribution was lower in most
RDE short tests. Other studies have also found a high contribution from cold start for
CO (>70%), but this is smaller for NOx (40–60%) for turbo-charged GDI vehicles [53–55];
however, lower percentages have also been reported for RDE trips [32,56].

Table 3. Contribution of cold start (300 s) to total urban emissions, calculated as g over total g.
Temp. is the ambient temperature. Distance is the cold start and urban distance. Time is the urban
trip duration.

Cycle (Urban Part) Temp. Distance Time CO THC NOx NH3

WLTC (L + M) 23 2.0/7.9 1022 88% 95% 82% -
RDE road 1 1 20 2.0/27.8 2850 65% 32% -
RDE road 2 1 17 2.0/26.5 2730 81% - 38% -

Uphill −10 2.8/9.1 1115 70% 93% 92% 57%
Uphill 85% −7 2.8/9.1 1115 56% 90% 90% 73%

RDE boundary −10 2.7/38.5 4540 68% 84% 61% 62%
RDE short −30 1.7/12.8 1855 93% 98% 81% 70%
RDE short −10 1.7/12.8 1855 90% 99% 69% 53%
RDE short 5 1.7/12.8 1855 87% 98% 60% 52%
RDE short 23 1.7/12.8 1855 76% 96% 49% 45%
RDE short 50 1.7/12.8 1855 54% 96% 42% 70%

TfL −30 1.0/8.9 2315 96% 98% 80% 66%
TfL −10 1.0/8.9 2315 96% 99% 90% 59%
TfL −7 1.0/8.9 2315 87% 99% 88% 49%
TfL 5 1.0/8.9 2315 87% 92% 80% 38%
TfL 23 1.0/8.9 2315 93% 78% 92% 45%
TfL 50 1.0/8.9 2315 31% 78% 88% 42%

1 With PEMS on the road. THC = total hydrocarbons; PEMS = portable emissions measurement system;
RDE = real driving emissions; WLTC = worldwide harmonized light vehicles test cycle.

The cold start contribution was around 50% for NH3. NH3 has been shown to primar-
ily form within the exhaust temperature range of 250–550 ◦C [57]. NH3 formation over
the catalyst is enhanced at low air/fuel (lambda) ratios (rich operating conditions). The
mechanisms that take place under these conditions are the water–gas (CO) shift reaction,
producing H2 and the reaction of NO and H2 [58]. The availability of H2 and CO, the
exhaust gas temperature, and the lambda also affects small differences in the slopes of the
cumulative NH3 functions between different temperatures [59].

Table 4 summarizes the contribution of a cold start to total RDE trips. In general,
the contribution was <50% for CO and NOx, <25% for NH3, but >50% for THC. Higher
percentages were measured at lower ambient temperatures. For the actual on-road tests, the
contribution was 6–19% for CO and NOx, which is in agreement with other studies [56,60].
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Table 4. Contribution of cold start (300 s) to total trip emissions. Temp. is the ambient temperature.
Distance is the cold start and total distance. Time is the total trip duration.

Cycle (Urban Part) Temp. Distance Time CO THC NOx NH3

WLTC 23 2.0/23.3 1800 56% 89% 64% -
RDE road 1 1 20 2.0/96 6812 6% - 14% -
RDE road 2 1 17 2.0/99 6630 9% - 19% -

RDE boundary −10 2.7/100 7088 22% 59% 39% 18%
RDE short −30 1.7/50 3600 74% 94% 58% 46%
RDE short −10 1.7/50 3600 51% 87% 45% 24%
RDE short 5 1.7/50 3600 30% 80% 37% 26%
RDE short 23 1.7/50 3600 23% 71% 29% 19%
RDE short 50 1.7/50 3600 11% 49% 23% 24%

1 With PEMS on the road. THC = total hydrocarbons; PEMS = portable emissions measurement system; RDE =
real driving emissions; WLTC = worldwide harmonized light vehicles test cycle.

4.2. Urban Emissions

The urban emissions of the regulated pollutants (CO, THC, NOx) were primarily
determined by cold start emissions. As the contribution of the hot urban operation was
small for most pollutants, a longer distance resulted in lower distance specific emissions.
The emission factors presented in Figure 5 were quite comparable because the urban
distances were within 9–12 km. Figure 7a presents the emissions in function of distance.
CO is plotted as an example. Each cycle is plotted with a different color. Different groups of
curves can be seen; the highest emissions are at −30 ◦C, followed by the −7 ◦C and −10 ◦C
tests. The other group is the 5 ◦C, 23 ◦C, and 50 ◦C tests. For each group of temperatures,
TfL emissions are usually higher than the RDE short (primarily NOx and NH3). RDE
boundary emissions are higher than the other cycles; the RDE road and WLTC are lower
than the rest cycles. What is important from this figure is the decreasing trend in emissions
(note the log scale) in function of distance, with a few exceptions: the uphill cycles and
the 50 ◦C tests, as discussed before (Figure 3). Thus, for pollutants for which the cold start
contribution is important, total distance of the urban cycle is also important. For NOx
(Figure 8a), the highest emissions were noted for uphill, RDE boundary, and TfL (all cycles
at −7 ◦C or −10 ◦C), as well as TfL at 50 ◦C. For NH3, the highest emissions were seen for
uphill with an 85% payload (car and trailer) (Figure 8b).

Atmosphere 2021, 12, x FOR PEER REVIEW 15 of 25 
 

 

 
 

(a) (b) 

Figure 7. CO emissions of urban cycles (TfL, uphill) or urban parts of the rest cycles (RDE short, RDE boundary, RDE 
road, WLTC) in function of: (a) distance; (b) average speed. 

  

(a) (b) 

Figure 8. Emissions of urban cycles (TfL, uphill) or urban parts of the rest cycles (RDE short, RDE boundary, RDE road, 
WLTC) in function of distance: (a) NOx; (b) NH3. 

4.3. Ambient Temperature 
Higher emissions due to lower ambient temperatures are well documented [22,30,63–

65]. High viscosity and friction are the primary causes of emission increases; excess fuel-
ing is also important [66]. The use of air conditioning can also contribute to an increase in 
emissions, even at low temperatures, due to the increase in engine load (and possibly 
richer fuel injection, injection pressure, and delayed spark timing) needed to operate the 
compressor and/or fan of the air conditioning [67,68]. In our study, the air conditioning of 
the vehicle was always enabled at 21.5 °C. At lower ambient temperatures, the TWC can 
take longer to reach the light-off temperature [29] and/or the lambda is not kept in unity. 
In this study, it was shown that, even in the extreme temperature of −30 °C and the chal-
lenging traffic cycle of TfL, the TWC could operate efficiently within <300 s. Table 5 sum-
marizes the emission ratios at various temperatures compared to 23 °C for TfL (cold start, 
urban), BAB (motorway), and the RDE short (cold start, urban, motorway). 

  

Figure 7. CO emissions of urban cycles (TfL, uphill) or urban parts of the rest cycles (RDE short, RDE boundary, RDE road,
WLTC) in function of: (a) distance; (b) average speed.

Many studies plot emissions in function of the average speed [29,61] because, typically,
a decreasing trend is expected for low average speeds. As an example, Figure 7b plots
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CO emissions in function of the average speed for different urban cycles. The typical
curve, where emissions increase as average speed decreases, is not so evident. Ambient
temperature, dynamic driving, high load, and total distance all have a bigger influence.
For the other pollutants, the results are similar, and the average speed dependence is even
smaller. Such a lack of correlation was also shown recently for vehicles fulfilling China 3 to
China 5 emission limits [62].
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4.3. Ambient Temperature

Higher emissions due to lower ambient temperatures are well documented [22,30,63–65].
High viscosity and friction are the primary causes of emission increases; excess fueling
is also important [66]. The use of air conditioning can also contribute to an increase in
emissions, even at low temperatures, due to the increase in engine load (and possibly
richer fuel injection, injection pressure, and delayed spark timing) needed to operate the
compressor and/or fan of the air conditioning [67,68]. In our study, the air conditioning
of the vehicle was always enabled at 21.5 ◦C. At lower ambient temperatures, the TWC
can take longer to reach the light-off temperature [29] and/or the lambda is not kept in
unity. In this study, it was shown that, even in the extreme temperature of −30 ◦C and the
challenging traffic cycle of TfL, the TWC could operate efficiently within <300 s. Table 5
summarizes the emission ratios at various temperatures compared to 23 ◦C for TfL (cold
start, urban), BAB (motorway), and the RDE short (cold start, urban, motorway).

CO cold start emissions at −7 ◦C of Euro 4 vehicles have been shown to be 15–45 g [69];
cold start values are between 6 and 32 g for Euro 5 [34,70] and at an average of 27 g for
China 6 GDI [10]. However, in our study, they were 10–15 g. At −20 ◦C, the cold start
emissions of the Euro 4 vehicles were 50–160 g [69] while, in our study, they were 32–40 g at
−30 ◦C. Distance specific emission factors of four Euro 6 GDI vehicles were 1.3–8.0 g/km
(over the first phase of WLTC) [30], while four Euro 6b GDI vehicles emitted 5–12 g/km
at the urban Artemis cycle at−7 ◦C [35]. These values are, in general, higher than the
1.5 g/km found in our study, confirming that the vehicle of our study was one of the best
vehicles in terms of emissions. Both the absolute levels and the ratio of the −7 ◦C to 23 ◦C
cold start emissions were on the lower side of reported values. In our study, this value was
close to 3 (Table 5), while typical factors of 4–5 were reported [35,66,70], and sometimes
even >8 [35,66,69,71].
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Table 5. Ratio of emissions (g/g) at various temperatures compared to 23◦C for the RDE short and
TfL + BAB cycles. Cold start refers to the first 300 s of the cycle.

TfL and BAB RDE Short

−30 ◦C −10 ◦C 50 ◦C −30 ◦C −10 ◦C 50 ◦C

CO
Cold start 8.82 2.58 0.68 8.39 3.50 0.73

Urban 8.72 2.73 2.02 7.17 3.14 1.06
Motorway 0.61 0.58 1.94 0.74 1.03 1.78

THC
Cold start 7.07 2.77 0.34 9.04 3.08 0.45

Urban 5.70 2.38 0.34 9.02 3.08 0.48
Motorway 0.78 0.57 0.92 1.13 1.34 1.42

NOx

Cold start 1.56 3.04 2.75 2.81 2.03 1.37
Urban 1.70 3.37 2.83 1.63 1.28 1.13

Motorway 0.70 0.67 3.09 0.96 1.27 0.67

NH3

Cold start 1.55 1.28 1.12 2.11 1.13 0.95
Urban 1.05 1.13 0.95 1.36 0.96 0.50

Motorway 0.34 0.49 1.34 0.67 1.03 0.75
BAB = Bundesautobahn; THC = total hydrocarbons; RDE = real driving emissions; TfL = Transport for London.

Similarly, THC cold start emissions at−7 ◦C for Euro 4 vehicles were 5–15 g [69];
cold start values are between 1–4 g for Euro 5 [34,70] and at an average of 3 g for China
6 GDI [10]. However, in our study, they were 2–3 g. The emissions increased by a factor of
2.5–3 compared to 23 ◦C, which is again lower than what is reported in the literature [35,66].

On the other hand, no clear effect of ambient temperature on NOx for gasoline cars
is reported in the literature [17,35,56,69,72]. However, some studies report a relatively
small increase [10,30,34]: At −7 ◦C, NOx emissions were, on average, 1.7 times higher
than at 23 ◦C [30]. Higher NOx emissions from spark ignition vehicles may be related to
lower catalytic efficiency and longer periods to reach light-off temperature at cold ambient
temperatures [30]. On the other hand, at lower temperatures, combustion is usually rich,
which results in relatively low NOx emissions. With rich mixtures, the catalyst promotes
a reduction in NOx by reactions involving HC and CO [73]. Thus, it seems emissions
reduction is highly dependent on the strategy of a given vehicle’s manufacturer.

NH3 emissions only marginally increased at lower ambient temperatures. This is in
agreement with other studies, where NH3 emissions from Euro 6 vehicles increased on
average 1.5 times while temperature decreased from 23 to −7 ◦C [30]; however, much
higher increases have also been reported [70], which are probably due to enrichment.
At higher than 23 ◦C, a study found an increase in NH3 emissions [74], while, in our tests,
the increase was negligible. It seems that the parameters that increase NH3 (temperature
and lambda) were well controlled by the vehicle of our study.

Studies at high ambient temperatures are scarce [17,74,75]. Tests with Euro 3 vehicles
with air-conditioning switched on showed a clear increase in CO and THC emissions
at 37 ◦C, but not for NOx. Another study did not find any effect on CO and NOx at
temperatures up to 40 ◦C [74]. Here, we found no effect on CO and HC cold start emissions,
but a clear effect on NOx was apparent. That said, we documented an effect on CO
emissions of the motorway cycles. The differences compared to older studies can be
attributed to better lambda control at high speeds with the vehicle of our study (for
CO and THC) and/or correctly sized TWC (adequate space velocities for the highest
exhaust flows). More fundamental studies in that direction are necessary to generate a
deeper understanding.

4.4. Dynamic Driving

Dynamic driving had a clear effect on CO and THC. Aggressive driving resulted in
deviations from stoichiometric mixture, affecting both engine-out emissions and TWC
conversion efficiency. The dynamic driving effect was evident at both cold start and
motorway cycles. In the urban cycles, it was less evident because the RDE boundary
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distance was more than three times longer than the rest cycles, resulting in distance-specific
emissions at the same levels of the rest cycles. However, when the dynamic RDE boundary
was calculated for the first 10 km, the emissions were clearly high. Higher emissions
with dynamic driving for CO have also been reported by others [23]; typically, emissions
increased by a factor of 3, but some vehicles increased by a factor of 30 on urban routes.

For NOx and NH3, the effect of dynamic driving was smaller, which is in agreement
with other studies [76]. For these two pollutants, emission levels of the dynamic cycle were
similar to the TfL or uphill driving cycles. Similar, or even reduced, NOx emissions with
dynamic driving have been reported by others [77]; however, these typically increase by
around 80% on urban routes [23]. A study showed that, during fuel-cut events, air oxidizes
the catalyst. Then, the excess fuel during accelerations results in NH3 formation on the first
part of the catalyst. When the rear part of the catalyst is not yet reduced, it oxidizes NH3
back to NOx [78]. Another study showed that the instantaneous peaks of v × a had a clear
one-to-one correspondence with the peaks of instantaneous NOx emissions [53]. For the
same route, higher v × a results in higher emissions [23,79] but, when different routes are
compared, this is not necessarily true [41] because v × a does not take into account slope or
additional weight.

4.5. Towing and Uphill Driving

The cycle including uphill driving and towing a trailer with 85% of the maximum
payload had high cold start emissions, particularly NH3. The reason for is high engine-out
emissions (not for NH3) and low conversion efficiency of the catalyst during the first
minutes. In particular, for NH3, in the TWC, in addition to the NH3 coming from a rich
operation, the high exhaust gas temperature favored the formation of NH3 from engine-
out NO. The increasing trend in cumulative emissions also continued after the cold start,
indicating rich engine operation due to the high power demand, as the TWC had already
reached its operating temperature. We are not aware of similar tests, especially at low
ambient temperatures of −10 ◦C.

4.6. Motorway Emissions

Total CO and NH3 presented non-negligible emissions during motorway operation.
However, the motorway distance was higher than in urban operations, resulting in lower
distance-specific emissions. Approximately 10 mg/km of NH3 emissions corresponded
to slightly less than 10 ppm of average NH3 concentrations, with peaks between 50 and
100 ppm during accelerations. Similar levels have been reported by others [80]. In the case
of NOx and THC, the contribution of the hot operation was small, and the long motorway
distance resulted in low distance-specific emissions. Higher emissions were seen during
dynamic driving for all pollutants (except NH3). Nevertheless, the emissions were still
relatively low (i.e., below the laboratory or on-road limits, even though not applicable to the
motorway part separately). High emissions were also seen at a high ambient temperature
(50 ◦C) for CO and NOx. The combination of high loads and exhaust gas temperatures is
typically addressed by fuel enrichment for component thermal protection, which increases
fuel consumption and emissions [81]. Furthermore, it could be that the 50 ◦C condition
had not been optimized and/or calibrated. Nevertheless, for this vehicle, there were no
high CO and NOx emissions on the motorway, as has been reported in some other gasoline
vehicles [22,23,82]; in our tests, emissions were always below the (non-applicable) limits.
The high emissions in previous studies could be also due to the small catalyst volume (i.e.,
high space velocity at high speeds) [83] and a rich engine operation (both result in lower
conversion efficiency).

4.7. Concluding Remarks

The emissions of the vehicle of this study were low compared to other vehicles of
the same emission level (Euro 6d-Temp) or older (e.g., Euro 5 or Euro 6b), as has been
discussed previously. For this reason, it cannot be considered necessarily a representative
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vehicle of the current fleet. Nevertheless, it would not meet the proposed Euro 7 limits
by CLOVE [84]. For example, the 30 mg/km (or 480 mg up to 16 km distance) would not
pass the TfL cycle (around 600–800 mg) at−7 ◦C. Similarly, at −7 ◦C, the NH3 emissions
(10–20 mg/km) were higher than the proposed limit of 10 mg/km, and the CO emissions
were almost double than the proposed limit of 600 mg/km, clearly indicating that future
vehicles will need to be very clean.

As many researchers have shown, the majority of the emissions are emitted during
the first minutes of a vehicle’s ignition [85]. Although there are differences in the absolute
levels between different vehicles, the cold start still remains the main contributor in most
cases, and it needs to be controlled better. Thermal management methods, such as those
based on burners, reformers, and electrically heated catalysts, might further decrease cold
start emissions, and a degree of electrification might be necessary [27,86–89]. However, in
some cases, urban emissions of hybrid electric vehicles might be higher due to the longer
time needed for the catalyst to warm up; thus, further calibration efforts are needed [32,90].
Furthermore, keeping the TWC temperature and lambda value at appropriate levels in
urban stop-and-go traffic situations will be important. The difficulty of controlling cold
start emissions does not mean that the rest trip is not important. It was shown that the
motorway section can have an equal or even higher contribution in mass (g), even though
it was relatively low as mass per distance in the vehicle used in our study. However, this
is not always the case [22]. A pollutant that requires attention is NH3. In most cases,
emissions were around 10 mg/km but, at urban cycles, they reached 35 mg/km. These
levels are higher than the US limit of 6.2 mg/km and, in some cases, higher than the China
limit of 20 mg/km (applicable to different cycles).

One important topic that was not addressed in this study is the catalyst’s deactivation
and deterioration over time [91]. The performance of a catalyst degrades over its lifetime
through several mechanisms, including precious metal agglomeration, washcoat break-
down, as well as selective and non-selective poisoning. Thus, emission levels close to the
useful life of a vehicle also need to be studied in the future. Finally, the effect of fuel on
emissions also has to be considered.

5. Conclusions

A Euro 6d-Temp gasoline vehicle with TWC (three-way catalyst) and GPF (gasoline
particulate filter) was tested on the road with the Type 1A on-road real driving emissions
(RDE) procedure (at 17–20 ◦C), as well as in a laboratory with the Type 1 worldwide har-
monized light vehicles test cycle (WLTC) (at 23 ◦C). Additional urban, motorway, dynamic,
and uphill driving cycles with different payloads were conducted in the laboratory at
temperatures between −30 ◦C and 50 ◦C. This is one of the few studies that has assessed a
low-emitting vehicle at extreme temperatures and in extreme driving conditions.

Maximum emissions at motorway cycles at 23 ◦C were 500 mg/km for CO, 10 mg/km
for THC, 5 mg/km for NOx, and 9 mg/km for NH3. Maximum emissions at the congested
traffic urban cycle (TfL, 8.9 km long) at 23 ◦C were 550 mg/km for CO, 150 mg/km for THC,
and 32 mg/km for NOx and NH3. At −10 ◦C, urban emissions were around two times
higher for CO, HC, and NOx, and at the same levels for NH3. The first 300 s contributed
>75% to CO and HC and 45–90% to NOx and NH3 of urban emissions, depending on the
cycle and the ambient temperature. Compliance with the proposed future Euro 7 limits
will require further emission reductions, especially at a cold start. More fundamental
studies (i.e., measurement of air/fuel ratios, catalyst temperatures, etc.) are needed to
better understand the behavior of vehicles in such conditions.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/atmos12081011/s1, Table S1: Distance specific emission factors, Table S2: Fuel specific
emission factors.

https://www.mdpi.com/article/10.3390/atmos12081011/s1
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Appendix A

Figure A1 plots the coolant temperature for the TfL and BAB cycles for various
ambient temperatures. The coolant temperature had an increasing trend throughout
the TfL cycle at all ambient temperatures, except 50 ◦C, where it stabilized after 700 s.
A temperature of 70 ◦C was reached after 1900–2100 s, when the ambient temperatures
were −7 ◦C and −10 ◦C, respectively, and after 1200 s, when the ambient temperature
was 5 ◦C. The coolant temperature remained relatively constant at 105 ◦C during the BAB
cycles (OBD data at 23 ◦C were not logged). These results indicate that the engine did not
reach thermal stability during the TfL cycle at all ambient temperatures (except 50 ◦C).
At 1700 s at 50 ◦C, the coolant temperature slightly dropped, indicating that an active
thermal management strategy (engine measures to reduce the combustion temperature)
might have been implemented (e.g., fuel enrichment, late intake valve opening), which
could influence (engine-out) emissions.

Figure A2 plots the coolant temperature for the RDE short cycles for various ambient
temperatures. The coolant temperature stabilized around 90 ◦C at 50 ◦C and −30 ◦C after
200 s and 2400 s, respectively. It stabilized at 105 ◦C at 5 ◦C and −10◦C after 1500 s and
2000 s, respectively.

Atmosphere 2021, 12, x FOR PEER REVIEW 20 of 25 
 

 

 
Figure A1. Speed profile and coolant temperatures for the TfL and BAB cycles for different 
ambient temperatures. 

 
Figure A2. Coolant temperature of the RDE short for different ambient temperatures. 

 
(a) 

 
(b) 

Figure A1. Speed profile and coolant temperatures for the TfL and BAB cycles for different ambi-
ent temperatures.



Atmosphere 2021, 12, 1011 20 of 25

Figure A3 plots the cumulative emissions of various pollutants for the RDE short cycle.
Figure A4 presents the coolant temperatures during the first 15 min of various urban

cycles at −7 ◦C and/or −10 ◦C. The coolant temperature reached approximately 100 ◦C
after 500–600 s for the high load uphill cycles and after 800 s for the dynamic boundary
RDE. The RDE short cycle reached 70 ◦C and the TfL reached 40 ◦C after 900 s.
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