Resolving Elve, Halo and Sprite Halo Images at 10,000 Fps in the Taiwan 2020 Campaign
Abstract
:1. Introduction
2. Instruments and Calibrations
2.1. The Imaging Instrument and Lightning Data in Taiwan 2020 Campaign
2.2. Observation Site and Image Field Calibration
3. Observation Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- MacKenzie, T.; Toynbee, H. Meteorological phenomena. Nature 1886, 33, 26. [Google Scholar] [CrossRef] [Green Version]
- Lyons Ccm, W.A.; Nelson, T.E.; Armstrong, R.A.; Pasko, V.P.; Stanley, M.A. Upward Electrical Discharges From Thunderstorm Tops. Bull. Am. Meteorol. Soc. 2003, 84, 445. [Google Scholar] [CrossRef]
- Wilson, C.T.R. The electric field of a thunder-storm and some of its effects. Proc. Phys. Soc. Lond. 1925, 37A, 32D. [Google Scholar]
- Wilson, C.T.R. A theory of thundercloud electricity. Proc. Phys. Soc. Lond. 1956, 236A, 297–317. [Google Scholar]
- Vonnegut, B.; Vaughan, O.H., Jr.; Brook, M. Nocturnal Photographs Taken from a U-2 Airplane Looking Down on Tops of Clouds Illuminated by Lightning. Bull. Am. Meteorol. Soc. 1989, 70, 1263. [Google Scholar] [CrossRef] [Green Version]
- Franz, R.C.; Nemzek, R.J.; Winckler, J.R. Television Image of a Large Upward Electrical Discharge Above a Thunderstorm System. Science 1990, 249, 48. [Google Scholar] [CrossRef]
- Sato, M.; Mihara, M.; Adachi, T.; Ushio, T.; Morimoto, T.; Kikuchi, M.; Kikuchi, H.; Suzuki, M.; Yamazaki, A.; Takahashi, Y.; et al. Horizontal Distributions of Sprites Derived from the Jem-Glims Nadir Observations. J. Geophys. Res. 2016, 121, 3171. [Google Scholar] [CrossRef] [Green Version]
- Ren, H.; Lu, G.; Cummer, S.A.; Peng, K.M.; Lyons, W.A.; Liu, F.; Li, X.; Wang, Y.; Zhang, S.; Cheng, Z. Comparison between High-Speed Video Observation of Sprites and Broadband Sferic Measurements. Geophys. Res. Lett. 2021, 48, e2021GL093094. [Google Scholar] [CrossRef]
- Gordillo-Vázquez, F.J.; Pérez-Invernón, F.J. A Review of the Impact of Transient Luminous Events on the Atmospheric Chemistry: Past, Present, and Future. Atmos. Res. 2021, 252, 105432. [Google Scholar] [CrossRef]
- SSurkov, V.V.; Hayakawa, M. Progress in the Study of Transient Luminous and Atmospheric Events: A Review. Surv. Geophys. 2020, 41, 1101. [Google Scholar] [CrossRef]
- Stenbaek-Nielsen, H.C.; McHarg, M.G.; Haaland, R.; Luque, A. Optical Spectra of Small-Scale Sprite Features Observed at 10,000 Fps. J. Geophys. Res. 2020, 125, e33170. [Google Scholar] [CrossRef]
- Neubert, T.; Østgaard, N.; Reglero, V.; Chanrion, O.; Heumesser, M.; Dimitriadou, K.; Christiansen, F.; Budtz-Jørgensen, C.; Kuvvetli, I.; Rasmussen, I.L.; et al. A Terrestrial Gamma-Ray Flash and Ionospheric Ultraviolet Emissions Powered by Lightning. Science 2020, 367, 183. [Google Scholar] [CrossRef]
- van der Velde, O.A.; Montanyà, J.; López, J.A.; Cummer, S.A. Gigantic Jet Discharges Evolve Stepwise through the Middle Atmosphere. Nat. Commun. 2019, 10, 4350. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Liu, N.; Sato, M.; Lu, G.; Wang, Y.; Feng, G. Characteristics of Thunderstorm Structure and Lightning Activity Causing Negative and Positive Sprites. J. Geophys. Res. 2018, 123, 8190. [Google Scholar] [CrossRef]
- Yang, J.; Sato, M.; Liu, N.; Lu, G.; Wang, Y.; Wang, Z. A Gigantic Jet Observed over an Mesoscale Convective System in Midlatitude Region. J. Geophys. Res. 2018, 123, 977. [Google Scholar] [CrossRef]
- Bózsef, B. Optically Perceptible Characteristics of Sprites Observed in Central Europe in 2007–2009. J. Atmos. Sol. Terr. Phys. 2013, 92, 151. [Google Scholar]
- Bór, J.; Zelkó, Z.; Hegedüs, T.; Jäger, Z.; Mlynarczyk, J.; Popek, M.; Betz, H.D. On the Series of +Cg Lightning Strokes in Dancing Sprite Events. J. Geophys. Res. 2018, 123, 11-030. [Google Scholar] [CrossRef] [Green Version]
- Wescott, E.M.; Stenbaek-Nielsen, H.C.; Sentman, D.D.; Heavner, M.J.; Moudry, D.R.; Sabbas, F.T.S. Triangulation of sprites, associated halos and their possible relation to causative lightning and micrometeors. J. Geophys. Res. 2001, 106, 10467. [Google Scholar] [CrossRef] [Green Version]
- Boeck, W.L.; Vaughan, O.H., Jr.; Blakeslee, R.; Vonnegut, B.; Brook, M. Lightning induced brightening in the airglow layer. Geophys. Res. Lett. 1992, 19, 99–102. [Google Scholar] [CrossRef]
- Boeck, W.L.; Vaughan, O.H.; Blakeslee, R.J.; Vonnegut, B.; Brook, M. The role of the space shuttle videotapes in the discovery of sprites, jets and elves. J. Atmos. Terr. Phys. 1998, 60, 669–677. [Google Scholar] [CrossRef]
- Boeck, W.L.; Vaughan, O.H.; Blakeslee, R.J.; Vonnegut, B.; Brook, M.; McKune, J. Observations of lightning in the stratosphere. J. Geophys. Res. 1995, 100, 1465–1476. [Google Scholar] [CrossRef]
- Fukunishi, H.; Takahashi, Y.; Kubota, M.; Sakanoi, K.; Inan, U.S.; Lyons, W.A. Elves: Lightning-induced transient luminous events in the lower ionosphere. Geophys. Res. Lett. 1996, 23, 2157–2160. [Google Scholar] [CrossRef]
- Barrington-Leigh, C.P.; Inan, U.S.; Stanley, M. Identification of sprites and elves with intensified video and broadband array photometry. J. Geophys. Res. 2001, 106, 1741. [Google Scholar] [CrossRef]
- Bering, E.A.; Benbrook, J.R.; Garrett, J.A.; Paredes, A.M.; Wescott, E.M.; Moudry, D.R.; Sentman, D.D.; Stenbaek-Nielsen, H.C.; Lyons, W.A. Sprite and elve electrodynamics. Adv. Space Res. 2002, 30, 2585. [Google Scholar] [CrossRef]
- Frey, H.U.; Mende, S.B.; Cummer, S.A.; Li, J.; Adachi, T.; Fukunishi, H.; Takahashi, Y.; Chen, A.B.; Hsu, R.-R.; Su, H.-T.; et al. Halos generated by negative cloud-to-ground lightning. Geophys. Res. Lett. 2007, 34, L18801. [Google Scholar] [CrossRef] [Green Version]
- Kuo, C.L.; Williams, E.; Bór, J.; Lin, Y.H.; Lee, L.J.; Huang, S.M.; Chou, J.K.; Chen, A.B.; Su, H.T.; Hsu, R.R.; et al. Ionization emissions associated with N2+ 1N band in halos without visible sprite streamers. J. Geophys. Res. 2013, 118, 5317. [Google Scholar] [CrossRef]
- Williams, E.; Kuo, C.-L.; Bór, J.; Sátori, G.; Newsome, R.; Adachi, T.; Boldi, R.; Chen, A.; Downes, E.; Hsu, R.R.; et al. Resolution of the sprite polarity paradox: The role of halos. Radio Sci. 2012, 47, RS2002. [Google Scholar] [CrossRef]
- Montanyã, J.; van der Velde, O.; Romero, D.; March, V.; Solã, G.; Pineda, N.; Arrayas, M.; Trueba, J.L.; Reglero, V.; Soula, S. High-speed intensified video recordings of sprites and elves over the western Mediterranean Sea during winter thunderstorms. J. Geophys. Res. 2010, 115, A00E18. [Google Scholar] [CrossRef] [Green Version]
- Pasko, V.P.; Qin, J.; Celestin, S. Toward Better Understanding of Sprite Streamers: Initiation, Morphology, and Polarity Asymmetry. Surv. Geophys. 2013, 34, 797. [Google Scholar] [CrossRef]
- Stanley, M.; Krehbiel, P.; Brook, M.; Moore, C.; Rison, W.; Abrahams, B. High speed video of initial sprite development. Geophys. Res. Lett. 1999, 26, 3201. [Google Scholar] [CrossRef]
- Stenbaek-Nielsen, H.C.; Kanmae, T.; McHarg, M.G.; Haaland, R. High-Speed Observations of Sprite Streamers. Surv. Geophys. 2013, 34, 769. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Invernón, F.J.; Luque, A.; Gordillo-Vázquez, F.J.; Sato, M.; Ushio, T.; Adachi, T.; Chen, A.B. Spectroscopic Diagnostic of Halos and Elves Detected From Space-Based Photometers. J. Geophys. Res. 2018, 123, 12–917. [Google Scholar] [CrossRef]
- Kuo, C.-L.; Chen, A.B.; Lee, Y.J.; Tsai, L.Y.; Chou, R.K.; Hsu, R.R.; Su, H.T.; Lee, L.C.; Cummer, S.A.; Frey, H.U.; et al. Modeling elves observed by FORMOSAT-2 satellite. J. Geophys. Res. 2007, 112, A11312. [Google Scholar] [CrossRef] [Green Version]
- van der Velde, O.A.; Montanyà, J. Statistics and variability of the altitude of elves. Geophys. Res. Lett. 2016, 43, 5467. [Google Scholar] [CrossRef] [Green Version]
- Barrington-Leigh, C.P.; Inan, U.S. Elves triggered by positive and negative lightning discharges. Geophys. Res. Lett. 1999, 26, 683. [Google Scholar] [CrossRef] [Green Version]
- Inan, U.S.; Barrington-Leigh, C.; Hansen, S.; Glukhov, V.S.; Bell, T.F.; Rairden, R. Rapid lateral expansion of optical luminosity in lightning-induced ionospheric flashes referred to as ‘elves’. Geophys. Res. Lett. 1997, 24, 583–586. [Google Scholar] [CrossRef]
- Inan, U.S.; Bell, T.F.; Rodriguez, J.V. Heating and ionization of the lower ionosphere by lightning. Geophys. Res. Lett. 1991, 18, 705–708. [Google Scholar] [CrossRef]
- Inan, U.S.; Sampson, W.A.; Taranenko, Y.N. Space-time structure of optical flashes and ionization changes produced by lighting-EMP. Geophys. Res. Lett. 1996, 23, 133–136. [Google Scholar] [CrossRef]
- Chen, A.B.-C.; Chen, H.; Chuang, C.-W.; Cummer, S.A.; Lu, G.; Fang, H.-K.; Su, H.-T.; Hsu, R.-R. On negative Sprites and the Polarity Paradox. Geophys. Res. Lett. 2019, 46, 9370. [Google Scholar] [CrossRef]
- McHarg, M.G.; Harley, J.; Maldonado, C.; Lane, C.T.; Taylor, L.M.; Sonnenfeld, R.; da Silva, C.L.; Jensen, D.; Contreras Vidal, L.; Haaland, R.K.; et al. Sprite Streamer Interactions at 100,000 Frames per Second. In AGU Fall Meeting Abstracts; Volume 2019, p. AE23A-08. Available online: https://ui.adsabs.harvard.edu/abs/2019AGUFMAE23A..08M (accessed on 30 July 2021).
- McHarg, M.G.; Stenbaek-Nielsen, H.C.; Kanmae, T.; Haaland, R.K. Streamer tip splitting in sprites. J. Geophys. Res. 2010, 115, A00E53. [Google Scholar] [CrossRef] [Green Version]
- Cummer, S.A.; Jaugey, N.; Li, J.; Lyons, W.A.; Nelson, T.E.; Gerken, E.A. Submillisecond imaging of sprite development and structure. Geophys. Res. Lett. 2006, 33, 04104. [Google Scholar] [CrossRef] [Green Version]
- Holzworth, R.H.; Brundell, J.B.; McCarthy, M.P.; Jacobson, A.R.; Rodger, C.J.; Anderson, T.S. Lightning in the Arctic. Geophys. Res. Lett. 2021, 48, e91366. [Google Scholar] [CrossRef]
- Holzworth, R.H., II; Brundell, J.B.; Sloop, C.; Heckman, S.; Rodger, C.J. WWLLN and Earth Networks new combined Global Lightning Network: First Look. In AGU Fall Meeting Abstracts; Volume 2016, p. AE23A-0408. Available online: https://ui.adsabs.harvard.edu/abs/2016AGUFMAE23A0408H (accessed on 30 July 2021).
- Ikeda, A.; Uozumi, T.; Yoshikawa, A.; Fujimoto, A.; Abe, S.; Nozawa, H.; Shinohara, M. Characteristics of Schumann Resonance Parameters at Kuju Station. E3S Web Conf. 2017, 20, 01004. [Google Scholar] [CrossRef]
- Chou, C.-C.; Dai, J.; Kuo, C.-L.; Huang, T.-Y. Simultaneous observations of storm-generated sprite and gravity wave over Bangladesh. J. Geophys. Res. Space Phys. 2016, 121, 9222–9233. [Google Scholar] [CrossRef]
- Sato, M.; Fukunishi, H. Global sprite occurrence locations and rates derived from triangulation of transient Schumann resonance events. Geophys. Res. Lett. 2003, 30, 1859. [Google Scholar] [CrossRef]
- Sato, M.; Takahashi, Y.; Yoshida, A.; Adachi, T. Global distribution of intense lightning discharges and their seasonal variations. J. Phys. D Appl. Phys. 2008, 41, 234011. [Google Scholar] [CrossRef]
- Thomas, J.N.; Solorzano, N.N.; Cummer, S.A.; Holzworth, R.H. Polarity and energetics of inner core lightning in three intense North Atlantic hurricanes. J. Geophys. Res. Space Phys. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Huang, E.; Williams, E.; Boldi, R.; Heckman, S.; Lyons, W.; Taylor, M.; Nelson, T.; Wong, C. Criteria for sprites and elves based on Schumann resonance observations. J. Geophys. Res. Atmos. 1999, 104, 16943–16964. [Google Scholar] [CrossRef]
- Pérez-Invernón, F.J.; Luque, A.; Gordillo-Vázquez, F.J. Modeling the Chemical Impact and the Optical Emissions Produced by Lightning-Induced Electromagnetic Fields in the Upper Atmosphere: The case of Halos and Elves Triggered by Different Lightning Discharges. J. Geophys. Res. 2018, 123, 7615. [Google Scholar] [CrossRef]
- Liu, N.; Dwyer, J.R.; Cummer, S.A. Elves Accompanying Terrestrial Gamma Ray Flashes. J. Geophys. Res. Space Phys. 2017, 122, 10–563. [Google Scholar] [CrossRef]
- Barrington-Leigh, C.P.; Inan, U.S.; Stanley, M.; Cummer, S.A. Sprites triggered by negative lightning discharges. Geophys. Res. Lett. 1999, 26, 3605–3608. [Google Scholar] [CrossRef] [Green Version]
- Qin, J.; Celestin, S.; Pasko, V.P. Dependence of positive and negative sprite morphology on lightning characteristics and upper atmospheric ambient conditions. J. Geophys. Res. Space Phys. 2013, 118, 2623–2638. [Google Scholar] [CrossRef] [Green Version]
- Liu, N.; Dwyer, J.R.; Stenbaek-Nielsen, H.C.; McHarg, M.G. Sprite streamer initiation from natural mesospheric structures. Nat. Commun. 2015, 6, 7540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, J.; Pasko, V.P.; McHarg, M.G.; Stenbaek-Nielsen, H.C. Plasma irregularities in the D-region ionosphere in association with sprite streamer initiation. Nat. Commun. 2014, 5, 3740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, R.C.; Barrington-Leigh, C.P.; Inan, U.S.; Bell, T.F. Early/fast VLF events produced by electron density changes associated with sprite halos. J. Geophys. Res. 2003, 108, 1363. [Google Scholar] [CrossRef]
GPS Time (UT) (a) | Type (b) | WWLLN Time (UT) (c) | Lat (c) | Lon (c) | Diameter (d) | Distance (km) (e) | Az (deg) (e) | I (kA) (f) | E (J) (f) | Bф Peak (pT) (g) | CMC (C-km) (g) |
---|---|---|---|---|---|---|---|---|---|---|---|
12:26:51.8148 | S | ----- | ----- | ----- | ----- | ----- | ----- | ----- | ----- | ----- | |
12:36:58.2835 | S | 12:36:58.252367 | 25.8752 | 126.3395 | ----- | 605 | 63 | 45 | 1067 | ----- | ----- |
13:07:25.9316 | E | ----- | ----- | ----- | 115 | ----- | ----- | ----- | ----- | 52.8 | −135 |
13:56:28.3870 | H + S | 13:56:28.311904 | 25.7193 | 125.8956 | 85 | 558 | 63 | 118 | 5036 | 172.5 | +670 |
15:00:13.2524 | E | 15:00:13.219491 | 25.9492 | 125.6145 | 125 | 545 | 59 | 58 | 1607 | 83.2 | −402 |
16:24:03.5149 | H | 16:24:03.495813 | 25.7102 | 125.6989 | 80 | 539 | 62 | 172 | 9344 | 236.3 | −775 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuo, C.-L.; Huang, T.-Y.; Hsu, C.-M.; Sato, M.; Lee, L.-C.; Lin, N.-H. Resolving Elve, Halo and Sprite Halo Images at 10,000 Fps in the Taiwan 2020 Campaign. Atmosphere 2021, 12, 1000. https://doi.org/10.3390/atmos12081000
Kuo C-L, Huang T-Y, Hsu C-M, Sato M, Lee L-C, Lin N-H. Resolving Elve, Halo and Sprite Halo Images at 10,000 Fps in the Taiwan 2020 Campaign. Atmosphere. 2021; 12(8):1000. https://doi.org/10.3390/atmos12081000
Chicago/Turabian StyleKuo, Cheng-Ling, Tai-Yin Huang, Cheng-Mao Hsu, Mitsuteru Sato, Lou-Chuang Lee, and Neng-Huei Lin. 2021. "Resolving Elve, Halo and Sprite Halo Images at 10,000 Fps in the Taiwan 2020 Campaign" Atmosphere 12, no. 8: 1000. https://doi.org/10.3390/atmos12081000
APA StyleKuo, C. -L., Huang, T. -Y., Hsu, C. -M., Sato, M., Lee, L. -C., & Lin, N. -H. (2021). Resolving Elve, Halo and Sprite Halo Images at 10,000 Fps in the Taiwan 2020 Campaign. Atmosphere, 12(8), 1000. https://doi.org/10.3390/atmos12081000