Toward Development of a Framework for Prediction System of Local-Scale Atmospheric Dispersion Based on a Coupling of LES-Database and On-Site Meteorological Observation
Abstract
:1. Introduction
2. Field Experiments
3. LES-Database
3.1. LES Model
3.2. Computaiotnal Conditions
4. Dispersion Simulation Settings
4.1. Coupling of the LES-Database and On-Site OBS
4.2. Lagrangian Particle Dispersion Model and Calculation Conditions
5. Results
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Murakami, S.; Mochida, A.; Hayashi, Y. Examining the κ-ε model by means of a wind tunnel test and large-eddy simulation of the turbulence structure around a cube. J. Wind Eng. Ind. Aerodyn. 1990, 35, 87–100. [Google Scholar] [CrossRef]
- Tominaga, Y.; Stathopoulos, T. Numerical simulation of dispersion around an isolated cubic building, Model evaluation of RANS and LES. Build. Environ. 2010, 45, 2231–2239. [Google Scholar] [CrossRef] [Green Version]
- Tominaga, Y.; Stathopoulos, T. CFD modeling of pollution dispersion in a street canyon: Comparison between LES and RANS. J. Wind Eng. Ind. Aerodyn. 2011, 99, 340–348. [Google Scholar] [CrossRef] [Green Version]
- Gousseau, P.; Blocken, B.; Stathopoulos, T.; Heijst, G. CFD simulation of near-field pollutant dispersion on a high-resolution grid: A case study by LES and RANS for a building group in downtown Montreal. Atmos. Environ. 2011, 45, 428–438. [Google Scholar] [CrossRef] [Green Version]
- Santiago, J.; Martilli, A. A dynamic urban canopy parameterization for mesoscale models based on computational fluid dynamics Reynolds–averaged Navier–Stokes microscale simulations. Bound. Layer Meteorol. 2010, 137, 417–439. [Google Scholar] [CrossRef]
- Tominaga, Y.; Stathopoulos, T. CFD modeling of pollution dispersion in building array: Evaluation of turbulent scalar flux modeling in RANS model using LES results. J. Wind Eng. Ind. Aerodyn. 2012, 104, 484–491. [Google Scholar] [CrossRef] [Green Version]
- Tominaga, Y.; Stathopoulos, T. CFD simulation of near-field pollutant dispersion in the urban environment: A review of current modeling techniques. Atmos. Environ. 2013, 79, 716–730. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, T.; Nakayama, H. Development of a combined LES/RANS model to predict atmospheric dispersion over urban areas. Jpn. Soc. Comput. Eng. Sci. 2020, 20200013. [Google Scholar]
- Collier, C.G.; Davies, F.; Bozier, K.E.; Holt, A.R.; Middleton, D.R.; Pearson, G.N.; Siemen, S.; Willetts, D.V.; Upton, G.J.G.; Young, R.I. Dual-Doppler lidar measurements for improving dispersion models. Bull. Am. Meteorol. Soc. 2005, 86, 825–838. [Google Scholar] [CrossRef]
- Yan, B.; Li, Q. Coupled on-site measurement/CFD based approach for high-resolution wind resource assessment over complex terrains. Energy Convers. Manag. 2016, 117, 351–366. [Google Scholar] [CrossRef]
- Tang, X.Y.; Zhao, S.; Fan, B.; Peinke, J.; Stoevesandt, B. Micro-scale wind resource assessment in complex terrain based on CFD coupled measurement from multiple masts. Appl. Energy 2019, 238, 806–815. [Google Scholar] [CrossRef]
- Radunz, W.C.; Mattuella, J.M.; Petry, A.P. Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics. Renew. Energy 2020, 152, 494–515. [Google Scholar] [CrossRef]
- Nakano, M.; Watanabe, H.; Sumiya, S. Examination on the Long-Term Practicability of a Doppler Lidar-Data Missing Rate and Comparison of Wind Direction and Speed with the Propeller Type; Japan Atomic Energy Agency: Tokyo, Japan, 2013. (In Japanese) [Google Scholar]
- Hashimoto, K.; Hori, A.; Hara, T.; Onogi, S.; Mouri, H. Dual-camera system for high-speed imaging of particle image velocimetry. J. Vis. 2012, 15, 193–195. [Google Scholar] [CrossRef] [Green Version]
- Onogi, S.; Haginoya, S.; Hori, A.; Yagi, T.; Mouri, H. Field PIV imaging technique with consumer digital still cameras. J. Wind. Eng. 2014, 39, 63–66. (In Japanese) [Google Scholar] [CrossRef] [Green Version]
- Nakayama, H.; Leitl, B.; Harms, F.; Nagai, H. Development of local-scale high-resolution atmospheric dispersion model using large-eddy simulation part 4: Turbulent flows and plume dispersion in an actual urban area. J. Nucl. Sci. Technol. 2014, 51, 626–638. [Google Scholar] [CrossRef] [Green Version]
- Nakayama, H.; Takemi, T.; Nagai, H. Development of local-scale high-resolution atmospheric dispersion model using large-eddy simulation part 5: Detailed simulation of turbulent flows and plume dispersion in an actual urban area under real meteorological conditions. J. Nucl. Sci. Technol. 2016, 53, 887–908. [Google Scholar] [CrossRef]
- Nakayama, H.; Satoh, D.; Nagai, H.; Terada, H. Development of local-scale high-resolution atmospheric dispersion model using large-eddy simulation part 6: Introduction of detailed dose calculation method. J. Nucl. Sci. Technol. 2021, 1–21. [Google Scholar] [CrossRef]
- Smagorinsky, J. General circulation experiments with the primitive equations. Mon. Weather Rev. 1963, 91, 99–164. [Google Scholar] [CrossRef]
- Goldstein, D.; Handler, R.; Sirovich, L. Modeling a no-slip flow boundary with an external force field. J. Comput. Phys. 1993, 105, 354–366. [Google Scholar] [CrossRef] [Green Version]
- Nakayama, H.; Takemi, T. Large-eddy simulation studies for predicting plume concentrations around nuclear facilities using an overlapping technique. Int. J. Environ. Pollut. 2018, 64, 125–144. [Google Scholar] [CrossRef]
- Kataoka, H.; Mizuno, M. Numerical flow computation around aeroelastic 3D square cylinder using inflow turbulence. Wind Struct. 2002, 5, 379–392. [Google Scholar] [CrossRef]
- Monin, A.; Obukhov, M. Basic laws of turbulent mixing in the ground layer of the atmosphere. Tr. Akad. Nauk SSSR Geophiz. Inst. 1954, 24, 163–187. [Google Scholar]
- Grimmond, C.S.B.; Oke, T.R. Turbulent heat fluxes in urban areas: Observations and a local-scale urban meteorological parameterization scheme (LUMPS). J. Appl. Meteorol. 2002, 41, 792–810. [Google Scholar] [CrossRef] [Green Version]
- Cheng, H.; Castro, I.P. Near wall flow over urban-like roughness. Bound. Layer Meteorol. 2002, 104, 229–259. [Google Scholar] [CrossRef]
- Britter, R.E.; Hanna, S.R. Flow and dispersion in urban areas. Annu. Rev. Fluid Mech. 2003, 35, 469–496. [Google Scholar] [CrossRef]
- Yoshida, T.; Takemi, T.; Horiguchi, M. Large-eddy-simulation study of the effects of building-height variability on turbulent flows over an actual urban area. Bound. Layer Meteorol. 2018, 168, 127–153. [Google Scholar] [CrossRef] [Green Version]
- Newson, R.K.; Calhoun, R.; Heap, R.; Cregan, E.; Princevac, M. Retrieval of microscale wind and temperature fields from single- and dual-Doppler lidar data. J. Appl. Meteorol. 2005, 44, 1324–1345. [Google Scholar] [CrossRef]
- IEC61400-1. Wind Turbines Part 1: Design Requirements, 3rd ed.; International Electrotechnical Commission: Geneva, Switzerland, 2005. [Google Scholar]
- Ishihara, T.; Yamaguchi, A.; Sarwar, M.W. A study of the Normal Turbulence Model in IEC 61400-1. Wind Eng. 2012, 36, 759–766. [Google Scholar] [CrossRef]
- Yamada, T.; Bunker, S. Development of a nested grid, second moment turbulence closure model and application to the 1982 ASCOT Brush Creek data simulation. J. Appl. Meteorol. Climatol. 1988, 562–578. [Google Scholar] [CrossRef] [Green Version]
- MacDonald, R.W.; Griffiths, R.F.; Cheah, S.C. Field experiments of dispersion through regular arrays of cubic structures. Atmos. Environ. 1997, 31, 783–795. [Google Scholar] [CrossRef]
- Macdonald, R.W.; Griffiths, R.F.; Hall, D.J. A comparison of results from scaled field and wind tunnel modeling of dispersion in arrays of obstacles. Atmos. Environ. 1998, 32, 3845–3862. [Google Scholar] [CrossRef]
- Leitl, B.; Harms, F.; Berbekar, E.; Boris, J.; Patnaik, G.; Obenschain, K.; Fischer, S. Local-scale hazmat dispersion modelling for first responders based on high-resolution computational fluid dynamics-an overview of CT-Analyst Hamburg. Chem. Eng. Trans. 2016, 48, 43–48. [Google Scholar]
- Nelson, M.A.; Brown, M.J.; Halverson, S.A.; Bieringer, P.; Annunzio, A.; Bieberbach, G.; Meech, S. A case study of the weather research and forecasting model applied to the joint urban 2003 tracer field experiment. part 1: Wind and turbulence. Bound. Layer Meteorol. 2016, 158, 285–309. [Google Scholar] [CrossRef]
- Nelson, M.A.; Brown, M.J.; Halverson, S.A.; Bieringer, P.; Annunzio, A.; Bieberbach, G.; Meech, S. A case study of the weather research and forecasting model applied to the joint urban 2003 tracer field experiment. Part 2: Gas Tracer Dispersion. Bound. Layer Meteorol. 2016, 161, 461–490. [Google Scholar] [CrossRef]
- Burman, J.; Jonsson, L.; Rutgersson, A. On possibilities to estimate local concentration variations with CFD-LES in real urban environments. Environ. Fluid Mech. 2019, 19, 719–750. [Google Scholar] [CrossRef] [Green Version]
- Nakayama, H.; Jurcakova, K.; Nagai, H. Large-Eddy Simulation of plume dispersion within various actual urban areas. Adv. Sci. Res. 2010, 10, 33–41. [Google Scholar] [CrossRef] [Green Version]
- Lundquist, J.K.; Chan, S.T. Consequences of urban stability conditions for computational fluid dynamics simulations of urban dispersion. J. Appl. Meteorol. Climatol. 2007, 46, 1080–1097. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakayama, H.; Yoshida, T.; Terada, H.; Kadowaki, M. Toward Development of a Framework for Prediction System of Local-Scale Atmospheric Dispersion Based on a Coupling of LES-Database and On-Site Meteorological Observation. Atmosphere 2021, 12, 899. https://doi.org/10.3390/atmos12070899
Nakayama H, Yoshida T, Terada H, Kadowaki M. Toward Development of a Framework for Prediction System of Local-Scale Atmospheric Dispersion Based on a Coupling of LES-Database and On-Site Meteorological Observation. Atmosphere. 2021; 12(7):899. https://doi.org/10.3390/atmos12070899
Chicago/Turabian StyleNakayama, Hiromasa, Toshiya Yoshida, Hiroaki Terada, and Masanao Kadowaki. 2021. "Toward Development of a Framework for Prediction System of Local-Scale Atmospheric Dispersion Based on a Coupling of LES-Database and On-Site Meteorological Observation" Atmosphere 12, no. 7: 899. https://doi.org/10.3390/atmos12070899
APA StyleNakayama, H., Yoshida, T., Terada, H., & Kadowaki, M. (2021). Toward Development of a Framework for Prediction System of Local-Scale Atmospheric Dispersion Based on a Coupling of LES-Database and On-Site Meteorological Observation. Atmosphere, 12(7), 899. https://doi.org/10.3390/atmos12070899