Specificity of Meteorological and Biometeorological Conditions in Central Europe in Centre of Urban Areas in June 2019 (Bydgoszcz, Poland)
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conlusions
- -
- during a heat wave, the maximum air temperature in the city center may exceed 36.0 °C
- -
- the temperature exceeds the threshold of 30.0 °C, indicating the presence of hot conditions, usually starting before 1 p.m. and lasting until the evening hours
- -
- the daily maximum temperature, and at the same time the most onerous bioclimatic conditions in the city, usually occur around 4:00 p.m.
- -
- in the city, the heat load on the human body during hot days varies from no heat to a very strong heat stress, at the same time thermal sensations vary from cool to very hot
- -
- there is a possibility of hyperthermia, which in extreme cases may appear after an hour
- -
- in terms of the possibility of dehydration, the most dangerous hours are 3:40 p.m.–4:50 p.m., when water losses with moderate activity can be as much as 775 g∙hour−1
- -
- during hot afternoon hours (around 4:00 p.m.), the risk of low oxygen content in the air is observed
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Beniston, M. The 2003 Heat Wave in Europe: A Shape of Things to Come? An Analysis Based on Swiss Climatological Data and Model Simulations. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef] [Green Version]
- Founda, D.; Pierros, F.; Katavoutas, G.; Keramitsoglou, I. Observed Trends in Thermal Stress at European Cities with Different Background Climates. Atmosphere 2019, 10, 436. [Google Scholar] [CrossRef] [Green Version]
- Meehl, G.A. More Intense, More Frequent, and Longer Lasting Heat Waves in the 21st Century. Science 2004, 305, 994–997. [Google Scholar] [CrossRef] [Green Version]
- Kuchcik, M.; Błażejczyk, K.; Halaś, A. Long-Term Changes in Hazardous Heat and Cold Stress in Humans: Multi-City Study in Poland. Int. J. Biometeorol. 2021, 1–12. [Google Scholar] [CrossRef]
- Russo, S.; Sillmann, J.; Fischer, E.M. Top Ten European Heatwaves since 1950 and Their Occurrence in the Coming Decades. Environ. Res. Lett. 2015, 10, 124003. [Google Scholar] [CrossRef]
- Barriopedro, D.; Fischer, E.M.; Luterbacher, J.; Trigo, R.M.; Garcia-Herrera, R. The Hot Summer of 2010: Redrawing the Temperature Record Map of Europe. Science 2011, 332, 220–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grumm, R.H. The Central European and Russian Heat Event of July–August 2010. Bull. Am. Meteorol. Soc. 2011, 92, 1285–1296. [Google Scholar] [CrossRef] [Green Version]
- Hoy, A.; Hänsel, S.; Skalak, P.; Ustrnul, Z.; Bochníček, O. The Extreme European Summer of 2015 in a Long-Term Perspective. Int. J. Climatol. 2017, 37, 943–962. [Google Scholar] [CrossRef]
- Hoy, A.; Hänsel, S. Sommer Ohne Ende: Raum-Zeitliche Bewertung der 2018er Hitzeepisoden in Europa im Langzeitlichen Kontext; Garmisch-Partenkirchen, DACH2019 Abstracts; Deutscher Wetterdienst: Offenbach, Germany, 2019. [Google Scholar]
- Sousa, P.M.; Barriopedro, D.; Ramos, A.M.; García-Herrera, R.; Espírito-Santo, F.; Trigo, R.M. Saharan Air Intrusions as a Relevant Mechanism for Iberian Heatwaves: The Record Breaking Events of August 2018 and June 2019. Weather Clim. Extrem. 2019, 26, 100224. [Google Scholar] [CrossRef]
- Sulikowska, A.; Wypych, A. How Unusual Were June 2019 Temperatures in the Context of European Climatology? Atmosphere 2020, 11, 697. [Google Scholar] [CrossRef]
- ECMWF. Copernicus Climate Change Service; European Union: London, UK, 2019. [Google Scholar]
- Zhao, W.; Zhou, N.; Chen, S. The Record-Breaking High Temperature over Europe in June of 2019. Atmosphere 2020, 11, 524. [Google Scholar] [CrossRef]
- Xu, P.; Wang, L.; Liu, Y.; Chen, W.; Huang, P. The Record-breaking Heat Wave of June 2019 in Central Europe. Atmos. Sci. Lett. 2020, 21, e964. [Google Scholar] [CrossRef] [Green Version]
- Polish Climate Monitoring Bulletin; Institute of Meteorology and Water Management—National Research Institute: Warsaw, Poland, 2019.
- Available online: https://www.ogimet.com/gsynres.phtml.en (accessed on 14 April 2020).
- Wetter und Klima—Grosswetterlagen Forecast; Deutscher Wetterdienst: Offenbach am Main, Germany, 2019.
- Twardosz, R.; Wałach, P. Niezwykle ciepła pogoda w czerwcu 2019 roku w Polsce i jej przyczyny cyrkulacyjne. Przegląd Geofiz. 2020, 65, 79–94. [Google Scholar] [CrossRef]
- Błażejczyk, K. Znaczenie Czynników Cyrkulacyjnych i Lokalnych w Kształtowaniu Klimatu i Bioklimatu Aglomeracji Warszawskiej. Dok. Geogr. 2002, 26, 38–43. [Google Scholar]
- Kuchcik, M.; Błażejczyk, K.; Baranowski, J.; Szmyd, J. Studies of the City Climate and Bioclimate Conducted at IGSO PAS. AGL 2019, 108. [Google Scholar] [CrossRef]
- Fortuniak, K. Miejska Wyspa Ciepła: Podstawy Energetyczne, Studia Eksperymentalne, Modele Numeryczne i Statystyczne, Wydaw; UŁ: Łódź, Poland, 2003. [Google Scholar]
- Arnfield, A.J. Two Decades of Urban Climate Research: A Review of Turbulence, Exchanges of Energy and Water, and the Urban Heat Island. Int. J. Climatol. 2003, 23, 1–26. [Google Scholar] [CrossRef]
- Fortuniak, K. Badania klimatu miast w Polsce. Przegląd Geofiz. 2019, 64, 73–105. [Google Scholar] [CrossRef]
- Błażejczyk, K. Mapping of UTCI in Lokal Scale. Pr. Studia Geogr. 2011, 47, 275–283. [Google Scholar]
- Li, D.; Bou-Zeid, E. Synergistic Interactions between Urban Heat Islands and Heat Waves: The Impact in Cities Is Larger than the Sum of Its Parts. J. Appl. Meteorol. Climatol. 2013, 52, 2051–2064. [Google Scholar] [CrossRef] [Green Version]
- Błażejczyk, K.; Baranowski, J.; Błażejczyk, A. Heat Stress and Occupational Health and Safety—Spatial and Temporal Differentiation. Misc. Geogr. Reg. Stud. Dev. 2014, 18, 61–67. [Google Scholar] [CrossRef] [Green Version]
- Chapman, S.; Thatcher, M.; Salazar, A.; Watson, J.E.M.; McAlpine, C.A. The Impact of Climate Change and Urban Growth on Urban Climate and Heat Stress in a Subtropical City. Int. J. Climatol. 2019, 39, 3013–3030. [Google Scholar] [CrossRef] [Green Version]
- Rogers, C.D.W.; Gallant, A.J.E.; Tapper, N.J. Is the Urban Heat Island Exacerbated during Heatwaves in Southern Australian Cities? Theor. Appl. Climatol. 2019, 137, 441–457. [Google Scholar] [CrossRef]
- Boogaard, F.C.; Kluck, J.; de Groen, M. High resolution thermal stress mapping in Africa: Decision maps for urban planning in Johannesburg. In Proceedings of the 5th International Climate Change Adaptation Conference, Cape Town, South Africa, 18–21 June 2018. [Google Scholar]
- Ndetto, E.L.; Matzarakis, A. Basic Analysis of Climate and Urban Bioclimate of Dar Es Salaam, Tanzania. Theor. Appl. Climatol. 2013, 114, 213–226. [Google Scholar] [CrossRef]
- Luo, M.; Lau, N. Increasing Heat Stress in Urban Areas of Eastern China: Acceleration by Urbanization. Geophys. Res. Lett. 2018, 45, 13–60. [Google Scholar] [CrossRef]
- Son, J.-Y.; Lee, J.-T.; Anderson, G.B.; Bell, M.L. The Impact of Heat Waves on Mortality in Seven Major Cities in Korea. Environ. Health Perspect. 2012, 120, 566–571. [Google Scholar] [CrossRef] [Green Version]
- Takane, Y.; Ohashi, Y.; Grimmond, C.S.B.; Hara, M.; Kikegawa, Y. Asian Megacity Heat Stress under Future Climate Scenarios: Impact of Air-Conditioning Feedback. Environ. Res. Commun. 2020, 2, 015004. [Google Scholar] [CrossRef]
- Bröde, P.; Krüger, E.L.; Rossi, F.A.; Fiala, D. Predicting Urban Outdoor Thermal Comfort by the Universal Thermal Climate Index UTCI—a Case Study in Southern Brazil. Int. J. Biometeorol. 2012, 56, 471–480. [Google Scholar] [CrossRef] [PubMed]
- de Garín, A.; Bejarán, R. Mortality Rate and Relative Strain Index in Buenos Aires City. Int. J. Biometeorol. 2003, 48, 31–36. [Google Scholar] [CrossRef]
- Basara, J.B.; Basara, H.G.; Illston, B.G.; Crawford, K.C. The Impact of the Urban Heat Island during an Intense Heat Wave in Oklahoma City. Adv. Meteorol. 2010, 2010, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Taha, H. Characterization of Urban Heat and Exacerbation: Development of a Heat Island Index for California. Climate 2017, 5, 59. [Google Scholar] [CrossRef]
- Katavoutas, G.; Founda, D. Response of Urban Heat Stress to Heat Waves in Athens (1960–2017). Atmosphere 2019, 10, 483. [Google Scholar] [CrossRef] [Green Version]
- Matzarakis, A.; Nastos, P.T. Human-Biometeorological Assessment of Heat Waves in Athens. Theor. Appl. Climatol. 2011, 105, 99–106. [Google Scholar] [CrossRef]
- Rodríguez Algeciras, J.A.; Matzarakis, A. Quantification of Thermal Bioclimate for the Management of Urban Design in Mediterranean Climate of Barcelona, Spain. Int. J. Biometeorol. 2016, 60, 1261–1270. [Google Scholar] [CrossRef] [PubMed]
- Laureti, F.; Martinelli, L.; Battisti, A. Assessment and Mitigation Strategies to Counteract Overheating in Urban Historical Areas in Rome. Climate 2018, 6, 18. [Google Scholar] [CrossRef] [Green Version]
- Zinzi, M.; Romeo, C.; Carnielo, E.; Mangione, A. Urban Temperature Analysis and Impact on the Building Cooling Energy Performances: An Italian Case Study. RESD 2016, 2, 45–51. [Google Scholar] [CrossRef]
- Lehoczky, A.; Sobrino, J.; Skoković, D.; Aguilar, E. The Urban Heat Island Effect in the City of Valencia: A Case Study for Hot Summer Days. Urban Sci. 2017, 1, 9. [Google Scholar] [CrossRef] [Green Version]
- Błażejczyk, K. Influence of Extremal Heat Waves on Man. Pr. Geogr. Inst. Geogr. Gospod. Przestrz. Uniw. Jagiellońskiego 2000, 108, 101–108. [Google Scholar]
- Gabriel, K.M.A.; Endlicher, W.R. Urban and Rural Mortality Rates during Heat Waves in Berlin and Brandenburg, Germany. Environ. Pollut. 2011, 159, 2044–2050. [Google Scholar] [CrossRef]
- Krzyżewska, A.; Bartoszek, K.; Wereski, S. The Meteorological Conditions during Particularly Severe Heatwave in Lublin in August 2015. Przegląd Geofiz. 2016, 61, 239–2496. [Google Scholar]
- Kuchcik, M.; Błażejczyk, K.; Milewski, P.; Szmyd, J. Urban Climate Research in Warsaw: The Results of Microclimatic Network Measurements. Geogr. Pol. 2014, 87, 491–504. [Google Scholar] [CrossRef] [Green Version]
- Tomczyk, A.M. Najdłuższa Fala Upałów Oraz Fala Mrozów w Poznaniu Na Tle Cyrkulacji Atmosferycznej. Acta Geogr. Sil. 2015, 19, 67–71. [Google Scholar]
- Wolf, T.; McGregor, G.; Analitis, A. Assessing Vulnerability to Heat Stress in Urban Areas. The Example of Greater London. Epidemiology 2009, 20, S24. [Google Scholar] [CrossRef]
- Błażejczyk, A.; Błażejczyk, K.; Baranowski, J.; Kuchcik, M. Heat Stress Mortality and Desired Adaptation Responses of Healthcare System in Poland. Int. J. Biometeorol. 2018, 62, 307–318. [Google Scholar] [CrossRef] [PubMed]
- Morabito, M.; Crisci, A.; Messeri, A.; Messeri, G.; Betti, G.; Orlandini, S.; Raschi, A.; Maracchi, G. Increasing Heatwave Hazards in the Southeastern European Union Capitals. Atmosphere 2017, 8, 115. [Google Scholar] [CrossRef] [Green Version]
- Tomczyk, A.M.; Owczarek, M. Occurrence of Strong and Very Strong Heat Stress in Poland and Its Circulation Conditions. Theor. Appl. Climatol. 2020, 139, 893–905. [Google Scholar] [CrossRef] [Green Version]
- Baccini, M.; Biggeri, A.; Accetta, G.; Kosatsky, T.; Katsouyanni, K.; Analitis, A.; Anderson, H.R.; Bisanti, L.; D’Ippoliti, D.; Danova, J.; et al. Heat Effects on Mortality in 15 European Cities. Epidemiology 2008, 19, 711–719. [Google Scholar] [CrossRef] [PubMed]
- Błażejczyk, K.; Mc Gregor, G. Mortality in European cities and its relations to biothermal conditions. In Klimat i Bioklimat Miast; Wydawnictwo Uniwersytetu Łódzkiego: Łódź, Poland, 2008. [Google Scholar]
- Tobías, A.; Armstrong, B.; Gasparrini, A.; Diaz, J. Effects of High Summer Temperatures on Mortality in 50 Spanish Cities. Environ. Health 2014, 13, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krzyżewska, A.; Wereski, S.; Dobek, M. Summer UTCI Variability in Poland in the twenty first century. Int. J. Biometeorol. 2020, 1–17. [Google Scholar] [CrossRef]
- Rozbicka, K.; Rozbicki, T. Long-term variability of bioclimatic conditions and tourism potential for Warsaw agglomeration (Poland). Int. J. Biometeorol. 2020, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Okoniewska, M. Daily and seasonal variabilities of thermal stress (based on the UTCI) in air masses typical for Central Europe: An example from Warsaw. Int. J. Biometeorol. 2020, 1–10. [Google Scholar] [CrossRef]
- Bąkowska, M.; Więcław, M. Dobowy przebieg wybranych wskaźników biometeorologicznych w różnych masach powietrza w Bydgoszczy. Ekol. Tech. 2009, 2, 99. [Google Scholar]
- Okoniewska, M. Uciążliwość warunków odczuwalnych podczas dni upalnych przy różnej intensywności aktywności fizycznej = Uncomfortability of bio-thermal conditions during sweltering days at different intensity of physical activity (based on the area of north-western Poland). Pr. Geogr. 2017, 150, 95–117. [Google Scholar] [CrossRef] [Green Version]
- Majewski, G.; Cichocka, D. Changes of Oxygen (O2) Content in the Air of Warsaw Agglomeration in 2008–2009. Przegląd Nauk. Inżynieria Kształtowanie Sr. 2012, 56, 33–49. [Google Scholar]
- World Urbanization Prospects: The 2014 Revision—Highlights; Department of Economic and Social Affairs, United Nations: New York, NY, USA, 2014.
- Cities and Climate Change: Global Report on Human Settlements; United Nations Human Settlements Programme UN HABITAT: Nairobi, Kenya, 2011.
- BioKlima Ver.2.6. Available online: https://www.igipz.pan.pl/Bioklima-zgik.html (accessed on 25 June 2020).
- Błażejczyk, K.; Jendritzky, G.; Bröde, P.; Fiala, D.; Havenith, G.; Epstein, Y.; Psikuta, A.; Kampmann, B. An Introduction to the Universal Thermal Climate Index (UTCI). Geogr. Pol. 2013, 86, 5–10. [Google Scholar] [CrossRef] [Green Version]
- Błażejczyk, K. Bioklimatyczne Uwarunkowania Rekreacji i Turystyki; IGiPZ PAN: Warszawa, Poland, 2004. [Google Scholar]
- Błażejczyk, K.; Kunert, A. Bioklimatyczne uwarunkowania rekreacji i turystyki w Polsce =: Bioclimatic principles of recreation and tourism in Poland. In Monografie/Instytut Geografii i Przestrzennego Zagospodarowania im. Stanisława Leszczyckiego PAN, Wydanie 2., poprawione i uzupełnione.; PAN IGiPZ: Warszawa, Poland, 2011; ISBN 978-83-61590-47-7. [Google Scholar]
- Kozłowska-Szczęsna, T.; Krawczyk, B.; Kuchcik, M. Wpływ Środowiska Atmosferycznego na Zdrowie i Samopoczucie Człowieka; PAN IGiPZ: Warszawa, Poland, 2004; ISBN 978-83-87954-14-7. [Google Scholar]
- Bąkowska, M.; Błażejczk, K.; Więcław, M. Warunki topoklimatyczne w rejonie Bydgoszczy na odcinku doliny Wisły, Brdy i Kanału Bydgoskiego. In Zasoby Przyrodnicze i Kulturowe Doliny Wisły, Brdy i Kanału Bydgoskiego; Urząd Marszałkowski Województwa Kujawsko-Pomorskiego, Instytut Geografii UKW w Bydgoszczy: Bydgoszcz, Poland, 2008. [Google Scholar]
- Cebulak, E.; Limanówka, D. Dni z ekstremalnymi temperaturami powietrza w Polsce. In Wahania Klimatu w Różnych Skalach Przestrzennych i Czasowych; Piotrowicz, R.K., Ed.; Twardosz: Kraków, Poland, 2007; pp. 185–194. [Google Scholar]
- Koźmiński, C.; Michalska, B. Zmienność Liczby Dni Zimnych, Chłodnych, Ciepłych, Gorących i Upalnych w Polsce w Okresie Kwiecień–Wrzesień. Przegląd Geogr. 2011, 83, 91–107. [Google Scholar] [CrossRef]
- Okoniewska, M. Zagrożenie organizmu człowieka stresem cieplnym występujące w godzinach okołopołudniowych w czasie dni upalnych = Heat-stress threats to the human body around noon on very hot days. Prz. Geogr. 2020, 92, 361–376. [Google Scholar] [CrossRef]
- Dudek, S.; Kuśmierek, R.; Żarski, J. Porównanie wybranych elementów meteorologicznych w Bydgoszczy i jej okolicy. Przegląd Nauk. Inżynieria i Kształtowanie Sr. 2008, 17, 35–41. [Google Scholar]
- Dudek, S.; Kuśmierek-Tomaszewska, R.; Żarski, J. Charakterystyka miejskiej wyspy ciepła na przykładzie Bydgoszczy. Ekol. Tech. 2010, 18, 4. [Google Scholar]
- Dudek, S.; Kuśmierek-Tomaszewska, R.; Żarski, J. Ocena warunków termicznych w centrum Bydgoszczy na tle dzielnicy peryferyjnej Fordon i terenu zamiejskiego. Infrastrukt. Ekol. Teren. Wiej. 2014, II/3, 731–742. [Google Scholar] [CrossRef]
- Kuśmierek-Tomaszewska, R.; Żarski, J.; Dudek, S. Wpływ rodzaju pokrycia podłoża na przestrzenne zróżnicowanie stresu cieplnego. Infrastrukt. Ekol. Teren. Wiej. 2015, 4, 1. [Google Scholar] [CrossRef]
- Więcław, M.; Okoniewska, M. Występowanie Dni Upalnych w Bydgoszczy w Latach 2005–2008 w Różnych Masach Powietrza i Ich Wpływ Na Wybrane Wskaźniki Biotermiczne. Przegląd Nauk. Inżynieria Kształtowanie Sr. 2015, 67, 67–78. [Google Scholar]
- Półrolniczak, M.; Tomczyk, A.; Kolendowicz, L. Thermal Conditions in the City of Poznań (Poland) during Selected Heat Waves. Atmosphere 2018, 9, 11. [Google Scholar] [CrossRef] [Green Version]
- Nowosad, M. The time of occurrence of air temperature exceeding 25 °C in Lublin-Radawiec and in Włodawa. In Zmienność Klimatu Polski i Europy oraz Jej Cyrkulacyjne Uwarunkowania; Bogucki Wydawnictwo Naukowe: Poznań, Poland, 2019. [Google Scholar]
- Okoniewska, M. Dobowy Przebieg Temperatury i Wilgotności Powietrza w Polsce w Kolejnych Dekadach Roku = The Diurnal Course of Air Temperature and Humidity in Poland in Consecutive Ten-Day Periods of the Year. Prz. Geogr. 2018, 90, 53–75. [Google Scholar] [CrossRef]
- Żarnowiecki, G. Differentiation of Kielce Bioclimate in Summer Season. Reg. Monit. Sr. Przyr. 2002, 3, 109–116. [Google Scholar]
- Paszyński, J.; Niedźwiedź, T. Klimat. Geografia Polski. Środowisko Przyrodnicze; Wydawnictwo Naukowe PWN: Warszawa, Poland, 1991. [Google Scholar]
- Błażejczyk, K.; Kuchcik, M.; Milewski, P. Miejska Wyspa Ciepła w Warszawie: Uwarunkowania Klimatyczne i Urbanistyczne; Wydawnictwo Akademickie SEDNO: Warszawa, Poland; Instytut Geografii i Przestrzennego Zagospodarowania PAN: Warszawa, Poland, 2014; ISBN 978-83-7963-018-9. [Google Scholar]
- Araźny, A.; Uscka-Kowalkowska, J.; Kejna, M.; Przybylak, R.; Kunz, M. Diversity of Biometeorological Conditions in Toruń and Its Suburban Area in 2012. Prz. Geogr. 2016, 88, 87–108. [Google Scholar] [CrossRef]
- Krzyżewska, A.; Wereski, S.; Demczuk, P. Biometeorological Conditions during an Extreme Heatwave Event in Poland in August 2015. Weather 2020, 75, 183–189. [Google Scholar] [CrossRef]
- Milewski, P. Application of the UTCI to the Local Bioclimate of Poland’s Ziemia Kłodzka Region. Geogr. Pol. 2013, 86, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Miszuk, B. Multi-Annual Changes in Heat Stress Occurrence and Its Circulation Conditions in the Polish–Saxon Border Region. Atmosphere 2021, 12, 163. [Google Scholar] [CrossRef]
- Błażejczyk, K.; Kunert, A. Differetiation of Bioclimatic Conditions of Urban Areas (the Case of Poland). In Proceedings of the 6th International Conference on Urban Climate, Göteborg, Sweden, 12–16 June 2006. [Google Scholar]
- Dubicki, A.; Dubicka, M.; Szymanowski, M. Klimat Wrocławia; Dolnośląska fundacja ekorozwoju: Wrocław, Poland, 2002. [Google Scholar]
- Janka, R.M. Wpływ Natężenia Ruchu Pojazdów Na Poziom Stężenia Tlenu w Powietrzu Na Obszarach Skrzyżowań i Traktów Drogowych. Ochr. Powietrza Probl. Odpadów 2009, 43, 12–23. [Google Scholar]
- Graczyk, D.; Kundzewicz, Z.W.; Choryński, A.; Førland, E.J.; Pińskwar, I. Heat-related mortality during hot summers in Polish cities. Theor. Appl. Climatol. 2019, 136, 1259–1273. [Google Scholar] [CrossRef] [Green Version]
- Kovats, R.S. Heat Waves and Health Protection. BMJ 2006, 333, 314–315. [Google Scholar] [CrossRef] [PubMed]
UTCI (°C) | Stress Category and Recommendations for Protection |
---|---|
>46.0 | extreme heat stress, periodical cooling and drinking > 0.5 L·h–1 necessary; stay without activity |
38.1 to 46.0 | very strong heat stress, periodical use o fair conditioning or shaded sites and drinking > 0.5 L·h–1 necessary; reduce activity |
32.1 to 38.0 | strong heat stress, drinking > 0.25 L·h–1 necessary, use shade places and reduce activity |
26.1 to 32.0 | moderate heat stress, drinking > 0.25 L·h–1 necessary |
9.1 to 26.0 | no thermal stress, physiological thermoregulation sufficient to keep comfort |
0.1 to 9.0 | slight cold stress, use gloves and cap |
−13.0 to 0.0 | moderate cold stress, increase activity, protect extremities and face against cooling |
−27.0 to −12.9 | strong cold stress, strongly increase activity, protect face and extremities; use better insulated clothing |
−40.0 to −26.9 | very strong cold stress, strongly increase activity, protect face and extremities; use better insulated clothing, reduce stay outdoor |
<−40.0 | extreme cold stress, stay indoor or use heavy, wind protected clothing |
STI (°C) | Subjective Thermal Sensation |
---|---|
<−38.0 | very cold |
−38.0 to −0.5 | cold |
−0.6 to 22.5 | cool |
22.6 to 32.0 | comfortable |
32.1 to 46.0 | warm |
46.1 to 55.0 | hot |
55.1 to 70.0 | very hot |
>70.0 | sweltering |
Change of Oxygen Volume (dOV, g∙m−3) | Stimulus Intensity |
---|---|
<2.6 | inert |
2.6–5.0 | weak |
5.1–10.0 | significant |
>10 | strong |
Day | t (°C) | f (%) | v (m∙s−1) | p (hPa) | Kglob (MJ∙m−2) | Number of Minutes t ≥ 30 °C | Beginning t ≥ 30 °C | Ending t ≥ 30 °C | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Sum | ||||
03.06 | 24.1 | 5.5 | 58.2 | 17.0 | 0.8 | 0.8 | 1012.7 | 1.2 | 24.7 | 270 | 12:15 | 17:55 |
04.06 | 25.3 | 5.0 | 53.9 | 15.4 | 0.6 | 0.7 | 1009.5 | 1.3 | 24.0 | 370 | 11:30 | 18:20 |
05.06 | 25.4 | 4.4 | 58.1 | 14.5 | 0.5 | 0.5 | 1008.1 | 0.8 | 18.1 | 240 | 11:35 | 18:10 |
06.06 | 25.3 | 3.9 | 54.5 | 13.6 | 0.7 | 0.6 | 1006.8 | 0.6 | 22.9 | 140 | 12:40 | 18:05 |
10.06 | 24.5 | 5.0 | 57.1 | 6.3 | 0.8 | 0.4 | 1012.5 | 3.8 | 15.8 | 230 | 13:35 | 18:20 |
11.06 | 29.5 | 4.7 | 53.5 | 16.6 | 1.0 | 0.7 | 1007.1 | 0.8 | 23.8 | 705 | 10:00 | 21:35 |
12.06 | 29.6 | 4.3 | 49.4 | 13.5 | 0.9 | 0.8 | 1005.7 | 1.2 | 23.4 | 730 | 08:55 | 21:20 |
15.06 | 24.7 | 5.1 | 68.3 | 7.9 | 0.6 | 0.6 | 1010.1 | 3.7 | 21.6 | 255 | 14:10 | 18:40 |
19.06 | 24.4 | 4.9 | 60.5 | 12.5 | 0.4 | 0.5 | 1008.4 | 2.8 | 19.1 | 230 | 14:00 | 18:20 |
20.06 | 24.7 | 4.6 | 67.0 | 16.2 | 0.4 | 0.6 | 1005.0 | 1.1 | 18.9 | 265 | 10:05 | 15:15 |
24.06 | 22.0 | 6.1 | 57.6 | 17.7 | 0.5 | 0.4 | 1021.3 | 0.5 | 25.8 | 5 | 14:40 | 14:40 |
25.06 | 25.8 | 6.2 | 54.1 | 18.0 | 0.4 | 0.6 | 1020.3 | 1.8 | 25.1 | 565 | 10:40 | 20:15 |
26.06 | 29.9 | 5.6 | 52.0 | 15.6 | 0.8 | 0.8 | 1013.8 | 2.6 | 23.2 | 780 | 08:35 | 21:30 |
29.06 | 22.3 | 5.9 | 50.7 | 16.5 | 0.6 | 0.6 | 1015.0 | 2.2 | 24.5 | 5 | 17:30 | 17:30 |
30.06 | 28.5 | 7.1 | 39.7 | 18.9 | 0.9 | 0.9 | 1008.1 | 3.1 | 25.7 | 745 | 09:30 | 22:05 |
mean | 25.7 | 5.2 | 55.6 | 14.7 | 0.7 | 0.6 | 1011.0 | 1.8 | 22.4 | - | - | - |
Day | UTCI (°C) | STI (°C) | Oh_H (min.) | WL (g∙hour−1) | OV (g∙m−3) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
03.06 | 24.5 | 6.5 | 27.9 | 15.7 | 2022.5 | 12,886.2 | 230.8 | 97.6 | 270.0 | 5.5 |
04.06 | 25.6 | 6.1 | 28.9 | 14.6 | 781.8 | 2527.9 | 239.8 | 96.6 | 268.0 | 4.9 |
05.06 | 25.6 | 5.3 | 27.2 | 12.2 | 1964.5 | 11,877.7 | 225.6 | 77.8 | 267.1 | 4.2 |
06.06 | 25.5 | 5.0 | 28.5 | 13.1 | 1007.2 | 3075.1 | 233.4 | 81.5 | 267.2 | 3.6 |
10.06 | 24.2 | 6.3 | 25.1 | 13.0 | 714.8 | 1196.9 | 216.9 | 72.7 | 269.4 | 6.5 |
11.06 | 30.2 | 5.6 | 33.9 | 12.8 | 3277.3 | 23,618.6 | 323.9 | 148.6 | 262.5 | 4.1 |
12.06 | 29.9 | 5.4 | 33.5 | 12.8 | 1176.9 | 4292.6 | 320.2 | 134.9 | 262.4 | 3.9 |
15.06 | 25.9 | 6.4 | 28.7 | 14.0 | 1168.2 | 3837.7 | 212.2 | 73.1 | 267.5 | 6.6 |
19.06 | 24.9 | 6.0 | 26.8 | 14.0 | 539.2 | 616.3 | 212.2 | 79.4 | 268.2 | 5.5 |
20.06 | 25.5 | 5.7 | 27.3 | 13.1 | 1946.2 | 11,676.9 | 211.0 | 88.3 | 266.5 | 4.4 |
24.06 | 22.8 | 7.5 | 25.6 | 17.0 | 988.3 | 2669.8 | 200.0 | 79.6 | 274.9 | 6.1 |
25.06 | 26.4 | 7.2 | 29.9 | 15.5 | 1355.0 | 7539.8 | 252.7 | 115.1 | 270.5 | 6.3 |
26.06 | 30.5 | 6.7 | 33.6 | 13.5 | 830.3 | 2911.6 | 343.7 | 171.5 | 264.0 | 5.6 |
29.06 | 22.4 | 6.7 | 24.5 | 15.4 | 1757.3 | 7524.9 | 210.5 | 88.7 | 273.4 | 6.2 |
30.06 | 28.2 | 8.0 | 29.4 | 14.1 | 432.1 | 843.6 | 370.8 | 219.3 | 265.8 | 6.8 |
mean | 26.1 | 6.3 | 28.7 | 14.1 | 1330.8 | 6473.0 | 253.6 | 108.3 | 267.8 | 5.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okoniewska, M. Specificity of Meteorological and Biometeorological Conditions in Central Europe in Centre of Urban Areas in June 2019 (Bydgoszcz, Poland). Atmosphere 2021, 12, 1002. https://doi.org/10.3390/atmos12081002
Okoniewska M. Specificity of Meteorological and Biometeorological Conditions in Central Europe in Centre of Urban Areas in June 2019 (Bydgoszcz, Poland). Atmosphere. 2021; 12(8):1002. https://doi.org/10.3390/atmos12081002
Chicago/Turabian StyleOkoniewska, Monika. 2021. "Specificity of Meteorological and Biometeorological Conditions in Central Europe in Centre of Urban Areas in June 2019 (Bydgoszcz, Poland)" Atmosphere 12, no. 8: 1002. https://doi.org/10.3390/atmos12081002
APA StyleOkoniewska, M. (2021). Specificity of Meteorological and Biometeorological Conditions in Central Europe in Centre of Urban Areas in June 2019 (Bydgoszcz, Poland). Atmosphere, 12(8), 1002. https://doi.org/10.3390/atmos12081002