Simulations of the East Asian Winter Monsoon on Subseasonal to Seasonal Time Scales Using the Model for Prediction Across Scales
Abstract
:1. Introduction
2. Experiments, Data and Methods
2.1. Model Settings and Experiment Design
2.2. Verification Data and Methods
3. Results
3.1. Climatology and Anomalies Verification
3.2. Three-Category T2m and Rainfall Probability Forecast Verification
3.3. Surface Temperature EOF Modes
3.4. Atmospheric Blocking
3.5. Investigation of Modeling Variability for the Cold Surge in Taiwan
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jhun, J.-G.; Lee, E.-J. A new East Asian winter monsoon index and associated characteristics of the winter monsoon. J. Clim. 2004, 17, 711–726. [Google Scholar] [CrossRef]
- Chan, J.C.L.; Li, C. The east Asian winter monsoon. In East Asian Monsoon; Chang, C.P., Ed.; World Scientific Publishing Company Incorporated: Singapore, 2004; pp. 54–106. [Google Scholar]
- Chang, C.-P.; Wang, Z.; Hendon, H. The Asian winter monsoon. In The Asian Monsoon; Wang, B., Ed.; Springer Praxis Books: Berlin/Heidelberg, Germany, 2006; pp. 89–127. [Google Scholar] [CrossRef]
- Wang, B.; Wu, Z.; Chang, C.P.; Liu, J.; Li, J.; Zhou, T. Another look at interannual-to-interdecadal variations of the East Asian winter monsoon: The northern and southern temperature modes. J. Clim. 2010, 23, 1495–1512. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Lu, M.-M. The East Asian winter monsoon. In The Global Monsoon System: Research and Forecast, 3rd ed.; Chang, C.P., Kuo, H.C., Lau, N.C., Johnson, R.H., Wang, B., Wheeler, M., Eds.; World Scientific Publishing Company Incorporated: Singapore, 2017; pp. 51–61. [Google Scholar]
- Gong, H.; Wang, L.; Chen, W.; Wu, R.; Wei, K.; Cui, X. The climatology and interannual variability of the East Asian winter monsoon in CMIP5 models. J. Clim. 2014, 27, 1659–1678. [Google Scholar] [CrossRef]
- Li, J.; Wang, B.; Yang, Y.-M. Diagnostic metrics for evaluating model simulations of the East Asian Monsoon. J. Clim. 2020, 33, 1777–1801. [Google Scholar] [CrossRef]
- Joung, C.H.; Hitchman, M.H. On the role of successive downstream development in East Asian polar air outbreaks. Mon. Weather Rev. 1982, 110, 1224–1237. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y. Build-up, air mass transformation and propagation of Siberian high and its relation to cold surge in East Asia. Meteorol. Atmos. Phys. 1990, 44, 281–292. [Google Scholar] [CrossRef]
- Gong, D.-Y.; Ho, C.-H. Intra-seasonal variability of wintertime temperature over East Asia. Int. J. Climatol. 2004, 24, 131–144. [Google Scholar] [CrossRef]
- Jeong, J.-H.; Kim, B.-M.; Ho, C.-H.; Chen, D.; Lim, G.-H. Stratospheric origin of cold surge occurrence in East Asia. Geophys. Res. Lett. 2006, 33, L14704. [Google Scholar] [CrossRef] [Green Version]
- Song, L.; Wang, L.; Chen, W.; Zhang, Y. Intraseasonal variation of the strength of the East Asian trough and its climate impacts in boreal winter. J. Clim. 2016, 29, 2557–2577. [Google Scholar] [CrossRef]
- Song, L.; Wu, R. Processes for occurrence of strong cold events over Eastern China. J. Clim. 2017, 30, 9247–9266. [Google Scholar] [CrossRef]
- Chen, W.; Yang, S.; Huang, R.H. Relationship between stationary planetary wave activity and the East Asian winter monsoon. J. Geophys. Res. 2005, 110. [Google Scholar] [CrossRef]
- Wang, L.; Huang, R.H.; Gu, L.; Chen, W.; Kang, L.H. Interdecadal variations of the East Asian winter monsoon and their association with quasi-stationary planetary wave activity. J. Clim. 2009, 22, 4860–4872. [Google Scholar] [CrossRef] [Green Version]
- Wang, L. Stationary wave activity associated with the East Asian winter monsoon pathway. Atmos. Ocean. Sci. Lett. 2014, 7, 7–10. [Google Scholar]
- Takaya, K.; Nakamura, H. Mechanisms of intraseasonal amplification of the cold Siberian high. J. Atmos. Sci. 2005, 62, 4423–4440. [Google Scholar] [CrossRef]
- Takaya, K.; Nakamura, H. Interannual variability of the East Asian winter monsoon and associated modulations of the planetary waves. J. Clim. 2013, 26, 9445–9461. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, L.; Zhou, W.; Chen, W. Three Eurasian teleconnection patterns: Spatial structures, temporal variability, and associated winter climate anomalies. Clim. Dyn. 2014, 42, 2817–2839. [Google Scholar] [CrossRef]
- Takaya, K.; Nakamura, H. Geographical dependence of upper-level blocking formation associated with intraseasonal amplification of the Siberian high. J. Atmos. Sci. 2005, 62, 4441–4449. [Google Scholar] [CrossRef]
- Wu, B.; Wang, J. Winter Arctic oscillation, Siberian high and East Asian winter monsoon. Geophys. Res. Lett. 2002, 29, 1897. [Google Scholar] [CrossRef]
- Chen, W.; Kang, L. Linkage between the Arctic Oscillation and winter climate over East Asia on the interannual timescale: Roles of quasistationary planetary waves. Chin. J. Atmos. Sci. 2006, 30, 863–870. [Google Scholar]
- Chen, W.; Li, T. Modulation of Northern Hemisphere wintertime stationary planetary wave activity: East Asian climate relationships by the quasi-biennial oscillation. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef]
- Jeong, J.-H.; Ho, C.-H. Changes in occurrence of cold surges over East Asia in associated with Arctic oscillation. Geophys. Res. Lett. 2005, 32, L14704. [Google Scholar] [CrossRef]
- Chang, C.-P.; Wang, Z.; Ju, J.; Li, T. On the relationship between western Maritime Continent monsoon rainfall and ENSO during northern winter. J. Clim. 2004, 17, 665–672. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Wu, R.; Fu, X. Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Clim. 2000, 13, 1517–1536. [Google Scholar] [CrossRef]
- Jeong, J.-H.; Ho, C.-H.; Kim, B.-M.; Kwon, W.-T. Influence of the Madden-Julian Oscillation on wintertime surface air temperature and cold surges in East Asia. J. Geophys. Res. 2005, 110. [Google Scholar] [CrossRef]
- Jeong, J.-H.; Kim, B.-M.; Ho, C.-H.; Noh, Y.-H. Systematic variation in wintertime precipitation in East Asia by MJO-induced extratropical vertical motion. J. Clim. 2008, 21, 788–801. [Google Scholar] [CrossRef]
- White, C.J.; Carlsen, H.; Robertson, A.W.; Klein, R.J.; Lazo, J.K.; Kumar, A.; Vitart, F.; Coughlan de Perez, E.; Ray, A.J.; Murray, V.; et al. Potential applications of subseasonal-to-seasonal (S2S) predictions. Meteorol. Appl. 2017, 24, 315–325. [Google Scholar] [CrossRef]
- Alvarez, M.S.; Coelho, C.A.S.; Osman, M.; Firpo, M.Â.F.; Vera, C.S. Assessment of ECMWF subseasonal temperature predictions for an anomalously cold week followed by an anomalously warm week in central and southeastern South America during July 2017. Weather Forecast. 2020, 35, 1871–1889. [Google Scholar] [CrossRef]
- Taguchi, M. A study of false alarms of a major sudden stratospheric warming by real-time subseasonal-to-seasonal forecasts for the 2017/2018 northern winter. Atmosphere 2020, 11, 875. [Google Scholar] [CrossRef]
- Xiang, B.; Sun, Y.Q.; Chen, J.H.; Johnson, N.C.; Jiang, X. Subseasonal prediction of land cold extremes in boreal wintertime. J. Geophys. Res. Atmos. 2020, 125, e2020JD032670. [Google Scholar] [CrossRef]
- Vitart, F.; Ardilouze, C.; Bonet, A.; Brookshaw, A.; Chen, M.; Codorean, C.; Déqué, M.; Ferranti, L.; Fucile, E.; Fuentes, M.; et al. The Subseasonal to Seasonal (S2S) prediction project database. Bull. Am. Meteor. Soc. 2017, 98, 163–173. [Google Scholar] [CrossRef]
- Vitart, F.; Robertson, A.W. The sub-seasonal to seasonal prediction project (S2S) and the prediction of extreme events. Npj Clim. Atmos. Sci. 2018, 1, 3. [Google Scholar] [CrossRef] [Green Version]
- Gong, Z.; Feng, G.; Ren, F.; Li, J. A regional extreme low temperature event and its main atmospheric contributing factors. Theor. Appl. Clmatol. 2014, 117, 195–206. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Duda, M.G.; Fowler, L.D.; Park, S.-H.; Ringler, T.D. A multiscale nonhydrostatic atmospheric model using centroidal Voronoi tessellations and C-grid staggering. Mon. Weather Rev. 2012, 140, 3090–3105. [Google Scholar] [CrossRef] [Green Version]
- Klemp, J.B. A terrain-following coordinate with smoothed coordinate surfaces. Mon. Weather Rev. 2011, 139, 2163–2169. [Google Scholar] [CrossRef]
- Schwartz, C.S. Medium-Range Convection-Allowing Ensemble Forecasts with a Variable-Resolution Global Model. Mon. Weather Rev. 2019, 147, 2997–3023. [Google Scholar] [CrossRef]
- Zhao, C.; Xu, M.; Wang, Y.; Zhang, M.; Guo, J.; Hu, Z.; Leung, L.R.; Duda, M.; Skamarock, W.C. Modeling extreme precipitation over East China with a global variable-resolution modeling framework (MPASv5.2): Impacts of resolution and physics. Geosci. Model Dev. 2019, 12, 2707–2726. [Google Scholar] [CrossRef] [Green Version]
- Davis, C.A.; Ahijevych, D.A.; Wang, W.; Skamarock, W.C. Evaluating medium-range tropical cyclone forecasts in uniform- and variable-resolution global models. Mon. Weather Rev. 2016, 144, 4141–4160. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Zhang, Y.; Skamarock, W.C.; Hsu, L.-H. Influences of large-scale flow variations on the track evolution of Typhoons Morakot (2009) and Megi (2010): Simulations with a global variable-resolution model. Mon. Weather Rev. 2017, 145, 1691–1716. [Google Scholar] [CrossRef]
- Hsu, L.-H.; Tseng, L.-S.; Hou, S.-Y.; Chen, B.-F.; Sui, C.-H. A simulation study of Kelvin waves interacting with synoptic events during December 2016 in the South China Sea and Maritime Continent. J. Clim. 2020, 33, 6345–6359. [Google Scholar] [CrossRef]
- Pilon, R.; Zhang, C.; Dudhia, J. Roles of deep and shallow convection and microphysics in the MJO simulated by the Model for Prediction Across Scales. J. Geophys. Res. Atmos. 2016, 121, 10575–10600. [Google Scholar] [CrossRef] [Green Version]
- Michaelis, A.C.; Lackmann, G.M.; Robinson, W.A. Evaluation of a unique approach to high-resolution climate modeling using the Model for Prediction Across Scales—Atmosphere (MPAS-A) version 5.1. Geosci. Model Dev. 2019, 12, 3725–3743. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Wang, Y. Projected future changes of tropical cyclone activity over the Western North and South Pacific in a 20-km-mesh regional climate model. J. Clim. 2017, 30, 5923–5941. [Google Scholar] [CrossRef]
- Hong, S.-Y.; Lim, J.O.J. The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc. 2006, 42, 129–151. [Google Scholar]
- Hong, S.-Y.; Noh, Y.; Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef] [Green Version]
- Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W.D. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. Atmos. 2008, 113, D13103. [Google Scholar] [CrossRef]
- National Centers for Environmental Prediction/National Weather Service/NOAA/U.S. Department of Commerce. NCEP Global Forecast System (GFS) Analyses and Forecasts. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory. 2007. Available online: https://rda.ucar.edu/datasets/ds084.6/ (accessed on 1 March 2020).
- Saha, S.; Moorthi, S.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Behringer, D.; Hou, Y.T.; Chuang, H.Y.; Iredell, M.; et al. The NCEP Climate Forecast System Version 2. J. Clim. 2014, 27, 2185–2208. [Google Scholar] [CrossRef]
- Hoffman, R.N.; Kalnay, E. Lagged average forecasting an alternative to Monte Carlo forecasting. Tellus 1983, 35A, 100–151. [Google Scholar] [CrossRef]
- Branković, Č.; Palmer, T.N.; Molteni, F.; Tibaldi, S.; Cubasch, U. Extended-range predictions with ECMWF models: Time-lagged ensemble forecasting. Q. J. R. Meteorol. Soc. 1990, 116, 867–912. [Google Scholar] [CrossRef]
- Lu, C.; Yuan, H.; Schwartz, B.E.; Benjamin, S.G. Short-Range numerical weather prediction using time-lagged ensembles. Weather Forecast. 2007, 22, 580–595. [Google Scholar] [CrossRef]
- Mittermaier, M.P. Improving short-range high-resolution model precipitation forecast skill using time-lagged ensembles. Q. J. R. Meteorol. Soc. 2007, 133, 1487–1500. [Google Scholar] [CrossRef]
- Buizza, R. Comparison of a 51-member low-resolution (TL399L62) ensemble with a 6-member high-resolution (TL799L91) lagged-forecast ensemble. Mon. Weather Rev. 2008, 136, 3343–3362. [Google Scholar] [CrossRef] [Green Version]
- Ushiyama, T.; Sayama, T.; Tatebe, Y.; Fujioka, S. Numerical simulation of 2010 Pakistan flood in the Kabul River basin by using lagged ensemble rainfall forecasting. J. Hydrometeorol. 2014, 15, 193–211. [Google Scholar] [CrossRef]
- Jie, W.; Wu, T.; Wang, J.; Li, W.; Polivka, T. Using a deterministic time-lagged ensemble forecast with a probabilistic threshold for improving 6–15 day summer precipitation prediction in China. Atmos. Res. 2015, 156, 142–159. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.-J.; Kim, Y.-O.; Kang, T.-H. Application of time-lagged ensemble approach with auto-regressive processors to reduce uncertainties in peak discharge and timing. J. Hydrol. Reg. Stud. 2017, 9, 140–148. [Google Scholar] [CrossRef]
- Xu, M.; Thompson, G.; Adriaansen, D.R.; Landolt, S.D. On the value of time-lag-ensemble averaging to improve numerical model predictions of aircraft icing conditions. Weather Forecast. 2019, 34, 507–519. [Google Scholar] [CrossRef]
- Khain, P.; Levi, Y.; Shtivelman, A.; Vadislavsky, E.; Brainin, E.; Stav, N. Improving the precipitation forecast over the Eastern Mediterranean using a smoothed time-lagged ensemble. Meteorol. Appl. 2020, 27, e1840. [Google Scholar] [CrossRef]
- Porson, A.N.; Carr, J.M.; Hagelin, S.; Darvell, R.; North, R.; Walters, D.; Mylne, K.R.; Mittermaier, M.P.; Willington, S.; Macpherson, B. Recent upgrades to the Met Office convective-scale ensemble: An hourly time-lagged 5-day ensemble. Q. J. R. Meteorol. Soc. 2020. [Google Scholar] [CrossRef]
- Van Den Dool, H.M.; Rukhovets, L. On the weights for an ensemble-averaged 6–10-day forecast. Weather Forecast. 1994, 9, 457–465. [Google Scholar] [CrossRef] [Green Version]
- Huffman, G.J.; Bolvin, D.T.; Braithwaite, D.; Hsu, K.; Joyce, R.; Kidd, C.; Nelkin, E.J.; Sorooshian, S.; Tan, J.; Xie, P. NASA Global Precipitation Measurement (GPM) Integrated Multi-Satellite Retrievals for GPM (IMERG), Algorithm Theoretical Basis Doc., Version 5.1. 2017; 34p. Available online: https://pmm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V5.1.pdf (accessed on 1 May 2020).
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J. Integrated Multi-satellitE Retrievals for GPM (IMERG) Technical Documentation. NASA Doc. 2017; 54p. Available online: https://pmm.nasa.gov/sites/default/files/document_files/IMERG_doc.pdf (accessed on 1 May 2020).
- Jolliffe, I.T.; Stephenson, D.B. Forecast Verificaton: A Practitioner’s Guide in Atmospheric Science, 2nd ed.; Wiley-Blackwell: Oxford, UK, 2012. [Google Scholar]
- Gerrity, J.P., Jr. A note on Gandin and Murphy’s equitable skill score. Mon. Weather Rev. 1992, 120, 2707–2712. [Google Scholar] [CrossRef]
- Gandin, L.S.; Murphy, A. Equitable skill scores for categorical forecasts. Mon. Weather Rev. 1992, 120, 361–370. [Google Scholar] [CrossRef] [Green Version]
- Heidke, P. Berechnung des Erfolges und der Gute der Windstarkevorhersagen im Sturmwarnungsdienst (Measures of success and goodness of wind force forecasts by the gale-warning service). Geogr. Ann. 1926, 8, 301–349. [Google Scholar]
- Mason, S.J. A model for assessment of weather forecasts. Aust. Meteor. Mag. 1982, 30, 291–303. [Google Scholar]
- Harvey, L.O.; Hammond, K.R.; Lusk, C.M.; Mross, E.F. The application of signal detection theory to weather forecasting behavior. Mon. Weather Rev. 1992, 120, 863–883. [Google Scholar] [CrossRef] [Green Version]
- Mason, S.J.; Graham, N.E. Conditional probabilities, relative operating characteristics, and relative operating levels. Weather Forecast. 1999, 14, 713–725. [Google Scholar] [CrossRef]
- Mason, S.J.; Graham, N.E. Areas beneath the relative operating characteristics (ROC) and relative operating levels (ROL) curves: Statistical significance and interpretation. Q. J. R. Meteorol. Soc. 2002, 128, 2145–2166. [Google Scholar] [CrossRef]
- Kharin, V.V.; Zwiers, F.W. On the ROC score of probability forecasts. J. Clim. 2003, 16, 4145–4150. [Google Scholar] [CrossRef]
- Kharin, V.V.; Zwiers, F.W. Improved seasonal probability forecasts. J. Clim. 2003, 16, 1684–1701. [Google Scholar] [CrossRef]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences, 2nd ed.; Academic Press: Cambridge, MA, USA, 2006; p. 627. [Google Scholar]
- Hsu, W.-R.; Murphy, A.H. The attributes diagram: A geometrical framework for assessing the quality of probability forecasts. Int. J. Forecast. 1986, 2, 285–293. [Google Scholar] [CrossRef]
- Hamill, T.M. Reliability diagrams for multicategory probabilistic forecasts. Weather Forecast. 1997, 12, 736–741. [Google Scholar] [CrossRef]
- Brier, G.W. Verification of forecasts expressed in terms of probability. Mon. Weather Rev. 1950, 78, 1–3. [Google Scholar] [CrossRef]
- Murphy, A.H. A new vector partition of the probability score. J. Appl. Meteor. 1973, 12, 595–600. [Google Scholar] [CrossRef] [Green Version]
- Wilks, D.S. Sampling distributions of the Brier score and Brier skill score under serial dependence. Q. J. R. Meteorol. Soc. 2010, 136, 2109–2118. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Wang, B. Future change of global monsoon in the CMIP5. Clim. Dyn. 2014, 42, 101–119. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Li, J.; Jiang, Z.; He, J.H. Predictable climate dynamics of abnormal East Asian winter monsoon: Once-in-a-century snowstorms in 2007/2008 winter. Clim. Dyns. 2011, 37, 1661–1669. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Lee, S.-S.; Wang, B.; Ha, K.-J.; Jhun, J.-G. Seasonal prediction and predictability of the Asian winter temperature variability. Clim. Dyns. 2013, 41, 573–587. [Google Scholar] [CrossRef] [Green Version]
- Wallace, J.M.; Gutzler, D.S. Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Weather Rev. 1981, 109, 784–812. [Google Scholar] [CrossRef]
- Lejenäs, H.; Økland, H. Characteristics of northern hemisphere blocking as determined from a long time series of observational data. Tellus 1983, 35A, 350–362. [Google Scholar] [CrossRef]
- Tibaldi, S.; Molteni, F. On the operational predictability of blocking. Tellus 1990, 42A, 343–365. [Google Scholar] [CrossRef] [Green Version]
- Barriopedro, D.; García-Herrera, R.; Lupo, A.R.; Hernández, E.A. Climatology of Northern Hemisphere blocking. J. Clim. 2006, 19, 1042–1063. [Google Scholar] [CrossRef] [Green Version]
- Lu, M.-M.; Chang, C.-P. Unusual late-season cold surges during the 2005 Asian winter monsoon: Roles of Atlantic blocking and the Central Asian anticyclone. J. Clim. 2009, 22, 5205–5217. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, Q. Pacific–East Asian teleconnection. Part II: How the Philippine Sea anomalous anticyclone is established during El Niño development. J. Clim. 2002, 15, 3252–3265. [Google Scholar] [CrossRef] [Green Version]
- Roads, J.O. Forecasts of time averages with a numerical weather prediction model. J. Atmos. 1986, 43, 871–892. [Google Scholar] [CrossRef] [Green Version]
- Scaife, A.A.; Woollings, T.; Knight, J.; Martin, G.; Hinton, T. Atmospheric blocking and mean biases in climate models. J. Clim. 2010, 23, 6143–6152. [Google Scholar] [CrossRef] [Green Version]
- Masato, G.; Hoskins, B.J.; Woollings, T. Winter and summer northern hemisphere blocking in CMIP5 models. J. Clim. 2013, 26, 7044–7059. [Google Scholar] [CrossRef]
- Jia, X.; Yang, S.; Song, W.; He, B. Prediction of wintertime Northern Hemisphere blocking by the NCEP Climate Forecast System. J. Meteorol. Res. 2014, 28, 76–90. [Google Scholar] [CrossRef]
Categories | Observed | |||
---|---|---|---|---|
Below Normal | Near Normal | Above Normal | ||
Forecast | Below normal | P11 | P12 | P13 |
Near normal | P21 | P22 | P23 | |
Above normal | P31 | P32 | P33 |
Variables | Correlation Coefficient (R) | Normalized Root-Mean-Square Error (NRMSE) | Mean Bias |
---|---|---|---|
H500 | 0.998 | 0.07 | −6.43 (m) |
U200 | 0.998 | 0.07 | 0.04 (ms−1) |
SLP | 0.962 | 0.32 | −0.94 (hPa) |
T2m | 0.995 | 0.11 | −0.58 (°C) |
U850 | 0.970 | 0.29 | −0.83 (m s−1) |
V850 | 0.871 | 0.56 | −0.31 (m s−1) |
RAIN | 0.898 | 0.48 | 0.32 (mm day−1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu, L.-H.; Chen, D.-R.; Chiang, C.-C.; Chu, J.-L.; Yu, Y.-C.; Wu, C.-C. Simulations of the East Asian Winter Monsoon on Subseasonal to Seasonal Time Scales Using the Model for Prediction Across Scales. Atmosphere 2021, 12, 865. https://doi.org/10.3390/atmos12070865
Hsu L-H, Chen D-R, Chiang C-C, Chu J-L, Yu Y-C, Wu C-C. Simulations of the East Asian Winter Monsoon on Subseasonal to Seasonal Time Scales Using the Model for Prediction Across Scales. Atmosphere. 2021; 12(7):865. https://doi.org/10.3390/atmos12070865
Chicago/Turabian StyleHsu, Li-Huan, Dan-Rong Chen, Chou-Chun Chiang, Jung-Lien Chu, Yi-Chiang Yu, and Chia-Chun Wu. 2021. "Simulations of the East Asian Winter Monsoon on Subseasonal to Seasonal Time Scales Using the Model for Prediction Across Scales" Atmosphere 12, no. 7: 865. https://doi.org/10.3390/atmos12070865
APA StyleHsu, L. -H., Chen, D. -R., Chiang, C. -C., Chu, J. -L., Yu, Y. -C., & Wu, C. -C. (2021). Simulations of the East Asian Winter Monsoon on Subseasonal to Seasonal Time Scales Using the Model for Prediction Across Scales. Atmosphere, 12(7), 865. https://doi.org/10.3390/atmos12070865