Next Article in Journal
Air Pollution and the Airways: Lessons from a Century of Human Urbanization
Previous Article in Journal
Spatial and Temporal Variation of NO2 Vertical Column Densities (VCDs) over Poland: Comparison of the Sentinel-5P TROPOMI Observations and the GEM-AQ Model Simulations
Article

A Bayesian Hierarchical Spatial Copula Model: An Application to Extreme Temperatures in Extremadura (Spain)

1
Departamento de Física, Universidad de Extremadura, Avenida de Elvas, 06006 Badajoz, Spain
2
Departamento de Matemáticas, Universidad de Extremadura, Avenida de Elvas, 06006 Badajoz, Spain
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Academic Editors: Kreso Pandzic, Tanja Likso and Ognjen Bonacci
Atmosphere 2021, 12(7), 897; https://doi.org/10.3390/atmos12070897
Received: 31 May 2021 / Revised: 5 July 2021 / Accepted: 7 July 2021 / Published: 10 July 2021
A Bayesian hierarchical framework with a Gaussian copula and a generalized extreme value (GEV) marginal distribution is proposed for the description of spatial dependencies in data. This spatial copula model was applied to extreme summer temperatures over the Extremadura Region, in the southwest of Spain, during the period 1980–2015, and compared with the spatial noncopula model. The Bayesian hierarchical model was implemented with a Monte Carlo Markov Chain (MCMC) method that allows the distribution of the model’s parameters to be estimated. The results show the GEV distribution’s shape parameter to take constant negative values, the location parameter to be altitude dependent, and the scale parameter values to be concentrated around the same value throughout the region. Further, the spatial copula model chosen presents lower deviance information criterion (DIC) values when spatial distributions are assumed for the GEV distribution’s location and scale parameters than when the scale parameter is taken to be constant over the region. View Full-Text
Keywords: Bayesian hierarchical model; extreme temperature; Gaussian copula; generalized extreme value distribution Bayesian hierarchical model; extreme temperature; Gaussian copula; generalized extreme value distribution
Show Figures

Figure 1

MDPI and ACS Style

García, J.A.; Pizarro, M.M.; Acero, F.J.; Parra, M.I. A Bayesian Hierarchical Spatial Copula Model: An Application to Extreme Temperatures in Extremadura (Spain). Atmosphere 2021, 12, 897. https://doi.org/10.3390/atmos12070897

AMA Style

García JA, Pizarro MM, Acero FJ, Parra MI. A Bayesian Hierarchical Spatial Copula Model: An Application to Extreme Temperatures in Extremadura (Spain). Atmosphere. 2021; 12(7):897. https://doi.org/10.3390/atmos12070897

Chicago/Turabian Style

García, J. A., Mario M. Pizarro, F. J. Acero, and M. I. Parra 2021. "A Bayesian Hierarchical Spatial Copula Model: An Application to Extreme Temperatures in Extremadura (Spain)" Atmosphere 12, no. 7: 897. https://doi.org/10.3390/atmos12070897

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop