Future Seasonal Drought Conditions over the CORDEX-MENA/Arab Domain
Abstract
:1. Introduction
2. Data and Analysis Methods
2.1. MENA-CORDEX and RICCAR
2.2. Calculation of SPI
3. Results and Discussion
4. Concluding Remarks
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hameed, M.; Moradkhani, H.; Ahmadalipour, A.; Moftakhari, H.; Abbaszadeh, P.; Alipour, A. A Review of the 21st Century Challenges in the Food-Energy-Water Security in the Middle East. Water 2019, 11, 682. [Google Scholar] [CrossRef] [Green Version]
- Hameed, M.; Ahmadalipour, A.; Moradkhani, H. Drought and food security in the middle east: An analytical framework. Agric. For. Meteorol. 2020, 281, 107816. [Google Scholar] [CrossRef]
- Cheeseman, J. Food security in the face of salinity, drought, climate change, and population growth. In Halophytes for Food Security in Dry Lands; Elsevier: Amsterdam, The Netherlands, 2016; pp. 111–123. [Google Scholar]
- Teklu, T.; Von Braun, J.; Zaki, E. Drought and famine relationships in Sudan: Policy implications”. International Food Policy Research Institute. Food Nutr. Bull. 1992, 14, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Lotsch, A.; Friedl, M.A.; Anderson, B.T.; Tucker, C.J. Response of terrestrial ecosystems to recent Northern Hemispheric drought. Geophys. Res. Lett. 2005, 32, 32. [Google Scholar] [CrossRef] [Green Version]
- Olagunju, T.E. Drought, desertification and the Nigerian environment: A review. J. Ecol. Nat. Environ. 2015, 7, 196–209. [Google Scholar] [CrossRef] [Green Version]
- El Kharraz, J.; El-Sadek, A.; Ghaffour, N.; Mino, E. Water scarcity and drought in WANA countries. Procedia Eng. 2012, 33, 14–29. [Google Scholar] [CrossRef] [Green Version]
- Modarres, R.; Sarhadi, A.; Burn, D.H. Changes of extreme drought and flood events in Iran. Glob. Planet. Chang. 2016, 144, 67–81. [Google Scholar] [CrossRef]
- Parente, J.; Amraoui, M.; Menezes, I.; Pereira, M.G. Drought in Portugal: Current regime, comparison of indices and impacts on extreme wildfires. Sci. Total Environ. 2019, 685, 150–173. [Google Scholar] [CrossRef]
- Yahya, B.M.; Seker, D.Z. The Impact of Dust and Sandstorms in Increasing Drought Areas in Nineveh Province, North-western Iraq. J. Asian Afr. Stud. 2019, 54, 346–359. [Google Scholar] [CrossRef]
- Notaro, M.; Yu, Y.; Kalashnikova, O.V. Regime shift in Arabian dust activity, triggered by persistent Fertile Crescent drought. J. Geophys. Res. Atmos. 2015, 120, 10229–10249. [Google Scholar] [CrossRef]
- Al Ameri, I.D.; Briant, R.M.; Engels, S. Drought severity and increased dust storm frequency in the Middle East: A case study from the Tigris–Euphrates alluvial plain, central Iraq. Weather 2019, 74, 416–426. [Google Scholar] [CrossRef] [Green Version]
- Kaniewski, D.; Van Campo, E.; Weiss, H. Drought is a recurring challenge in the Middle East. Proc. Natl. Acad. Sci. USA 2012, 109, 3862–3867. [Google Scholar] [CrossRef] [Green Version]
- Feitelson, E.; Tubi, A. A main driver or an intermediate variable? Climate change, water and security in the Middle East. Glob. Environ. Chang. 2017, 44, 39–48. [Google Scholar] [CrossRef]
- Ide, T. Climate war in the Middle East? Drought, the Syrian civil war and the state of climate-conflict research. Curr. Clim. Chang. Rep. 2018, 4, 347–354. [Google Scholar] [CrossRef]
- Mathbout, S.; Lopez-Bustins, J.A.; Martin-Vide, J.; Bech, J.; Rodrigo, F.S. Spatial and temporal analysis of drought variability at several time scales in Syria during 1961–2012. Atmos. Res. 2018, 200, 153–168. [Google Scholar] [CrossRef]
- Barlow, M.; Zaitchik, B.; Paz, S.; Black, E.; Evans, J.; Hoell, A. Review of Drought in the Middle East and Southwest Asia. J. Clim. 2016, 29, 8547–8574. [Google Scholar] [CrossRef]
- Riehl, S.; Pustovoytov, K.E.; Weippert, H.; Klett, S.; Hole, F. Drought stress variability in ancient Near Eastern agricultural systems evidenced by δ13C in barley grain. Proc. Natl. Acad. Sci. USA 2014, 111, 12348–12353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruins, H.J. Ancient desert agriculture in the Negev and climate-zone boundary changes during average, wet and drought years. J. Arid Environ. 2012, 86, 28–42. [Google Scholar] [CrossRef]
- Donat, M.G.; Peterson, T.C.; Brunet, M.; King, A.D.; Almazroui, M.; Kolli, R.K.; Boucherf, D.; Al-Mulla, A.Y.; Nour, A.Y.; Aly, A.A.; et al. Changes in extreme temperature and precipitation in the Arab region: Long-term trends and variability related to ENSO and NAO. Int. J. Climatol. 2013, 34, 581. [Google Scholar] [CrossRef]
- United Nations Economic and Social Commission for Western Asia (ESCWA). Arab Climate Change Assessment Report–Main Report; E/ESCWA/SDPD/2017/RICCAR/Report; United Nations Economic and Social Commission for Western Asia (ESCWA): Beirut, Lebanon, 2017. [Google Scholar]
- Aladaileh, H.; Al Qinna, M.; Karoly, B.; Al-Karablieh, E.; Rakonczai, J. An Investigation into the Spatial and Temporal Variability of the Meteorological Drought in Jordan. Climate 2019, 7, 82. [Google Scholar] [CrossRef] [Green Version]
- Spinoni, J.; Barbosa, P.; De Jager, A.; McCormick, N.; Naumann, G.; Vogt, J.V.; Magni, D.; Masante, D.; Mazzeschi, M. A new global database of meteorological drought events from 1951 to 2016. J. Hydrol. Reg. Stud. 2019, 22, 100593. [Google Scholar] [CrossRef]
- Zittis, G.; Zittis, G. Observed rainfall trends and precipitation uncertainty in the vicinity of the Mediterranean, Middle East and North Africa. Appl. Clim. 2018, 134, 1207–1230. [Google Scholar] [CrossRef]
- Al Bitar, A.; Najem, S.; Jarlan, L.; Zribi, M.; Faour, G. Precipitation and Soil Moisture Datasets Show Severe Droughts in the MENA Region; Research Square Company: Durham, NC, USA, 2021. [Google Scholar]
- Arab Center for the Studies of Arid Zones and Dry Lands (ACSAD). Climate Change Trends in the Arab Region and Their Impact on Water Resources (in Arabic); RICCAR Technical Report, E/ESCWA/SDPD/017/RICCAR/TechnicalReport.4/rev.1; Arab Center for the Studies of Arid Zones and Dry Lands (ACSAD): Beirut, Lebanon, 2017. [Google Scholar]
- Almazroui, M. Assessment of meteorological droughts over Saudi Arabia using surface rainfall observations during the period 1978–2017. Arab. J. Geosci. 2019, 12, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Hamdan, A.N.A.; Nasir, H.N.; Naseh, A.; Hamdan, A. Article ID: IJCIET_10_12_016 Cite this Article: Hamza Neamah Nasir and Dr. Ahmed Naseh Ahmed Hamdan, Drought Hazard Assessment in Iraq using SPI and GIS Systems. Int. J. Civ. Eng. Technol. (IJCIET) 2019, 10, 161. [Google Scholar]
- Ouatiki, H.; Boudhar, A.; Ouhinou, A.; Arioua, A.; Hssaisoune, M.; Bouamri, H.; Benabdelouahab, T. Trend analysis of rainfall and drought over the Oum Er-Rbia River Basin in Morocco during 1970–2010. Arab. J. Geosci. 2019, 12, 1. [Google Scholar] [CrossRef]
- Yacoub, E.; Tayfur, G. Spatial and temporal of variation of meteorological drought and precipitation trend analysis over whole Mauritania. J. Afr. Earth Sci. 2020, 163, 103761. [Google Scholar] [CrossRef]
- Yang, W.; Andréasson, J.; Phil Graham, L.; Olsson, J.; Rosberg, J.; Wetterhall, F. Distribution-based scaling to improve usability of regional climate model projections for hydrological climate change impacts studies. Hydrol. Res. 2010, 41, 211–229. [Google Scholar] [CrossRef]
- Weedon, G.P.; Balsamo, G.; Bellouin, N.; Gomes, S.; Best, M.J.; Viterbo, P. The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data. Water Resour. Res. 2014, 50, 7505–7514. [Google Scholar] [CrossRef] [Green Version]
- Bosshard, T.; Yang, W.; Sjökvist, E.; Arheimer, B.; Graham, L. Bias-Correction of CORDEX-MENA Projections Using the Distribution Based Scaling Method, EGU General Assembly Conference Abstracts; EGU General Assembly: Vienna, Austria, 2014; p. 12989. [Google Scholar]
- Wörner, V.; Kreye, P.; Meon, G. Effects of bias-correcting climate model data on the projection of future changes in high flows. Hydrology 2019, 6, 46. [Google Scholar] [CrossRef] [Green Version]
- Mendez, M.; Maathuis, B.; Hein-Griggs, D.; Alvarado-Gamboa, L. Performance evaluation of bias correction methods for climate change monthly precipitation projections over Costa Rica. Water 2020, 12, 482. [Google Scholar] [CrossRef] [Green Version]
- Johnson, F.; Sharma, A. What are the impacts of bias correction on future drought projections? J. Hydrol. 2015, 525, 472–485. [Google Scholar] [CrossRef] [Green Version]
- Voldoire, A.; Sanchez-Gomez, E.; y Mélia, D.S.; Decharme, B.; Cassou, C.; Sénési, S.; Valcke, S.; Beau, I.; Alias, A.; Chevallier, M. The CNRM-CM5. 1 global climate model: Description and basic evaluation. Clim. Dyn. 2013, 40, 2091–2121. [Google Scholar] [CrossRef] [Green Version]
- Koenigk, T.; Brodeau, L.; Graversen, R.G.; Karlsson, J.; Svensson, G.; Tjernström, M.; Willén, U.; Wyser, K. Arctic climate change in 21st century CMIP5 simulations with EC-Earth. Clim. Dyn. 2013, 40, 2719–2743. [Google Scholar] [CrossRef] [Green Version]
- Dunne, J.P.; John, J.G.; Adcroft, A.J.; Griffies, S.M.; Hallberg, R.W.; Shevliakova, E.; Stouffer, R.J.; Cooke, W.; Dunne, K.A.; Harrison, M.J. GFDL’s ESM2 global coupled climate–carbon earth system models. Part I: Physical formulation and baseline simulation characteristics. J. Clim. 2012, 25, 6646–6665. [Google Scholar] [CrossRef] [Green Version]
- Samuelsson, P.; Gollvik, S.; Kupiainen, M.; Kourzeneva, E.; van de Berg, W.J. The Surface Processes of the Rossby Centre Regional Atmospheric Climate Model (RCA4); SMHI: Norrkoping, Sweden, 2015. [Google Scholar]
- Schwalm, C.R.; Glendon, S.; Duffy, P.B. RCP8. 5 tracks cumulative CO2 emissions. Proc. Natl. Acad. Sci. USA 2020, 117, 19656–19657. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration of time scales. In Eighth Conference on Applied Climatology; American Meteorological Society: Boston, MA, USA, 1993; pp. 179–186. [Google Scholar]
- Sepulcre-Canto, G.; Horion, S.; Singleton, A.; Carrao, H.; Vogt, J. Development of a Combined Drought Indicator to detect agricultural drought in Europe. Nat. Hazards Earth Syst. Sci. 2012, 12, 3519–3531. [Google Scholar] [CrossRef] [Green Version]
- Spinoni, J.; Naumann, G.; Vogt, J.V. Pan-European seasonal trends and recent changes of drought frequency and severity. Glob. Planet. Chang. 2017, 148, 113–130. [Google Scholar] [CrossRef]
- Spinoni, J.; Barbosa, P.; Bucchignani, E.; Cassano, J.; Cavazos, T.; Christensen, J.H.; Christensen, O.B.; Coppola, E.; Evans, J.; Geyer, B.; et al. Future Global Meteorological Drought Hot Spots: A Study Based on CORDEX Data. J. Clim. 2020, 33, 3635–3661. [Google Scholar] [CrossRef]
- Jo, H.W. Calculate Standardized Precipitation Index (SPI) in ArcGIS Version 3.0 (Computer Model). 2020. Available online: https://github.com/Hyun-Woo-Jo/CalculateSPI/releases (accessed on 22 March 2021).
- Yevjevich, V. An Objective Approach to Definitions and Investigations of Continental Hydrologic Droughts; Hydrol. Papers 23; Colorado State University Publication, Colorado State University: Fort Collins, CO, USA, 1967. [Google Scholar]
- Alsumaiei, A.A.; Alrashidi, M.S. Hydrometeorological drought forecasting in hyper-arid climates using nonlinear autoregressive neural networks. Water 2020, 12, 2611. [Google Scholar] [CrossRef]
- Kijazi, A.L.; Reason, C. Analysis of the 1998 to 2005 drought over the northeastern highlands of Tanzania. Clim. Res. 2009, 38, 209–223. [Google Scholar] [CrossRef] [Green Version]
- Haile, G.G.; Tang, Q.; Leng, G.; Jia, G.; Wang, J.; Cai, D.; Sun, S.; Baniya, B.; Zhang, Q. Long-term spatiotemporal variation of drought patterns over the Greater Horn of Africa. Sci. Total Environ. 2020, 704, 135299. [Google Scholar] [CrossRef]
- Liebmann, B.; Hoerling, M.P.; Funk, C.; Bladé, I.; Dole, R.M.; Allured, D.; Quan, X.; Pegion, P.; Eischeid, J.K. Understanding recent eastern Horn of Africa rainfall variability and change. J. Clim. 2014, 27, 8630–8645. [Google Scholar] [CrossRef]
- Knippertz, P.; Christoph, M.; Speth, P. Long-term precipitation variability in Morocco and the link to the large-scale circulation in recent and future climates. Meteorol. Atmos. Phys. 2003, 83, 67–88. [Google Scholar] [CrossRef]
- United Nations Economic and Social Commission for Western Asia (ESCWA); Arab Center for the Studies of Arid Zones and Dry Lands (ACSAD); Food and Agriculture Organization of the United Nations (FAO). Assessing the Impacts of Changing Water Availability on Agricultural Crops: Morocco Case Study (in Arabic); 6.CP/2019/SDPD/ESCWA/E; United Nations Digital Library: Beirut, Lebanon, 2019. [Google Scholar]
- Kallab, A. Analyzing Lebanon’s Vulnerability Using the PAR Model Case Study: The October 2019 Forest Fires; ResearchGate: Berlin, Germany, 2020. [Google Scholar]
- United Nations Economic and Social Commission for Western Asia (ESCWA). Energy Vulnerability in the Arab Region; E/ESCWA/SDPD/2019/1; United Nations Economic and Social Commission for Western Asia (ESCWA): Beirut, Lebanon, 2019. [Google Scholar]
- Sadok, W.; Schoppach, R.; Ghanem, M.E.; Zucca, C.; Sinclair, T.R. Wheat drought-tolerance to enhance food security in Tunisia, birthplace of the Arab Spring. Eur. J. Agron. 2019, 107, 1–9. [Google Scholar] [CrossRef]
- Amin, M.T.; Alazba, A.A.; ElNesr, M.N. Adaptation of climate variability/extreme in arid environment of the Arabian peninsula by rainwater harvesting and management. Int. J. Environ. Sci. Technol. 2013, 10, 27–36. [Google Scholar] [CrossRef] [Green Version]
- Tomaszkiewicz, M.; Abou Najm, M.; Zurayk, R.; El-Fadel, M. Dew as an adaptation measure to meet water demand in agriculture and reforestation. Agric. Meteorol. 2017, 232, 411–421. [Google Scholar] [CrossRef]
- Lele, S.; Srinivasan, V.; Thomas, B.K.; Jamwal, P. Adapting to climate change in rapidly urbanizing river basins: Insights from a multiple-concerns, multiple-stressors, and multi-level approach. Water Int. 2018, 43, 281–304. [Google Scholar] [CrossRef] [Green Version]
- Beguería, S.; Vicente-Serrano, S.M.; Reig, F.; Latorre, B. Standardized precipitation evapotranspiration index (SPEI) revisited: Parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol. 2014, 34, 3001–3023. [Google Scholar] [CrossRef] [Green Version]
Model Type | Name | Institute | Reference(s) |
---|---|---|---|
GCM | CNRM-CM5 | CNRM (Centre National de Recherches Météorologiques, Paris, France) | [37] |
GCM | EC-EARTH | EC-EARTH Consortium, Europe | [38] |
GCM | GFDL-ESM2M | GFDL (Geophysical Fluid Dynamics Laboratory, Princeton, NJ, United States) | [39] |
RCM | RCA4 | SMHI (Swedish Meteorological and Hydrological Institute, Norrkoping, Sweden) | [40] |
Subdomain | Reference Period (1986–2005) | Mid-Century (2046–2065) | End-Century (2081–2100) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
DJF | MAM | JJA | SON | DJF | MAM | JJA | SON | DJF | MAM | JJA | SON | |
MH | 9.6 | 16.4 | 26.9 | 18.7 | 2.0 | 1.5 | 0.6 | 1.4 | 1.5 | 2.0 | 1.9 | 2.1 |
MD | 13.6 | 20.4 | 27.7 | 22.6 | 1.6 | 1.4 | 0.7 | 1.1 | 1.3 | 1.5 | 1.9 | 1.7 |
SR | 25.5 | 31.2 | 27.4 | 26.9 | 1.8 | 1.0 | 1.9 | 1.8 | 2.4 | 1.8 | 2.3 | 1.9 |
EU | −0.8 | 9.7 | 22.9 | 13.1 | 2.9 | 2.2 | 0.9 | 1.5 | 2.0 | 2.4 | 2.5 | 2.0 |
WM | 8.8 | 17.0 | 26.3 | 19.8 | 2.1 | 1.5 | 0.6 | 1.3 | 1.5 | 1.6 | 1.8 | 1.9 |
ZM | 4.2 | 15.7 | 27.7 | 17.4 | 3.0 | 2.0 | 0.8 | 1.6 | 2.3 | 2.1 | 2.3 | 2.1 |
WA | 15.5 | 25.5 | 33.7 | 26.2 | 2.4 | 1.7 | 0.6 | 1.4 | 2.0 | 1.8 | 1.8 | 1.8 |
LS | 20.9 | 30.0 | 31.3 | 27.8 | 2.2 | 1.6 | 1.7 | 1.9 | 2.4 | 2.4 | 2.4 | 2.3 |
EH | 20.7 | 23.7 | 21.6 | 21.2 | 1.6 | 1.5 | 1.3 | 1.4 | 2.1 | 2.1 | 1.6 | 1.6 |
HA | 24.5 | 27.5 | 27.5 | 26.3 | 1.0 | 1.3 | 1.0 | 1.0 | 1.3 | 2.0 | 1.3 | 1.3 |
RV | 24.0 | 24.0 | 22.3 | 23.6 | 1.2 | 1.2 | 1.4 | 1.1 | 1.7 | 1.4 | 1.6 | 1.5 |
Subdomain | Reference Period (1986–2005) | Mid-Century (2046–2065) | End-Century (2081–2100) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
DJF | MAM | JJA | SON | DJF | MAM | JJA | SON | DJF | MAM | JJA | SON | |
MH | 9.6 | 16.4 | 26.9 | 18.7 | 2.8 | 2.7 | 1.2 | 2.1 | 3.4 | 4.4 | 4.2 | 4.4 |
MD | 13.6 | 20.3 | 27.7 | 22.6 | 2.3 | 1.7 | 1.3 | 1.8 | 2.8 | 3.2 | 3.8 | 3.6 |
SR | 25.5 | 31.2 | 27.4 | 26.9 | 2.8 | 1.7 | 2.4 | 2.4 | 5.1 | 3.8 | 4.4 | 4.0 |
EU | −0.8 | 9.7 | 22.8 | 13.2 | 3.5 | 3.2 | 1.6 | 1.9 | 4.1 | 5.2 | 5.3 | 4.3 |
WM | 8.8 | 16.9 | 26.3 | 19.9 | 2.6 | 2.0 | 1.0 | 1.7 | 3.2 | 3.5 | 3.6 | 4.0 |
ZM | 4.2 | 15.6 | 27.7 | 17.5 | 3.7 | 2.6 | 1.6 | 2.3 | 4.6 | 4.6 | 4.8 | 4.5 |
WA | 15.5 | 25.4 | 33.7 | 26.2 | 3.1 | 2.3 | 1.3 | 2.0 | 4.2 | 4.1 | 3.7 | 3.9 |
LS | 20.9 | 30.0 | 31.3 | 27.9 | 3.1 | 2.1 | 2.3 | 2.5 | 4.9 | 4.6 | 4.6 | 4.6 |
EH | 20.7 | 23.7 | 21.6 | 21.2 | 2.2 | 2.0 | 1.7 | 1.8 | 4.2 | 4.3 | 3.0 | 3.1 |
HA | 24.5 | 27.5 | 27.5 | 26.3 | 1.4 | 1.9 | 1.4 | 1.5 | 2.6 | 4.0 | 2.5 | 2.7 |
RV | 24.1 | 24.0 | 22.3 | 23.6 | 1.7 | 1.7 | 1.9 | 1.6 | 3.7 | 3.2 | 3.3 | 3.1 |
Subdomain | Reference Period (1986–2005) | Mid-Century (2046–2065) | End-Century (2081–2100) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
DJF | MAM | JJA | SON | DJF | MAM | JJA | SON | DJF | MAM | JJA | SON | |
MH | 30.7 | 24.3 | 4.6 | 24.3 | −6.3 | −2.1 | 0.6 | −3.3 | −4.8 | −4.8 | 0.3 | −3.0 |
MD | 18.4 | 4.3 | 1.0 | 6.3 | −0.7 | 0.6 | 0.0 | 0.5 | 1.9 | −0.4 | −0.1 | 0.1 |
SR | 0.4 | 24.1 | 205.4 | 81.3 | −0.2 | 0.5 | 1.4 | 3.6 | −0.1 | 2.2 | −3.6 | 7.6 |
EU | 63.3 | 64.0 | 11.3 | 40.8 | 5.0 | 4.1 | 0.3 | 1.0 | 6.8 | 2.8 | 1.3 | −3.6 |
WM | 51.7 | 20.7 | 1.8 | 19.1 | 1.5 | 1.3 | −0.1 | −0.1 | 2.1 | −0.2 | 0.0 | −3.9 |
ZM | 48.5 | 36.6 | 2.7 | 20.9 | −1.6 | 3.7 | 0.1 | 3.4 | 1.4 | 0.6 | 0.5 | 0.2 |
WA | 10.7 | 16.1 | 2.8 | 7.3 | −1.4 | 0.3 | 0.6 | 2.2 | −0.3 | 0.2 | 0.6 | 0.9 |
LS | 0.0 | 3.1 | 47.2 | 7.9 | 0.0 | 0.1 | −1.8 | 0.6 | 0.0 | −0.4 | −6.4 | 1.7 |
EH | 8.2 | 57.3 | 202.0 | 71.0 | −1.7 | −6.1 | −8.1 | −0.4 | 0.3 | −5.5 | −8.0 | 0.4 |
HA | 4.6 | 30.9 | 8.5 | 29.7 | 1.0 | 0.1 | −0.1 | 8.1 | 2.3 | 4.2 | 0.0 | 8.5 |
RV | 48.9 | 98.5 | 39.3 | 80.8 | 6.1 | 4.3 | −1.9 | 6.7 | 13.6 | 12.4 | 0.3 | 5.7 |
Subdomain | Reference Period (1986–2005) | Mid-Century (2046–2065) | End-Century (2081–2100) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
DJF | MAM | JJA | SON | DJF | MAM | JJA | SON | DJF | MAM | JJA | SON | |
MH | 29.9 | 24.1 | 4.6 | 25.0 | −7.8 | −4.5 | 0.5 | −3.8 | −14.1 | −10.0 | 0.9 | −5.3 |
MD | 18.9 | 4.2 | 1.0 | 7.1 | −2.5 | 0.1 | −0.1 | −0.8 | −3.1 | −0.9 | −0.3 | −1.2 |
SR | 0.3 | 23.8 | 204.8 | 81.6 | 0.0 | 1.8 | 5.1 | 4.7 | −0.1 | 1.7 | 13.7 | 15.0 |
EU | 64.9 | 62.8 | 11.4 | 40.6 | −0.7 | 5.6 | −0.1 | −2.8 | −2.5 | 2.7 | 0.6 | −0.4 |
WM | 52.2 | 20.5 | 1.7 | 19.0 | −3.2 | 0.3 | −0.4 | −1.8 | −4.5 | −1.9 | −0.3 | −3.8 |
ZM | 48.4 | 37.0 | 2.8 | 20.6 | 0.3 | −0.3 | 0.4 | −1.0 | −0.1 | −3.8 | 0.2 | 1.8 |
WA | 10.4 | 16.3 | 2.8 | 7.1 | −1.8 | 0.3 | 0.9 | 1.1 | −1.7 | −2.6 | 1.6 | 2.6 |
LS | 0.0 | 3.1 | 46.5 | 7.6 | 0.0 | 0.3 | −0.7 | 1.4 | 0.0 | 0.5 | 5.1 | 3.9 |
EH | 7.9 | 57.5 | 201.2 | 70.0 | −0.6 | −3.5 | −1.0 | 1.0 | −1.4 | −7.4 | −0.5 | 4.7 |
HA | 4.4 | 31.0 | 8.2 | 28.7 | 2.9 | 1.4 | −0.5 | 8.1 | 3.4 | 5.4 | 0.9 | 13.6 |
RV | 48.1 | 98.6 | 39.5 | 79.7 | 9.8 | 4.8 | −1.9 | 8.2 | 16.2 | 13.3 | −2.1 | 14.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomaszkiewicz, M.A. Future Seasonal Drought Conditions over the CORDEX-MENA/Arab Domain. Atmosphere 2021, 12, 856. https://doi.org/10.3390/atmos12070856
Tomaszkiewicz MA. Future Seasonal Drought Conditions over the CORDEX-MENA/Arab Domain. Atmosphere. 2021; 12(7):856. https://doi.org/10.3390/atmos12070856
Chicago/Turabian StyleTomaszkiewicz, Marlene A. 2021. "Future Seasonal Drought Conditions over the CORDEX-MENA/Arab Domain" Atmosphere 12, no. 7: 856. https://doi.org/10.3390/atmos12070856
APA StyleTomaszkiewicz, M. A. (2021). Future Seasonal Drought Conditions over the CORDEX-MENA/Arab Domain. Atmosphere, 12(7), 856. https://doi.org/10.3390/atmos12070856