Hindcasts of Sea Surface Wind around the Korean Peninsula Using the WRF Model: Added Value Evaluation and Estimation of Extreme Wind Speeds
Abstract
:1. Introduction
2. Model and Data
2.1. Regional Atmospheric Hindcast
2.2. Reanalysis Data
2.3. In Situ Data
2.4. Satellite Data
2.5. Evaluation Methods
3. Results
3.1. DASCAT-Based Assessment of Hindcast Data
3.2. Added Value Evaluation
3.2.1. Seasonality of the Added Value
3.2.2. Added Value in Wind Intensities
3.3. Estimation of Extreme Wind Speeds
4. Discussion
5. Summary and Conclusions
- A long-term hindcast data produced by state of the art WRF model using ERA-Interim as initial and boundary conditions. Adoption of 3DVAR data assimilation was conducted for a 39 year (1979–2017) simulation to make accurate initial conditions.
- By comparison with KMA buoy data, DASCAT was employed and regarded as “True”. The WRF hindcast was also compared with the buoy data for reliability and it showed high accuracy.
- The added value was evaluated using modified BSS and analyzed for seasonality and wind intensity. The WRF hindcast adds value to the coastal areas of KP, particularly over YS in the summer, ES in the winter, and KS in all seasons. In the case of strong winds, the hindcast performed better in the coastal areas of KP.
- The extreme wind speed estimates were performed by using the parameters of the Weibull distribution for the 50 year and 100 year return period based on the produced hindcast data on the climate scale.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Powell, M.D.; Murillo, S.; Dodge, P.; Uhlhorn, E.; Gamache, J.; Cardone, V.; Cox, A.; Otero, S.; Carrasco, N.; Annane, B.; et al. Reconstruction of Hurricane Katrina’s wind fields for storm surge and wave hindcasting. Ocean Eng. 2010, 37, 26–36. [Google Scholar] [CrossRef]
- Weisse, R.; von Storch, H.; Niemeyer, H.D.; Knaack, H. Changing North Sea storm surge climate: An increasing hazard? Ocean Coast. Manag. 2012, 68, 58–68. [Google Scholar] [CrossRef]
- Lee, S.H.; Kim, D.H.; Lee, H.W. Satellite-based assessment of the impact of sea-surface winds on regional atmospheric circulations over the Korean Peninsula. Int. J. Remote Sens. 2008, 29, 331–354. [Google Scholar] [CrossRef]
- Kim, J.-Y.; Oh, K.-Y.; Kang, K.-S.; Lee, J.-S. Site selection of offshore wind farms around the Korean Peninsula through economic evaluation. Renew. Energy 2013, 54, 189–195. [Google Scholar] [CrossRef]
- Heo, K.-Y.; Ha, T. Producing the hindcast of wind and waves using a high-resolution atmospheric reanalysis around Korea. J. Coast. Res. 2016, 75, 1107–1111. [Google Scholar] [CrossRef]
- Lee, D.-Y.; Jun, K.-C. Estimation of Design Wave Height for the Waters around the Korean Peninsula. Ocean Sci. J. 2006, 41, 245–254. [Google Scholar] [CrossRef]
- Kim, G.-U.; Seo, K.-H.; Chen, D. Climate change over the Mediterranean and current destruction of marine ecosystem. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Son, J.-H.; Seo, K.-H.; Wang, B. How Does the Tibetan Plateau Dynamically Affect Downstream Monsoon Precipitation? Geophys. Res. Lett. 2020, 47, 090543. [Google Scholar] [CrossRef]
- Son, J.-H.; Seo, K.-H.; Son, S.-W.; Cha, D.-H. How Does Indian Monsoon Regulate the Northern Hemisphere Stationary Wave Pattern? Front. Earth Sci. 2021, 8, 587. [Google Scholar] [CrossRef]
- Brands, S.; Gutiérrez, J.M.; Herrera, S.; Cofiño, A. On the use of reanalysis data for downscaling. J. Clim. 2012, 25, 2517–2526. [Google Scholar] [CrossRef] [Green Version]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Feser, F.; Rockel, B.; von Storch, H.; Winterfeldt, J.; Zahn, M. Regional Climate Models Add Value to Global Model Data: A Review and Selected Examples. Bull. Am. Meteorol. Soc. 2011, 92, 1181–1192. [Google Scholar] [CrossRef] [Green Version]
- Li, D. Added value of high-resolution regional climate model: Selected cases over the Bohai Sea and the Yellow Sea areas. Int. J. Climatol. 2016, 37, 169–179. [Google Scholar] [CrossRef]
- Manzanas, R.; Gutiérrez, J.M.; Fernández, J.; Van Meijgaard, E.; Calmanti, S.; Magariño, M.E.; Cofiño, A.S.; Herrera, S. Dynamical and statistical downscaling of seasonal temperature forecasts in Europe: Added value for user applications. Clim. Serv. 2018, 9, 44–56. [Google Scholar] [CrossRef]
- Kelemen, F.D.; Primo, C.; Feldmann, H.; Ahrens, B. Added Value of Atmosphere-Ocean Coupling in a Century-Long Regional Climate Simulation. Atmosphere 2019, 10, 537. [Google Scholar] [CrossRef] [Green Version]
- Qiu, L.; Im, E.-S.; Hur, J.; Shim, K.-M. Added value of very high resolution climate simulations over South Korea using WRF modeling system. Clim. Dyn. 2019, 54, 173–189. [Google Scholar] [CrossRef]
- Di Virgilio, G.; Evans, J.P.; Di Luca, A.; Grose, M.R.; Round, V.; Thatcher, M. Realised added value in dynamical downscaling of Australian climate change. Clim. Dyn. 2020, 54, 4675–4692. [Google Scholar] [CrossRef]
- Politi, N.; Vlachogiannis, D.; Sfetsos, A.; Nastos, P.T. High-resolution dynamical downscaling of ERA-Interim temperature and precipitation using WRF model for Greece. Clim. Dyn. 2021, 1–27. [Google Scholar] [CrossRef]
- Ebuchi, N.; Graber, H.C.; Caruso, M.J. Evaluation of Wind Vectors Observed by QuikSCAT/SeaWinds Using Ocean Buoy Data. J. Atmos. Ocean Technol. 2002, 19, 2049–2062. [Google Scholar] [CrossRef]
- Winterfeldt, J.; Geyer, B.; Weisse, R. Using QuikSCAT in the added value assessment of dynamically downscaled wind speed. Int. J. Climatol. 2010, 31, 1028–1039. [Google Scholar] [CrossRef] [Green Version]
- Menendez, M.; García-Díez, M.; Fita, L.; Fernández, J.; Mendez, F.; Gutiérrez, J.M. High-resolution sea wind hindcasts over the Mediterranean area. Clim. Dyn. 2013, 42, 1857–1872. [Google Scholar] [CrossRef]
- Li, D.; Von Storch, H.; Geyer, B. High-resolution wind hindcast over the Bohai Sea and the Yellow Sea in East Asia: Evaluation and wind climatology analysis. J. Geophys. Res. Atmos. 2016, 121, 111–129. [Google Scholar] [CrossRef] [Green Version]
- Sivareddy, S.; Ravichandran, M.; GirishKumar, M.S. Evaluation of ASCAT-Based Daily Gridded Winds in the Tropical Indian Ocean. J. Atmos. Ocean Technol. 2013, 30, 1371–1381. [Google Scholar] [CrossRef]
- Park, J.; Kim, D.-W.; Jo, Y.-H.; Kim, D. Accuracy evaluation of daily-gridded ASCAT satellite data around the Korean Pen-insula. Korean J. Remote Sens. 2018, 34, 213–225. [Google Scholar] [CrossRef]
- Na, J.-Y.; Seo, J.-W.; Han, S.-K. Monthly-mean sea surface winds over the adjacent seas of the Korea Peninsular. J. Ocean Soc. Korean 1992, 27, 1–10. [Google Scholar]
- Lee, D.-K.; Kwon, J.-I.; Hahn, S.-B. The wind effect on the cold water formation near Gampo-Ulgi coast. Korean J. Fish. Aq. Sci. 1998, 31, 359–371. [Google Scholar]
- Seo, J.-W.; Chang, Y.-S. Characteristics of the monthly mean sea surface winds and wind waves near the Korean marginal seas in 2002 Computed Using MM5/KMA and WAVEWATCH-III model. Sea J. Korean Soc. Ocean 2003, 8, 262–273. [Google Scholar]
- Kim, Y.-K.; Jeong, J.-H.; Bae, J.-H.; Oh, I.-B.; Kweon, J.-H.; Seo, J.-W. Improvement in the simulation of sea surface wind over the complex coastal area using WRF model. J. Korean Soc. Atmo. Environ. 2006, 22, 309–323. [Google Scholar]
- Yoon, H.-J.; Park, K.-S.; Kim, S.-I. Ocean wind retrieval from RADAR SAR images in Korean seas. J. Korean Inst. Inf. Commun. Eng. 2006, 10, 706–711. [Google Scholar]
- You, S.H.; Cho, J.-G.; Seo, J.-W. Comparison of KMA operational model RDAPS with QuikSCAT sea surface wind data. J. Korean Soc. Coast. Oceanogr. Eng. 2007, 19, 467–475. [Google Scholar]
- Jeong, J.-Y.; Shim, J.-S.; Lee, D.-K.; Min, I.-K.; Kwon, J.-I. Validation of QuikSCAT Wind with Resolution of 12.5 km in the Vicinity of Korean Peninsula. Ocean Polar Res. 2008, 30, 47–58. [Google Scholar] [CrossRef] [Green Version]
- Heo, K.-Y.; Lee, J.-W.; Ha, K.-J.; Jun, K.-C.; Park, K.-S. Model Optimization for Sea Surface Wind Simulation of Strong Wind Cases. J. Korean Earth Sci. Soc. 2008, 29, 263–279. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.-H.; Lee, H.-W.; Kim, D.-H.; Kim, M.-J.; Kim, H.-G. Numerical Study on the Impact of the Spatial Resolution of Wind Map in the Korean Peninsula on the Accuracy of Wind Energy Resources Estimation. J. Environ. Sci. Int. 2009, 18, 885–897. [Google Scholar] [CrossRef]
- Li, D.; Geyer, B.; Bisling, P. A model-based climatology analysis of wind power resources at 100-m height over the Bohai Sea and the Yellow Sea. Appl. Energy 2016, 179, 575–589. [Google Scholar] [CrossRef]
- Choi, W.; Shin, H.-J.; Jang, C.J. Evaluation of climatological mean surface winds over Korean waters simulated by CORDEX-EA regional climate models. Atmos. Korean Met. Soc. 2019, 29, 115–129. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, W.; Wu, Z.; Yang, X.; Cao, X.; Zhu, M. Assimilation of HY-2A scatterometer sea surface wind data in a 3DVAR data assimilation system—A case study of Typhoon Bolaven. Front. Earth Sci. 2015, 9, 192–201. [Google Scholar] [CrossRef]
- Yu, Y.; Yang, X.; Zhang, W.; Duan, B.; Cao, X.; Leng, H. Assimilation of Sentinel-1 derived sea surface winds for typhoon forecasting. Remote Sens. 2017, 9, 845. [Google Scholar] [CrossRef] [Green Version]
- Kwun, J.H.; Kim, Y.-K.; Seo, J.-W.; Jeong, J.H.; You, S.H. Sensitivity of MM5 and WRF mesoscale model predictions of surface winds in a typhoon to planetary boundary layer parameterizations. Nat. Hazards 2009, 51, 63–77. [Google Scholar] [CrossRef]
- Heo, K.-Y.; Ha, T.; Choi, J.-Y.; Park, K.-S.; Kwon, J.-I.; Jun, K. Evaluation of Wind and Wave Simulations using Different Global Reanalyses. J. Coast. Res. 2017, 79, 99–103. [Google Scholar] [CrossRef] [Green Version]
- Byun, D.-S.; Choi, B.-J. Nomenclature of the seas around the Korean Peninsula derived from analyses of papers in two repre-sentative Korean ocean and fisheries Science Journals: Present Status and Future. Sea J. Korean Soc. Oceanogr. 2018, 23, 125–151. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3. NCAR Technical Note-475+ STR. 2008. Available online: https://opensky.ucar.edu/islandora/object/technotes%3A500/datastream/PDF/view (accessed on 9 July 2021).
- Hahmann, A.N.; Vincent, C.; Peña, A.; Lange, J.; Hasager, C.B. Wind climate estimation using WRF model output: Method and model sensitivities over the sea. Int. J. Climatol. 2015, 35, 3422–3439. [Google Scholar] [CrossRef]
- Kim, Y.-K.; Jeong, J.-H.; Bae, J.-H.; Song, S.-K.; Seo, J.-W. Study on planetary boundary layer schemes suitable for simulation of sea surface wind in the southeastern coastal area, Korea. J. Environ. Sci. Int. 2005, 14, 1015–1026. [Google Scholar] [CrossRef]
- Carvalho, D.; Rocha, A.; Gómez-Gesteira, M.; Santos, C.S. Sensitivity of the WRF model wind simulation and wind energy production estimates to planetary boundary layer parameterizations for onshore and offshore areas in the Iberian Peninsula. Appl. Energy 2014, 135, 234–246. [Google Scholar] [CrossRef]
- Hong, S.-Y.; Noh, Y.; Dudhia, J. A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.-Y.; Lim, J.-O.J. The WRF single-moment 6-class microphysics scheme (WSM6). Asia-Pac. J. Atmo. Sci. 2006, 42, 129–151. [Google Scholar]
- Dudhia, J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmo. Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef]
- Kain, J.S.; Fritsch, J.M. Convective Parameterization for Mesoscale Models: The Kain-Fritsch Scheme. In The Representation of Cumulus Convection in Numerical Models; Emanuel, K.A., Raymond, D.J., Eds.; American Meteorological Society: Boston, MA, USA, 1993; Volume 46, pp. 165–170. [Google Scholar]
- Niu, G.-Y.; Yang, Z.-L.; Mitchell, K.E.; Chen, F.; Ek, M.B.; Barlage, M.; Kumar, A.; Manning, K.; Niyogi, D.; Rosero, E.; et al. The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res. Space Phys. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Chu, Q.; Xu, Z.; Chen, Y.; Han, D. Evaluation of the ability of the Weather Research and Forecasting model to reproduce a sub-daily extreme rainfall event in Beijing, China using different domain configurations and spin-up times. Hydrol. Earth Syst. Sci. 2018, 22, 3391–3407. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Wang, J.; Pan, S.; Tang, K.; Li, C.; Han, D. A real-time flood forecasting system with dual updating of the NWP rainfall and the river flow. Nat. Hazards 2015, 77, 1161–1182. [Google Scholar] [CrossRef]
- Carlin, J.T.; Gao, J.; Snyder, J.C.; Ryzhkov, A.V. Assimilation of ZDR Columns for Improving the Spinup and Forecast of Convective Storms in Storm-Scale Models: Proof-of-Concept Experiments. Mon. Weather Rev. 2017, 145, 5033–5057. [Google Scholar] [CrossRef]
- Li, D.; Von Storch, H.; Geyer, B. Testing Reanalyses in Constraining Dynamical Downscaling. J. Meteorol. Soc. Jpn. 2016, 94A, 47–68. [Google Scholar] [CrossRef] [Green Version]
- Queffeulou, P.; Chapron, B.; Bentamy, A. Comparing Ku-band NSCAT scatterometer and ERS-2 altimeter winds. IEEE Trans. Geosci. Remote Sens. 1999, 37, 1662–1670. [Google Scholar] [CrossRef]
- Bentamy, A.; Fillon, D.C. Gridded surface wind fields from Metop/ASCAT measurements. Int. J. Remote Sens. 2011, 33, 1729–1754. [Google Scholar] [CrossRef] [Green Version]
- Von Storch, H. Misuses of statistical analysis in climate research. In Analysis of Climate Variability; Springer: Berlin/Heidelberg, Germany, 1999; pp. 11–26. [Google Scholar]
- Geyer, B.; Weisse, R.; Bisling, P.; Winterfeldt, J. Climatology of North Sea wind energy derived from a model hindcast for 1958–2012. J. Wind. Eng. Ind. Aerodyn. 2015, 147, 18–29. [Google Scholar] [CrossRef] [Green Version]
- Kumar, D.; Dimri, A.P. Context of the added value in coupled atmosphere-land RegCM4–CLM4.5 in the simulation of Indian summer monsoon. Clim. Dyn. 2021, 56, 259–274. [Google Scholar] [CrossRef]
- Pavia, E.G.; O’Brien, J.J. Weibull Statistics of Wind Speed over the Ocean. J. Clim. Appl. Meteorol. 1986, 25, 1324–1332. [Google Scholar] [CrossRef] [Green Version]
- Seguro, J.; Lambert, T. Modern estimation of the parameters of the Weibull wind speed distribution for wind energy analysis. J. Wind Eng. Ind. Aerodyn. 2000, 85, 75–84. [Google Scholar] [CrossRef]
- Monahan, A.H. The Probability Distribution of Sea Surface Wind Speeds. Part I: Theory and SeaWinds Observations. J. Clim. 2006, 19, 497–520. [Google Scholar] [CrossRef]
- Masselink, G.; Pattiaratchi, C. Characteristics of the sea breeze system in Perth, Western Australia, and its effect on the near-shore wave climate. J. Coast. Res. 2001, 17, 173–187. [Google Scholar]
Model Used | WRF v.3.7.1 |
---|---|
Initial and boundary conditions | ERA-Interim 0.25° × 0.25° (6 h intervals) |
Horizontal and vertical resolution | 10 km × 10 km, 60 layers to 50 hPa |
Horizontal grid points in the X-Y direction | 436 × 436 |
Cumulus parameterization scheme | Kain–Fritsch scheme |
Planetary boundary layer parameterization scheme | YonSei University (YSU) PBL scheme |
Microphysics parameterization scheme | WRF Single-moment (WSM) 6-class scheme |
Radiation parameterization schemes | Rapid radiative transfer model (RRTM) long-wave and short-wave radiation scheme |
Surface-layer scheme | Fifth-Generation Mesoscale Model (MM5) similarity |
Land surface scheme | Noah land surface model scheme |
Station | Standard Station Number | Longitude (°E) | Latitude (°N) | Period |
---|---|---|---|---|
DeokJeokDo (DJ) | 22101 | 126.019 | 37.236 | 01/1997–12/2017 |
ChilBalDo (CB) | 22102 | 125.777 | 34.793 | 01/1997–12/2017 |
GeoMunDo (GM) | 22103 | 127.501 | 34.001 | 05/1997–12/2017 |
GeoJeDo (GJ) | 22104 | 128.900 | 34.767 | 05/1998–12/2017 |
DongHae (DH) | 22105 | 129.950 | 37.481 | 04/2001–12/2017 |
PoHang (PH) | 22106 | 129.783 | 36.350 | 11/2008–12/2017 |
MaRaDo (MR) | 22107 | 126.033 | 33.083 | 11/2008–12/2017 |
OeYeonDo (OY) | 22108 | 125.750 | 36.250 | 10/2008–12/2017 |
UlleungDo (UL) | 21229 | 131.100 | 37.450 | 12/2011–12/2017 |
SeoGwiPo (SG) | 22187 | 127.023 | 33.128 | 12/2015–12/2017 |
UlSan (US) | 22189 | 129.841 | 35.345 | 12/2015–12/2017 |
UlJin (UJ) | 22190 | 129.874 | 36.906 | 12/2015–12/2017 |
Name | Num. | Bias (m·s−1) | Corr. (-) | RMSE (m·s−1) | Mean (m·s−1) (DASCAT) | Mean (m·s−1) (OBS) | STD (m·s−1) (DASCAT) | STD (m·s−1) (OBS) |
---|---|---|---|---|---|---|---|---|
DJ | 3211 | 1.89 | 0.79 | 2.58 | 6.32 | 4.44 | 2.84 | 2.41 |
CB | 3173 | 1.61 | 0.85 | 2.21 | 6.26 | 4.66 | 2.81 | 2.71 |
GM | 3395 | 1.81 | 0.71 | 2.84 | 7.92 | 6.11 | 2.88 | 2.83 |
GJ | 3490 | 1.19 | 0.66 | 2.55 | 7.23 | 6.04 | 2.94 | 2.45 |
DH | 3229 | 0.58 | 0.82 | 1.74 | 6.22 | 5.64 | 2.9 | 2.38 |
PH | 3046 | 0.79 | 0.84 | 1.83 | 6.96 | 6.17 | 3.03 | 2.58 |
MR | 2882 | 0.59 | 0.88 | 1.69 | 7.47 | 6.88 | 3.3 | 2.92 |
OY | 2643 | 0.8 | 0.87 | 1.72 | 5.85 | 5.05 | 3.06 | 2.53 |
UL | 2150 | 1.13 | 0.86 | 1.91 | 6.99 | 5.86 | 2.98 | 2.55 |
SG | 739 | 0.89 | 0.86 | 1.92 | 7.55 | 6.66 | 3.37 | 2.95 |
US | 734 | 1.85 | 0.79 | 2.52 | 8.24 | 6.39 | 2.74 | 2.47 |
UJ | 753 | 1.19 | 0.76 | 2.06 | 6.97 | 5.78 | 2.55 | 2.26 |
Name | Num. | Bias (m·s−1) | Corr. (-) | RMSE (m·s−1) | Mean (m·s−1) (WRF) | Mean (m·s−1) (OBS) | STD (m·s−1) (WRF) | STD (m·s−1) (OBS) |
---|---|---|---|---|---|---|---|---|
DJ | 152303 | 0.90 | 0.78 | 2.17 | 5.28 | 4.38 | 3.03 | 2.87 |
CB | 152449 | 1.03 | 0.78 | 2.33 | 5.58 | 4.55 | 3.13 | 3.15 |
GM | 148100 | 0.56 | 0.68 | 2.77 | 6.69 | 6.13 | 3.40 | 3.41 |
GJ | 154996 | 0.18 | 0.62 | 2.85 | 6.34 | 6.16 | 3.33 | 3.16 |
DH | 118756 | 0.45 | 0.77 | 2.28 | 6.09 | 5.63 | 3.41 | 3.09 |
PH | 73394 | 0.34 | 0.79 | 2.21 | 6.51 | 6.17 | 3.45 | 3.27 |
MR | 69374 | −0.14 | 0.82 | 2.07 | 6.74 | 6.88 | 3.39 | 3.47 |
OY | 65320 | 0.41 | 0.84 | 1.80 | 5.50 | 5.09 | 3.20 | 3.07 |
UL | 51412 | 0.77 | 0.80 | 2.26 | 6.62 | 5.85 | 3.54 | 3.19 |
SG | 17279 | −0.15 | 0.82 | 2.11 | 6.51 | 6.67 | 3.43 | 3.63 |
US | 17167 | 0.12 | 0.78 | 2.17 | 6.50 | 6.38 | 3.35 | 3.20 |
UJ | 17925 | 0.29 | 0.75 | 2.23 | 6.04 | 5.75 | 3.21 | 3.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.; Heo, K.-Y.; Kim, N.-H.; Kwon, J.-I. Hindcasts of Sea Surface Wind around the Korean Peninsula Using the WRF Model: Added Value Evaluation and Estimation of Extreme Wind Speeds. Atmosphere 2021, 12, 895. https://doi.org/10.3390/atmos12070895
Kim H, Heo K-Y, Kim N-H, Kwon J-I. Hindcasts of Sea Surface Wind around the Korean Peninsula Using the WRF Model: Added Value Evaluation and Estimation of Extreme Wind Speeds. Atmosphere. 2021; 12(7):895. https://doi.org/10.3390/atmos12070895
Chicago/Turabian StyleKim, Hojin, Ki-Young Heo, Nam-Hoon Kim, and Jae-Il Kwon. 2021. "Hindcasts of Sea Surface Wind around the Korean Peninsula Using the WRF Model: Added Value Evaluation and Estimation of Extreme Wind Speeds" Atmosphere 12, no. 7: 895. https://doi.org/10.3390/atmos12070895
APA StyleKim, H., Heo, K. -Y., Kim, N. -H., & Kwon, J. -I. (2021). Hindcasts of Sea Surface Wind around the Korean Peninsula Using the WRF Model: Added Value Evaluation and Estimation of Extreme Wind Speeds. Atmosphere, 12(7), 895. https://doi.org/10.3390/atmos12070895