Assessment of Pollution Sources and Contribution in Urban Dust Using Metal Concentrations and Multi-Isotope Ratios (13C, 207/206Pb) in a Complex Industrial Port Area, Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Information
2.2. Sampling
2.3. Trace Elemental Analysis
2.4. Stable Isotope Analysis
2.5. Assessment of Heavy Metal Pollution
2.6. Mixing Model
3. Results and Discussion
3.1. Heavy Metals in Urban Dust, Topsoil and PM10
Location | Type | Metal Ion (mg/kg) | Reference | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cr | Mn | Co | Ni | Cu | Zn | As | Cd | Pb | Sr | Ba | |||||
Donghae, Korea | urban dust (Port area, n = 5) | Minimum | 24.6 | 2537 | 7.2 | 14.8 | 50.8 | 364 | 11.5 | 2.5 | 15.9 | 120 | 17.5 | This study | |
Maximum | 56.0 | 38,583 | 35.9 | 29.2 | 866 | 57,584 | 127 | 192 | 680 | 286 | 213 | ||||
Mean | 35.5 | 13,736 | 15.1 | 19.6 | 244 | 13,860 | 36.7 | 47.7 | 209 | 164 | 95.7 | ||||
Median | 33.1 | 10,988 | 10.8 | 18.3 | 110 | 1469 | 12.9 | 9.0 | 37.7 | 127 | 77.6 | ||||
SD | 11.9 | 14,794 | 11.7 | 5.6 | 350 | 24,677 | 50.8 | 81.6 | 286 | 70.3 | 71.7 | ||||
urban dust (Residence area, n = 6) | Minimum | 59.9 | 19,139 | 18.5 | 29.9 | 103 | 5255 | 11.4 | 5.5 | 19.2 | 101 | 29.0 | |||
Maximum | 496 | 157,119 | 46.0 | 136 | 439 | 35,570 | 85.9 | 119 | 3389 | 250 | 181 | ||||
Mean | 232 | 68,793 | 28.4 | 84.0 | 276 | 12,114 | 42.5 | 41.2 | 794 | 154 | 86.3 | ||||
Median | 221 | 52,293 | 23.4 | 81.9 | 257 | 6400 | 27.0 | 14.9 | 242 | 149 | 69.6 | ||||
SD | 164 | 52,374 | 11.7 | 42.4 | 125 | 12,799 | 31.2 | 48.2 | 1295 | 54.8 | 64.2 | ||||
topsoil (Residence area, n = 3) | Minimum | 105 | 86,525 | 30.5 | 49.3 | 131 | 2620 | 12.2 | 9.8 | 33.6 | 190 | 92 | |||
Maximum | 583 | 144,214 | 37.7 | 97.3 | 241 | 7366 | 29.3 | 24.2 | 751.1 | 384 | 1444 | ||||
Mean | 329 | 117,798 | 34.7 | 74.0 | 177 | 5080 | 22.4 | 14.9 | 338 | 277 | 557 | ||||
Median | 198 | 122,753 | 35.8 | 75.4 | 158 | 5256 | 25.7 | 10.5 | 227 | 256 | 135 | ||||
SD | 241 | 29,211 | 3.7 | 24.0 | 57.1 | 2378 | 9.0 | 8.1 | 371.1 | 98.5 | 768.4 | ||||
Pollution source | Mn Ore | Mean | 1.4 | 411,439 | 54 | 14 | 5 | 101 | 5.4 | 0.6 | 1.2 | 56 | 124 | ||
Coal | Mean | 25 | 75 | 3.8 | 5.1 | 26 | 37 | 7.3 | 0.7 | 5.3 | 136 | 64 | |||
Cokes | Mean | 10 | 17 | 2.5 | 360 | 3 | 37 | 1.8 | 0.7 | 0.7 | 3.6 | 5.8 | |||
Cement | Mean | 6.8 | 895 | 17 | 68 | 140 | 337 | 30 | 0.9 | 34 | 242 | 144 | |||
Zn ore | Mean | 21 | 15,419 | 658 | 35 | 9398 | 450,428 | 22 | 925 | 210 | 3.2 | 3.8 | |||
topsoil (Control, rural area) | 51 | 488 | 9.6 | 11 | 39 | 116 | 5.8 | 0.8 | 20 | 71 | 309 | ||||
Seoul, Korea | dust (urban) | Mean | 58 | 20 | 70 | 179 | 1.0 | 35 | [63] | ||||||
Ulsan, Korea | dust (industry) | Mean | 18 | 119 | 136 | 1.4 | 82 | [64] | |||||||
Shihwa, Korea | dust (industry) | Mean | 468 | 660 | 17 | 181 | 1034 | 1261 | 21 | 16 | 1.9 | 1418 | [4] | ||
Gary, USA | dust (industry) | Mean | 153 | 2668 | 30 | 202 | 207 | 302 | [65] | ||||||
Stratoni, Greece | dust (mining) | Mean | 1250 | 446 | 2720 | 10 | 1660 | [66] | |||||||
Volos, Greece | dust (industry) | Mean | 745 | 3021 | 93.5 | 154 | 2169 | 57.3 | 6.2 | 300 | [11] | ||||
Beijing, China | dust (urban) | Mean | 114.3 | 685 | 12.3 | 30.4 | 62.3 | 318 | 5.6 | 0.9 | 85.3 | 349 | 754 | [67] | |
Hangzhou, China | dust (urban) | Mean | 616 | 0.6 | 1165 | [3] | |||||||||
Huludao, China | dust (industry) | 264 | 5271 | 72.8 | 533 | [68] | |||||||||
Sonora, Mexico | dust (urban) | Mean | 11.1 | 2.2 | 4.7 | 26.3 | 387.9 | 4.2 | 36.1 | [69] | |||||
Hong Kong | dust (industry) | Mean | 124 | 29 | 110 | 3840 | 67 | 120 | [70] | ||||||
Hamilton, USA | dust (urban) | Mean | 34 | 793 | 38 | 245 | 611 | 4 | 468 | 128 | [71] | ||||
Newcastle, UK | dust (urban) | 26 | 132 | 421 | 6.4 | 1.0 | 992 | [72] | |||||||
Baghdad, Iraq | dust (urban) | 32 | 322 | 80 | 24 | 94 | 0.9 | 156 | [73] |
3.2. Spatial Distribution of Metals in Urban Dust
3.3. Metal Enrichment in Urban Dust: Heavy Metal Pollution Assessment
Location | Type | Metal Ion (mg/kg) | Reference | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cr | Mn | Co | Ni | Cu | Zn | As | Cd | Pb | Sr | Ba | |||
Donghae, Korea | Urban dust (Port area) | 0.7 | 28.1 | 1.6 | 1.7 | 6.2 | 119.0 | 6.4 | 60.2 | 10.6 | 2.3 | 0.3 | This study. |
Urban dust (Residence area) | 4.6 | 140.9 | 3.0 | 7.4 | 7.0 | 104.0 | 7.4 | 51.9 | 40.1 | 2.2 | 0.3 | ||
topsoil (Residence area) | 6.5 | 241.2 | 3.6 | 6.5 | 4.5 | 43.6 | 3.9 | 18.7 | 17.1 | 3.9 | 1.8 | ||
Shihwa, Korea | dust (industry) | 6.3 | 1.0 | 1.2 | 4.7 | 43.5 | 22.7 | 5.3 | 24.2 | 95.2 | - | - | [4] |
Busan, Korea | dust (urban) | 4.2 | 12.6 | 19.1 | 4.5 | 21.9 | 11.8 | [15] | |||||
Shijiazhuang, China | dust (industry) | 2.4 | 1.1 | 1.4 | 1.6 | 5.7 | 7.6 | 38.7 | 9.5 | - | - | [91] | |
Kathmandu, Nepal | dust (urban) | 2.8 | 7 | 4.6 | 2.8 | 2.5 | - | - | [81] | ||||
Palermo, Italy | dust (urban) | 4 | 8.2 | 2.1 | 1.9 | 14 | 16.4 | 4 | 72 | - | - | [92] | |
Bolgatanga, Ghana | dust (urban) | 0.01 | 0.02 | 0.01 | 0.01 | 0.03 | 0.003 | 0 | 0.01 | - | - | [93] | |
Taraba, Nigeria | dust (urban) | 48.3 | 61.7 | 17.4 | 1.3 | - | - | [94] | |||||
Baghdad, Iraq | dust (urban) | 3.8 | 4.9 | 16.5 | 6.6 | 12.4 | 42.5 | 107.6 | - | - | [73] | ||
Kayseri, Turkey | Urban dust | 0.95 | 1 | 2.8 | 2 | 5.2 | 20.2 | 190 | 111 | - | - | [95] | |
Paris, France | dust (rural highway) | 12 | 62.5 | 11.5 | 126 | - | - | [96] | |||||
Sonora, Mexico | dust (urban) | 17.1 | 1.7 | 0.9 | 8.1 | 79.4 | 601 | 39.1 | - | - | [69] | ||
Vellore, India | dust (urban) | 1.3 | 0.6 | 0.4 | 3.6 | 22.7 | 0.9 | 16.3 | 0.5 | [97] | |||
Enugu, Nigeria | dust (urban) | 2.3 | 0.5 | 83.5 | 171.9 | 129.3 | 13.7 | 596 | 180 | [34] | |||
Huainan, China | dust (industry) | 2.3 | 1.3 | 0.4 | 1.5 | 4.2 | 13 | 2.9 | 4.5 | [53] |
3.4. Contribution of Heavy Meatal Pollution to Urban Dust from the Pollution Source
3.5. Application of Multi-Isotope Techniques as a Useful Indicator to Trace Pollutant Sources
3.6. Implications for Environmental Management and Human Health
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kim, B.M.; Park, J.-S.; Kim, S.W.; Kim, H.; Jeon, H.; Cho, C.; Kim, J.-H.; Hong, S.; Rupakheti, M.; Panday, A.K.; et al. Source apportionment of PM10 mass and particulate carbon in the Kathmandu Valley, Nepal. Atmos. Environ. 2015, 123, 190–199. [Google Scholar] [CrossRef] [Green Version]
- Squizzato, S.; Cazzaro, M.; Innocente, E.; Visin, F.; Hopke, P.K.; Rampazzo, G. Urban air quality in a mid-size city—PM2.5 composition, sources and identification of impact areas: From local to long range contributions. Atmos. Res. 2017, 186, 51–62. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Jinxu, Y.; Shao, L.; Zhang, G.; Wang, J.; Jin, Z. Delineating the origin of Pb and Cd in the urban dust through elemental and stable isotopic ratio: A study from Hangzhou City, China. Chemosphere 2018, 211, 674–683. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.; Choi, J.Y.; Lee, J.; Lim, J.; Ra, K. Heavy metal pollution by road-deposited sediments and its contribution to total suspended solids in rainfall runoff from intensive industrial areas. Environ. Pollut. 2020, 265, 115028. [Google Scholar] [CrossRef]
- Davis, A.P.; Shokouhian, M.; Ni, S. Loading estimates of lead, copper, cadmium, and zinc in urban runoff from specific sources. Chemosphere 2001, 44, 997–1009. [Google Scholar] [CrossRef]
- Lau, S.; Han, Y.; Kang, J.; Kayhanian, M.; Stenstrom, M.K. Characteristics of highway stormwater runoff in Los Angeles: Metals and polycyclic aromatic hydrocarbons. Water Environ. Res. 2009, 81, 308–318. [Google Scholar] [CrossRef]
- Egodawatta, P.; Ziyath, A.M.; Goonetilleke, A. Characterising metal build-up on urban road surfaces. Environ. Pollut. 2013, 176, 87–91. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Li, Y.; Li, B.; Shen, Z.; Stenstrom, M.K. Metal enrichment and lead isotope analysis for source apportionment in the urban dust and rural surface soil. Environ. Pollut. 2016, 216, 764–772. [Google Scholar] [CrossRef] [Green Version]
- Harvey, P.J.; Rouillon, M.; Dong, C.; Ettler, V.; Handley, H.K.; Taylor, M.P.; Tyson, E.; Tennant, P.; Telfer, V.; Trinh, R. Geochemical sources, forms and phases of soil contamination in an industrial city. Sci. Total Environ. 2017, 584−585, 505–514. [Google Scholar] [CrossRef]
- Gelly, R.; Fekiacova, Z.; Guihou, A.; Doelsch, E.; Deschamps, P.; Keller, C. Lead, zinc and copper redistributions in soils along deposition gradient from emissions of Pb-Ag smelter decommissioned 100 years ago. Sci. Total Environ. 2019, 665, 502–512. [Google Scholar] [CrossRef] [Green Version]
- Kelepertzis, E.; Argyraki, A.; Chrastny, V.; Botsou, F.; Skordas, K.; Komarek, M.; Fouskas, A. Metal(loid) and isotopic tracing of Pb in soils, road and house dusts from the industrial area of Volos (central Greece). Sci. Total Environ. 2020, 725, 138300. [Google Scholar] [CrossRef]
- Jeong, H.; Chio, J.Y.; Lee, J.; Ra, K. Investigations of Pb and Cu isotopes to trace contamination sources from the artificial Shihwa Lake in Korea. J. Coast. Res. 2020, 95, 1122–1127. [Google Scholar] [CrossRef]
- Wong, C.S.C.; Li, X.; Thornton, I. Urban environmental geochemistry of trace metals. Environ. Pollut. 2006, 142, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.U.; Liu, G.; Yousaf, B.; Ullah, H.; Abbas, Q.M.; Munir, M.A.M. A systematic review on global pollution status of particulate matter-associated potential toxic elements and health perspectives in urban environment. Environ. Geochem. Health 2019, 41, 1131–1162. [Google Scholar] [CrossRef]
- Jeong, H.; Choi, J.Y.; Lim, J.; Shim, W.J.; Kim, Y.O. Characterization of the contribution of road deposited sediments to the contamination of the close marine environment with trace metals: Case of the port city of Busan (South Korea). Mar. Pollut. Bull. 2020, 161, 111717. [Google Scholar] [CrossRef]
- Dytolw, S.; Gorka-Kostrubiec, B. Concentration of heavy metals in street dust: An implication of using different geochemical background data in estimating the level of heavy metal pollution. Environ. Geochem. Health 2021, 43, 521–535. [Google Scholar] [CrossRef]
- McConnell, R.; Berhane, K.; Gilliand, F.; Molitor, J.; Thomas, D.; Lurmann, F.; Avol, E.; Gauderman, W.J.; Peters, J.M. Prospective study of air pollution and bronchitic symptoms in children with asthma. Am. J. Respir. Crit. Care Med. 2003, 168, 790–797. [Google Scholar] [CrossRef]
- Pope, C.A.; Dockery, D.W. Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manag. Assoc. 2006, 56, 709–742. [Google Scholar] [CrossRef]
- Dockery, D.W.; Stone, P.H. Cardiovascular risks from fine particulate air pollution. N. Engl. J. Med. 2007, 3, 511–513. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Nagar, J.K.; Kumar, H.; Kushwah, A.S.; Meena, M.; Kumar, P.; Raj, N.; Singhal, M.K.; Gaur, S.N. Association of indoor and outdoor air pollutant level with respiratory problems among children in an industrial area of Delhi, India. Arch. Environ. Occup. Health 2007, 62, 75–80. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, R.; Cao, J.; Chow, J.C.; Watson, J.G. Carbonaceous and ionic components of atmospheric fine particles in Beijing and their impact on atmospheric visibility. Aerosol. Air. Qual. Res. 2012, 12, 492–502. [Google Scholar] [CrossRef]
- WHO. Health Effects of Particulate Matter. WHO Regional Office for Europe, Copenhagen. Available online: https://www.euro.who.int/__data/assets/pdf_file/0006/189051/Health-effects-of-particulate-matter-final-Eng.pdf (accessed on 10 June 2021).
- WHO. WHO|WHO Releases Country Estimates on Air Pollution Exposure and Health Impact. Available online: https://www.who.int/news/item/27-09-2016-who-releases-country-estimates-on-air-pollution-exposure-and-health-impact (accessed on 10 June 2021).
- Zahran, S.; Mielke, H.W.; McElmurry, S.P.; Filippelli, G.M.; Laidlaw, M.A.S.; Taylor, M.P. Determining the relative importance of soil sample locations to predict risk of child lead exposure. Environ. Int. 2013, 60, 7–14. [Google Scholar] [CrossRef]
- Morera-Gomez, Y.; Santamaria, J.M.; Elustondo, D.; Lasheras, E.; Alonso-Hernandez, C.M. Determination and source apportionment of major and trace elements in atmospheric bulk deposition in a Caribbean rural area. Atmos. Environ. 2019, 202, 93–104. [Google Scholar] [CrossRef]
- Li, H.-B.; Chen, K.; Juhasz, A.L.; Huang, L.; Ma, L.Q. Childhood lead exposure in an industrial town in China: Coupling stable isotope ratios with bioaccessible lead. Environ. Sci. Technol. 2015, 49, 5080–5087. [Google Scholar] [CrossRef]
- Varrica, D.; Dongarrà, G.; Alaimo, M.G.; Monna, F.; Losno, R.; Sanna, E.; De Giudici, G.; Tamburo, E. Lead isotopic fingerprint in human scalp hair: The case study of Iglesias mining district (Sardinia, Italy). Sci. Total Environ. 2018, 613–614, 456–461. [Google Scholar] [CrossRef]
- Franco-Uría, A.; López-Mateo, C.; Roca, E.; Fernández-Marcos, M.L. Source identification of heavy metals in pastureland by multivariate analysis in NW Spain. J. Hazard. Mater. 2009, 165, 1008–1015. [Google Scholar] [CrossRef]
- Lu, X.; Wang, L.; Li, L.Y.; Lei, K.; Huang, L.; Kang, D. Multivariate statistical analysis of heavy metals in street dust of Baoji, NW China. J. Hazard. Mater. 2010, 173, 744–749. [Google Scholar] [CrossRef]
- Sudheer, A.K.; Rengarajan, R. Atmospheric mineral dust and trace metals over urban environment in Western India during winter. Aerosol. Air Qual. Res. 2012, 12, 923–933. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Li, X. Risk assessment of metals in road-deposited sediment along an urban-rural gradient. Environ. Pollut. 2013, 174, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Qiu, K.; Xing, W.; Scheckel, K.G.; Cheng, Y.; Zhao, Z.; Ruan, X.; Li, L. Temporal and seasonal variations of As, Cd and Pb atmospheric deposition flux in the vicinity of lead smelters in Jiyuan. China. Atmos. Pollut. Res. 2016, 7, 170–179. [Google Scholar] [CrossRef]
- Zglobicki, W.; Telecka, M. Heavy metals in urban street dust: Health risk assessment (Lublin City, E Poland). Appl. Sci. 2021, 11, 4092. [Google Scholar] [CrossRef]
- Ichu, C.R.; Ume, J.I.; Opara, A.I.; Ibe, F.C. Ecological risk assessment and pollution models of trace metal concentrations in road dust in parts of Enugu, Southeastern Nigeria. J. Chem. Health Risks 2021, 11, 135–151. [Google Scholar]
- Al-Shidi, H.K.; Al-Reasi, H.A.; Sulaiman, H. Heayv metals levels in road dust from Muscat, Oman: Relationship with traffic voulmes, and ecological and health risk assessments. Int. J. Environ. Health Res. 2020, 13, 1–13. [Google Scholar]
- Jeong, H.; Choi, J.Y.; Ra, K. Potentially toxic elements pollution in road deposited sediments around the active smelting industry of Korea. Sci. Rep. 2021, 11, 7238. [Google Scholar] [CrossRef]
- Jeong, H.; Choi, J.Y.; Lim, J.; Ra, K. Pollution caused by potentially toxic elements present in road dust from indusrial areas in Korea. Atmosphere 2020, 11, 1366. [Google Scholar] [CrossRef]
- Ma, S.X.; Peng, P.A.; Song, J.Z.; Zhao, J.P.; He, L.L.; Sheng, G.Y.; Fu, J.M. Stable carbon isotopic compositions of organic acids in total suspended particles and dusts from Guangzhou. China Atmos. Res. 2010, 98, 176–182. [Google Scholar] [CrossRef]
- Masalaite, A.; Remeikis, V.; Garbaras, A.; Dudoitis, V.; Ulevicius, V.; Ceburnis, D. Elucidating carbonaceous aerosol sources by the stable carbon δ13CTC ratio in sizesegregated particles. Atmos. Res. 2015, 158–159, 1–12. [Google Scholar] [CrossRef]
- Guo, Z.; Jiang, W.; Chen, S.; Sun, D.; Shi, L.; Zeng, G.; Rui, M. Stable isotopic compositions of elemental carbon in PM1.1 in north suburb of Nanjing Region, China. Atmos. Res. 2016, 168, 105–111. [Google Scholar] [CrossRef]
- Dong, S.; Gonzalez, R.O.; Harrison, R.M.; Green, D.; North, R.; Fowler, G.; Weiss, D. Isotopic signatures suggest important contributions from recycled gasoline, road dust and non-exhaust traffic sources for copper, zinc and lead in PM10 in London, United Kingdom. Atmos. Environ. 2017, 165, 88–98. [Google Scholar] [CrossRef] [Green Version]
- Morera-Gomez, Y.; Santamaria, J.M.; Elustondo, D.; Alonso-Hernandez, C.M.; Widory, D. Carbon and nitrogen isotopes unravels sources of aerosol contamination at Caribbean rural and urban coastal sites. Sci. Total Environ. 2018, 642, 723–732. [Google Scholar] [CrossRef]
- Jung, C.C.; Chou, C.C.K.; Lin, C.Y.; Shen, C.C.; Lin, Y.C.; Huang, Y.T.; Tsai, C.Y.; Yao, P.H.; Huang, C.R.; Huang, W.R.; et al. C-Sr, Pb isotopic characteristics of PM2.5 transported on the East-Asian continental outflows. Atmos. Res. 2019, 223, 88–97. [Google Scholar] [CrossRef]
- Gorka, M.; Zwolinska, E.; Malkiewicz, M.; Lewicka-Szczebak, D.; Jedrysek, M.O. Carbon and nitrogen isotope analyses coupled with palynological data of PM10 in Wroclawcity (SWPoland)-assessment of anthropogenic impact. Isot. Environ. Health Stud. 2012, 48, 327–344. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.J.; Strauss, H.; Chen, T.B.; Zhu, G.X.; Yang, J.; Yang, J.X.; Lei, M.; Zhou, X.Y.; Petersa, M.; Xie, Y.F.; et al. Tracing the source of Beijing soil organic carbon: A carbon isotope approach. Environ. Pollut. 2013, 176, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Musa Bandowe, B.A.; Nkansah, M.A.; Leimer, S.; Fischer, D.; Lammel, G.; Han, Y. Cheimcal(C, N, S, black carbon, soot) and char and stable carbon isotope composition of street dusts from a major West African metropolis: Implication for source apportionment and exposure. Sci. Total Environ. 2019, 655, 1468–1478. [Google Scholar] [CrossRef]
- Ault, W.U.; Senechal, R.G.; Erlebach, W.E. Isotopic composition as a natural tracer of lead in the environment. Environ. Sci. Technol. 1970, 4, 305–313. [Google Scholar] [CrossRef]
- Komárek, M.; Ettler, V.; Chrastný, V.; Mihaljevič, M. Lead isotopes in environmental sciences: A review. Environ. Int. 2008, 34, 562–577. [Google Scholar] [CrossRef]
- Kelepertzis, E.; Komárek, M.; Argyraki, A.; Šillerová, H. Metal(loid) Distribution and Pb Isotopic Signatures in the Urban Environment of Athens, Greece. Environ. Pollut. 2016, 213, 420–431. [Google Scholar] [CrossRef]
- Han, L.F.; Gao, B.; Wei, X.; Xu, D.Y.; Gao, L. Spatial distribution, health risk assessment, and isotopic composition of lead contamination of street dusts in different functional areas of Beijing, China. Environ. Sci. Pollut. Res. 2016, 23, 3247–3255. [Google Scholar] [CrossRef]
- Kumar, M.; Furumai, H.; Kurisu, F.; Kasuga, I. Tracing source and distribution of heavy metals in road dust, soil and soakaway sediment through speciation and isotopic fingerprinting. Geoderma 2013, 211, 8–17. [Google Scholar] [CrossRef]
- Souto-Oliveira, C.E.; Babinski, M.; Araujo, D.F.; Andrade, M.F. Multi-isotopic fingerprints(Pb, Zn, Cu) applied for urban aerosol source apportionment and discrimination. Sci. Total Envion. 2018, 626, 1350–1366. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, G.; Yousaf, B.; Zhou, C.; Shen, X. Identification of the featured-element in fine road dust of cities with coal contamination by geochemical investigation and isotopic monitoring. Environ. Int. 2021, 152, 106499. [Google Scholar] [CrossRef]
- Song, J.S.; Park, Y.G. Health Effect Survey among Residents nearby Dong-Hae Harbor; National Institute Environmental Research: Incheon, Korea, 2016; pp. 1–9. ISBN 11-1480523-002542-01.
- EPA (1999) Determination of Trace Metals in Ambient Particulate Matter Using Inductively Coupled Plasma Mass Spectrometry (ICP/MS). Compendium of methods IO-3.5, EPA/625/R-96/010a. Available online: https://www.epa.gov/sites/production/files/2019-11/documents/mthd-3-5.pdf (accessed on 10 June 2021).
- Kim, M.S.; Lee, W.S.; Kumar, K.S.; Shin, K.H.; Robarge, W.; Kim, M.S.; Lee, S.R. Effects of HCl pretreatment, drying, and storage on the stable isotope ratios of soil and sediment samples. Rapid Commun. Mass Spectrom. 2016, 30, 1575–1597. [Google Scholar] [CrossRef]
- Rudnick, R.I.; Gao, S. Composition of the continental crust. In The Crust; Rudnick, R.L., Ed.; Elsevier: Amsterdam, The Netherlands, 2003; pp. 1–64. [Google Scholar]
- Saeedi, M.; Li, L.Y.; Salmanzadeh, M. Heavy metals and polycyclic aromatic hydrocarbons: Pollution and ecological risk assessment in street dust of Tehran. J. Hazard. Mater. 2012, 227–228, 9–17. [Google Scholar] [CrossRef]
- Yang, J.; Teng, Y.; Song, L.; Zuo, R. Tracing soures and contamination assessments of heavy metals in road and foliar dusts in a typical mining city, China. PLoS ONE 2016, 11, e0168528. [Google Scholar] [CrossRef] [Green Version]
- Sutherland, R.A.; Tolosa, C.A. Multi-element analysis of road-deposited sediment in an urban drainage basin, Honolulu, Hawaii. Environ. Pollut. 2000, 110, 483–495. [Google Scholar] [CrossRef]
- Yongming, H.; Peixuan, D.; Junji, C.; Posmentier, E.S. Multivariate analysis of heavy metal contamination in urban dusts of Xi’an, Cent, China. Sci. Total Environ. 2006, 355, 176–186. [Google Scholar] [CrossRef]
- Stock, B.C.; Jackson, A.L.; Ward, E.J.; Parnell, A.C.; Phillips, D.L.; Semmens, B.X. Analyzing mixing systems using a new generation of Bayesian tracer mixing models. PeerJ 2018, 6, e5096. [Google Scholar] [CrossRef]
- Seo, Y.H. Development of road dust source profile by a detailed chemical composition analysis of road dust. J. Korean Soc. Environ. Admin. 2010, 16, 43–52. [Google Scholar]
- Duong, T.; Lee, B.K. Determining contamination level of heavy metals in road dust from busy traffic areas with different characteristics. J. Environ. Manag. 2011, 92, 554–562. [Google Scholar] [CrossRef]
- Dietrich, M.; Wolfe, A.; Burke, M.; Krekeler, M.P.S. The first pollution investigation of road sediment in Gary, Indiana: Anthropogenic metals and possible health implications for a socieconomically disadvantaged area. Environ. Int. 2019, 128, 175–192. [Google Scholar] [CrossRef]
- Argyraki, A. Garden soil and house dust as exposure media for lead uptake in the mining village of Stratoni, Greece. Environ. Geochem. Health 2014, 36, 677–692. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.M.; Kim, H.; Park, Y.M.; Park, K.W.; Park, J.J.; Kim, J.Y.; Seok, K.S.; Kim, Y.H. Characterization of lead pollution near zinc smelter facility in south Korea using lead stable isotopes. J. Kor. Soc. Environ. Anal. 2016, 19, 163–170. [Google Scholar]
- Zhang, Z.; Song, X.; Wang, Q.; Lu, X. Cd and Pb contents in soil, plants, and grasshoppers along a pollution gradient in Huludao City, Northeast China. Biol. Trace Elem. Res. 2011, 145, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Meza-Figueroa, D.; O-Villanueva, M.; Parra, M.L. Heavy metal distribution in dusft from elementary schools in Hermosillo, Sonora, Mexico. Atmos. Environ. 2007, 41, 276–288. [Google Scholar] [CrossRef]
- Yeung, Z.L.L.; Kwok, R.C.W.; Yu, K.N. Determination of multi-element profiles of street dust using energy dispersive X-ray fluorescenece (EDXRF). Appl. Radiat. Isot. 2003, 58, 339–346. [Google Scholar] [CrossRef] [Green Version]
- Flett, L.; Krekeler, M.P.S.; Burke, M. Investigation of road sediment in an industrial corridor near low-income housing in Hamilton, Ohio. Environ. Earth Sci. 2016, 75, 1156–1166. [Google Scholar] [CrossRef]
- Okorie, A.; Entwistle, J.; Dean, J.R. Estimation of daily intake of potentially toxic elements from urban street dust and the role of oral bioaccessibility testing. Chemosphere 2012, 86, 460–467. [Google Scholar] [CrossRef]
- Hameed, A.; Al Mashhady, A. Heavy metal contaminations in Urban soil within Baghdad City, Iraq. J. Environ. Prot. 2013, 4, 73–82. [Google Scholar]
- Hong, M.H.; Kang, D.G.; Paik, D.J.; Hwang, H.S.; Park, S.H. Effect of added magnesium on the coating properties of galvanized steel sheets. Korean J. Met. Mater. 2016, 54, 723–731. [Google Scholar] [CrossRef]
- Yoon, S.Y.; Kim, U.J.; Kim, M.S.; Kim, M.S.; Park, J.M.; Shin, S.J. The analysis of inorganic compounds and water soluble ions in paper mill sludges from newspaper and printed paper. J. Korean Tappi. 2014, 46, 30–34. [Google Scholar]
- Adachi, K.; Yoshiaki, T. Characterization of heavy metal particle embedded in tire dust. Environ. Int. 2004, 30, 1009–1017. [Google Scholar] [CrossRef]
- Acharya, C.; Kar, R.N.; Sukla, L.B. Studies on reaction mechanism of bioleaching of manganese ore. Miner. Eng. 2003, 16, 1027–1030. [Google Scholar] [CrossRef]
- Hariprasad, D.; Dash, B.; Ghosh, M.K.; Anand, S. Mn recovery from medium grade ore using a waste cellulosic reductant. Indian. J. Chem. Technol. 2009, 16, 322–327. [Google Scholar]
- Das, A.; Ghosh, S.; Mohanty, S.; Sukla, L.B. Advances in Manganese Pollution and Its Bioremediation. In Environmental Microbial Biotechnology; Springer: Berlin/Heidelberg, Germany, 2015; pp. 15–16. [Google Scholar]
- Seiler, H.G.; Sigel, A.; Sigel, H. Handbook on Metals in Clinical and Analytical Chemistry; Marcell Dekker Inc.: New York, NY, USA, 1994. [Google Scholar]
- Raj, S.P.; Ram, P.A. Determination and contamination assessment of Pb, Cd and Hg in roadside dust along Kathmandu-Bhaktapur road section of Arniko Highway, Nepa. Res. J. Chem. Sci. 2013, 3, 18–25. [Google Scholar]
- Kushwaha, A.; Sanjay Kumar, N.H.; Rani, R. A critical review on speciation, mobilization and toxicity of lead in soil-microbe-plant system and bioremediation strategies. Ecotoxicol. Environ. Saf. 2018, 147, 1035–1045. [Google Scholar] [CrossRef]
- Ullah, H.; Liu, G.; Yousaf, B.; Ubaid, M.; Abbas, Q. Combustion characteristics and retention-emission of selenium during co-firing of torrefied biomass and its blends with high ash coal. Bioresour. Technol. 2017, 245, 73–80. [Google Scholar] [CrossRef]
- Yousaf, B.; Liu, G.; Abbas, Q.; Wang, R.; Imtiaz, M.; Zia-ur-Rehman, M. Investigating the uptake and acquisition of potentially toxic elements in plants and health risks associated with the addition of fresh biowaste amendments to industrially contaminated soil. Land. Degrad. Dev. 2017, 28, 2596–2607. [Google Scholar] [CrossRef]
- Yuan, C.S.; Cheng, S.W.; Hung, C.H.; Yu, T.Y. Influence of operating parameters on the collection efficiency and size distribution of street dust during street scrubbing. Aerosol Air. Qual. Res. 2003, 3, 75–86. [Google Scholar] [CrossRef] [Green Version]
- Patra, A.; Colvile, R.; Arnold, S.; Bowen, E.; Shallcross, D.; Martin, D.; Price, C.; Tate, J.; ApSimon, H.; Robins, A. On street observation of particulate matter movement and dispersion due to traffic on an urban road. Atmos. Environ. 2008, 42, 3911–3926. [Google Scholar] [CrossRef]
- Kupiainen, K. Road dust from pavement wear and traction sanding. In Monograph of Boreal Environment Research; Finnish Environment Institute: Helsinki, Finland, 2007; p. 26. [Google Scholar]
- Pacyna, J.M. Trace Element Emission from Anthropogenic Sources in Europe; Technical Report. 10/82; Norsk Institutt for Luftforskning: Kjeller, Norway, 1983; Volume 24781, p. 107. [Google Scholar]
- Kowalczyk, G.S.; Gordon, G.E.; Rheingrover, S.W. Identification of atmospheric particulate sources in Washington, D.C., using chemical element balances. Environ. Sci. Technol. 1982, 16, 79–90. [Google Scholar] [CrossRef]
- Wadge, A.; Hutton, M.; Peterson, P.J. The concentrations and particle size relationships of selected trace elements in fly ashes from U.K. coal-fired power plants and a refuse incinerator. Sci. Total Environ. 1986, 13–27. [Google Scholar] [CrossRef]
- Wan, D.; Han, Z.; Yang, J.; Yang, G.; Liu, X. Heavy metal pollution in settled dust associated with different urban functional areas in a heavily air polluted city I North Chin. Int. J. Environ. Res. Public Health 2016, 13, 1119. [Google Scholar] [CrossRef] [Green Version]
- Varrica, D.; Bardelli, F.; Dongarra, G.; Tamburo, E. Speciation of Sb in airborne particulate matter, vehiclebbrake linings, and brake pad wear residues. Atmos. Environ. 2013, 64, 18–24. [Google Scholar] [CrossRef]
- Victoria, A.; Cobbian, S.J.; Dampare, S.B.; Duwiejuah, A.B. Heavy metals concentration in road dust in the Bolgatanga Municiplaith, Ghana. J. Environ. Pollut. Hum. Health 2014, 2, 74–80. [Google Scholar]
- Kanu, M.O.; Meludu, O.C.; Oniku, S.A. Evaluation of heavy metal contents in road dust of Jalingo, Taraba State, Nigeria. Jordan J. Earth Environ. Sci. 2015, 7, 65–70. [Google Scholar]
- Kartal, Ş.; Aydın, Z.; Tokalıoğlu, Ş. Fractionation of metals in street sediment samples by using the BCR sequential extraction procedure and multivariate statistical elucidation. J. Hazard. Mater. 2006, 132, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Pagotto, C.; Remy, N.; Legret, M.; Le Cloirec, P. Heavy metal pollution of road dust and roadside soil near a major rural highway. Environ. Technol. 2001, 22, 307–319. [Google Scholar] [CrossRef] [PubMed]
- Jose, J.; Srimuruganandam, B. Investigation of road dust characteristics and its associated health risks from an urban environment. Environ. Geochem. Health 2020, 42, 2819–2840. [Google Scholar] [CrossRef]
- Plum, L.M.; Rink, L.; Haase, H. The essential toxin: Impact of Zinc on human health. Int. J. Environ. Res. Public Health 2010, 7, 1342–1365. [Google Scholar] [CrossRef] [Green Version]
- O’Neal, S.L.; Zheng, W. Manganese toxicity upon overexposure: A decade in review. Curr. Environ. Health Rep. 2015, 2, 315–328. [Google Scholar] [CrossRef] [Green Version]
- Huff, J.; Lunn, R.M.; Waalkers, M.P.; Tomatis, L.; Infante, P.F. Cadmium-induced cancers in animals and in humans. Int. J. Occup. Environ. Health 2007, 13, 202–212. [Google Scholar] [CrossRef] [Green Version]
- Yousaf, B.; Amina, L.G.; Wang, R.; Imtiaz, M.; Rizwan, M.S.; Zia-ur-Rehman, M.; Qadir, A.; Si, Y. The importance of evaluating metal exposure and predicting human health risks in urban-periurban environments influenced by emerging industry. Chemosphere 2016, 150, 79–89. [Google Scholar] [CrossRef]
- Yousaf, B.; Liu, G.; Wang, R.; Imtiaz, M.; Zia-ur-Rehman, M.; Munir, M.A.M.; Niu, Z. Bioavailability evaluation, uptake of heavy metals and potential health risks via dietary exposure in urban-industrial areas. Environ. Sci. Pollut. Res. 2016, 23, 22443–22453. [Google Scholar] [CrossRef]
- O’Leary, M.H. Carbon isotopes in photosynthesis. BioScience 1988, 38, 328–336. [Google Scholar] [CrossRef]
- López-Veneroni, D. The stable carbon isotope composition of PM2.5 and PM10 in Mexico City Metropolitan Area air. Atmos. Environ. 2009, 43, 4491–4502. [Google Scholar] [CrossRef]
- Kawashima, H.; Haneishi, Y. Effects of combustion emissions from the Eurasian continent in winter on seasonal δ13C of elemental carbon in aerosols in Japan. Atmos. Environ. 2012, 46, 568–579. [Google Scholar] [CrossRef]
- Widory, D. Combustibles, fuels and their combustion products: A view through carbon isotopes. Combust. Theory Model. 2006, 10, 831–841. [Google Scholar] [CrossRef]
- Martinelli, L.A.; Camargo, P.B.; Lara, L.B.L.S.; Victoria, R.L.; Artaxo, P. Stable carbon and nitrogen isotopic composition of bulk aerosol particles in a C4 plant landscape of southeast Brazil. Atmos. Environ. 2002, 36, 2427–2432. [Google Scholar] [CrossRef]
- Moura, J.M.S.; Martens, C.S.; Moreira, M.Z.; Lima, R.L.; Sampaio, I.C.G.; Mendlovitz, H.P.; Menton, M.C. Spatial and seasonal variations in the stable carbon isotopic composition of methane in stream sediments of eastern Amazonia. Tellus 2008, 60B, 21–31. [Google Scholar] [CrossRef]
- Cao, J.J.; Chow, J.C.; Tao, J.; Lee, S.C.; Watson, J.G.; Ho, K.F.; Wang, G.H.; Zhu, C.S.; Han, Y.M. Stable carbon isotopes in aerosols from Chinese cities: Influence of fossil fuels. Atmos. Environ. 2011, 45, 1359–1363. [Google Scholar] [CrossRef]
- Tanner, R.L.; Miguel, A.H. Carbonaceous aerosol sources in Rio de Janeiro. Aerosol Sci. Technol. 1989, 10, 213–223. [Google Scholar] [CrossRef] [Green Version]
- Grassi, C.; Campigli, V.; Dallai, L.; Nottoli, S.; Tognotti, L.; Guidi, M. PM characterization by carbon isotope. In Proceedings of the European Aerosol Conference, Salzburg, Austria, 9–14 September 2007. [Google Scholar]
- Widory, D.; Roy, S.; Le Moullec, G.; Cocherie, A.; Guerrot, C. The origin of atmospheric particles in Paris: A view through carbon and lead isotopes. Atmos. Environ. 2004, 38, 953–961. [Google Scholar] [CrossRef]
- Gupta, A.K.; Gupta, S.K.; Patil, R.S. Environmental management plan for port and harbour projects. Clean. Technol. Environ. Policy 2005, 7, 133–141. [Google Scholar] [CrossRef]
- Moreira González, A.; Abilio Comas, A.; Valle Pombrol, A.; Seisdedo, M. Bloom of Vulcanodinium rugosum linked to skin lesions in Cienfuegos Bay, Cuba. Harmful Algae News 2016, 55, 10–11. [Google Scholar]
Location | Type | Metal Ion (ng/m3) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cr | Mn | Co | Ni | Cu | Zn | As | Cd | Pb | Sr | Ba | |||
Donghae, Korea | PM10 (Urban area, n = 15) | Minimum | 48.3 | 136.3 | 1.9 | 9.7 | 11.7 | 97.6 | 11.9 | 0.8 | 15.1 | 43.5 | 386.5 |
Maximum | 54.3 | 781.4 | 2.4 | 12.9 | 902.5 | 360.0 | 14.3 | 2.0 | 38.0 | 57.0 | 539.1 | ||
Mean | 50.6 | 452.6 | 2.1 | 11.1 | 222.7 | 161.6 | 13.3 | 1.0 | 21.3 | 50.7 | 456.3 | ||
Median | 2.7 | 253.1 | 0.2 | 1.2 | 381.8 | 111.5 | 1.0 | 0.5 | 9.5 | 4.9 | 57.5 | ||
SD | 49.4 | 379.2 | 2.2 | 11.2 | 51.9 | 120.6 | 13.5 | 0.8 | 16.9 | 51.0 | 461.8 | ||
PM10 (Control area, n = 3) | Minimum | 20.0 | 53.8 | 1.4 | 7.9 | 6.6 | 75.6 | 9.8 | 0.6 | 11.7 | 0.6 | 284.8 | |
Maximum | 58.8 | 72.3 | 2.7 | 11.5 | 13.3 | 167.6 | 21.5 | 0.7 | 20.7 | 0.7 | 502.4 | ||
Mean | 43.8 | 64.3 | 1.9 | 9.4 | 9.8 | 112.7 | 13.9 | 0.7 | 15.7 | 0.7 | 358.3 | ||
Median | 20.9 | 9.5 | 0.8 | 1.8 | 3.3 | 48.5 | 6.6 | 0.1 | 4.6 | 0.1 | 124.9 | ||
SD | 52.7 | 66.8 | 1.4 | 8.8 | 9.4 | 95.0 | 10.4 | 0.7 | 14.8 | 0.7 | 287.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.-S.; Kim, J.-Y.; Park, J.; Yeon, S.-H.; Shin, S.; Choi, J. Assessment of Pollution Sources and Contribution in Urban Dust Using Metal Concentrations and Multi-Isotope Ratios (13C, 207/206Pb) in a Complex Industrial Port Area, Korea. Atmosphere 2021, 12, 840. https://doi.org/10.3390/atmos12070840
Kim M-S, Kim J-Y, Park J, Yeon S-H, Shin S, Choi J. Assessment of Pollution Sources and Contribution in Urban Dust Using Metal Concentrations and Multi-Isotope Ratios (13C, 207/206Pb) in a Complex Industrial Port Area, Korea. Atmosphere. 2021; 12(7):840. https://doi.org/10.3390/atmos12070840
Chicago/Turabian StyleKim, Min-Seob, Jee-Young Kim, Jaeseon Park, Suk-Hee Yeon, Sunkyoung Shin, and Jongwoo Choi. 2021. "Assessment of Pollution Sources and Contribution in Urban Dust Using Metal Concentrations and Multi-Isotope Ratios (13C, 207/206Pb) in a Complex Industrial Port Area, Korea" Atmosphere 12, no. 7: 840. https://doi.org/10.3390/atmos12070840
APA StyleKim, M. -S., Kim, J. -Y., Park, J., Yeon, S. -H., Shin, S., & Choi, J. (2021). Assessment of Pollution Sources and Contribution in Urban Dust Using Metal Concentrations and Multi-Isotope Ratios (13C, 207/206Pb) in a Complex Industrial Port Area, Korea. Atmosphere, 12(7), 840. https://doi.org/10.3390/atmos12070840