The Problems of Passive Remote Sensing of the Earth’s Surface in the Range of 1.2–1.6 GHz
Abstract
:1. Introduction
2. Passive Remote Sensing. State of Art
2.1. Aircraft Measurements
2.2. Satellite Passive Remote Sensing
2.3. The Effect of Atmospheric Aerosols on the Propagation of Radio Waves
3. Determination of Parameters of Nonequilibrium Plasma from IR Irradiation Spectra
4. The Problem of Calibration in Passive Remote Sensing
4.1. Two-Frequency Method of Passive Remote Sensing
4.2. The Role of IR Radiation Spectrum
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Golubkov, G.V.; Manzhelii, M.I.; Lushnikov, A.A. Radiochemical Physics of the Upper Earth’s Atmosphere. Russ. J. Phys. Chem. B 2014, 8, 604–611. [Google Scholar] [CrossRef]
- Golubkov, G.V.; Manzhelii, M.I.; Berlin, A.A.; Lushnikov, A.A. Fundamentals of radio-chemical physics of the Earth’s atmosphere. Russ. J. Phys. Chem. B 2016, 10, 77–90. [Google Scholar] [CrossRef]
- Kuverova, V.V.; Adamson, S.O.; Berlin, A.A.; Bychkov, V.L.; Dmitriev, A.V.; Dyakov, Y.A.; Eppelbaum, L.V.; Golubkov, G.V.; Lushnikov, A.A.; Manzhelii, M.I.; et al. Chemical physics of D and E layers of the ionosphere. Adv. Space Res. 2019, 64, 1876–1886. [Google Scholar] [CrossRef]
- Golubkov, G.V.; Golubkov, M.G.; Manzhelii, M.I. Microwave and IR radiation of the upper atmosphere during periods of enhanced solar activity. Dokl. Phys. 2012, 57, 461–464. [Google Scholar] [CrossRef]
- Su, S.-Y.; Tsai, L.-C.; Liu, C.H.; Nayak, C.; Caton, R.; Groves, K. Ionospheric Es layer scintillation characteristics studied with Hilbert-Huang transform. Adv. Space Res. 2019, 64, 2137–2144. [Google Scholar] [CrossRef]
- Golubkov, G.V.; Manzhelii, M.I.; Golubkov, M.G. Microwave Radiation in the Upper Atmosphere of Earth During Strong Geomagnetic Disturbances. Russ. J. Phys. Chem. B 2012, 6, 112–127. [Google Scholar] [CrossRef]
- Golubkov, G.V.; Golubkov, M.G.; Manzhelii, M.I. Additional background radiation of the atmosphere D layer within the frequency range from 0.8 to 6.0 GHz. Dokl. Phys. 2013, 58, 424–427. [Google Scholar] [CrossRef]
- Avakyan, S.V. Physics of the solar-terrestrial coupling: Results, problems, and new approaches. Geomagn. Aeron. 2008, 48, 417–424. [Google Scholar] [CrossRef]
- Mlynczak, M.G.; Johnson, D.G.; Latvakovski, H.; Jucks, K.; Watson, M.; Kratz, D.P.; Bingham, G.; Traub, V.A.; Wellard, S.J.; Hyde, C.R.; et al. First light from the far-infrared spectroscopy of the troposphere (FIRST) instrument. Geophys. Res. Lett. 2006, 33, L07704:1–L07704:4. [Google Scholar] [CrossRef] [Green Version]
- Shklovsky, I.S. The Problems of Modern Astrophysics; Nauka: Moscow, Russia, 1988; p. 256. [Google Scholar]
- Martynov, D.Y. General Astronomy Course; Fizmatlit: Moscow, Russia, 1988; p. 640. [Google Scholar]
- Cooper, K. SETI: The water hole. Astron. Now 2010, 4, 1–6. [Google Scholar]
- Golubkov, G.V.; Golubkov, M.G.; Manzhelii, M.I. Rydberg states in the D layer of the atmosphere and the GPS positioning errors. Russ. J. Phys. Chem. B 2014, 8, 103–115. [Google Scholar] [CrossRef]
- Kerr, Y.H.; Waldteufel, P.; Wigneron, J.P.; Martinuzzi, J.; Font, J.; Berger, M. Soil moisture retrieval from space: The soil moisture and ocean salinity (SMOS) mission. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1729–1735. [Google Scholar] [CrossRef]
- Johnson, B.; Johnson, J. Sun in Radio Spectrum at 1.4 GHz. Available online: https://www.thunderbolts.info/wp/2012/03/30/essential-guide-to-the-eu-chapter-11/sun-in-radio-spectrum-at-1-4-ghz/ (accessed on 18 June 2020).
- Liljegren, J.C.; Lesht, B.M.; van Hove, T.; Rocken, C. A comparision of integrated water vapor from microwave radiometer, balloon-borne sounding system, and global positioning system. In Proceedings of the Ninth ARM Science Team Proceedings, San Antonio, TX, USA, 22–26 March 1999. [Google Scholar]
- Le Vine, D.M.; Abraham, S. Faraday rotation correction for SMAP and soil moisture retrieval. IEEE Trans. Geosci. Remote Sens. 2018, 56, 665–668. [Google Scholar] [CrossRef]
- Saleh, K.; Wigneron, J.P.; de Rosnay, P.; Calvet, J.C.; Escorihuela, M.J.; Kerr, Y.; Waldteufel, P. Impact of rain interception by vegetation and mulch on the L-band emission of natural grass. Remote Sens. Environ. 2006, 101, 127–139. [Google Scholar] [CrossRef]
- Rudiger, C.; Walker, J.P.; Kerr, Y.H.; Mialon, A.; Merlin, O.; Kim, E.J. Validation of the level 1c and level 2 SMOS products with airborne and ground-based observations. In Proceedings of the 19th International Congress on Modelling and Simulation, Perth, Australia, 12–16 December 2011; pp. 2002–2008. Available online: https://www.mssanz.org.au/modsim2011/E4/rudiger.pdf (accessed on 18 June 2020).
- Hallikainen, M.T.; Ulaby, F.T.; Dobson, M.C.; El-Rayes, M.A.; Wu, L.K. Microwave Dielectric Behavior of Wet Soil—Part I: Empirical Models and Experimental Observations. IEEE Trans. Geosci. Remote Sens. 1985, 23, 25–34. [Google Scholar] [CrossRef]
- Dobson, M.C.; Ulaby, F.T.; Hallikainen, M.T.; El-Rayes, M.A. Microwave Dielectric Behavior of Wet Soil—Part II: Dielectric Mixing Models. IEEE Trans. Geosci. Remote Sens. 1985, 23, 35–45. [Google Scholar] [CrossRef]
- Howell, J.R.; Mengus, M.P.; Siegel, R. Termal Radiation Heat Transfer; CRS Press: Boca Raton, FL, USA, 2015; p. 1016. [Google Scholar]
- Afraimovich, E.L.; Astafieva, E.I.; Berngardt, O.I.; Demyanov, V.V.; Kondakova, T.N.; Lesyuta, O.S.; Shpynev, B.G. Mid-latitude amplitude scintillation of GPS signals and GPS failures at the auroral oval boundary. Radiophys. Quantum Electron. 2004, 47, 453–468. [Google Scholar] [CrossRef]
- Lushnikov, A.A.; Kulmala, M. Charging of aerosol particles in the near free-molecule regime. Eur. Phys. J. D At. Mol. Opt. Plasm. Phys. 2004, 29, 345–355. [Google Scholar] [CrossRef]
- Lushnikov, A.A.; Kulmala, M. Flux-matching theory of particle charging. Phys. Rev. E 2004, 70, 046413:1–046413:20. [Google Scholar] [CrossRef]
- Lushnikov, A.A.; Kulmala, M. A kinetic theory of particle charging in the free-molecule regime. J. Aerosol. Sci. 2005, 36, 1069–1088. [Google Scholar] [CrossRef]
- Lushnikov, A.A.; Zagaynov, V.A.; Lyubovtseva, Y.S. Formation of the aerosols in the Atmosphere. In The Atmosphere and Ionosphere: DYNAMICS, Processes and Monitoring; Bychkov, V.L., Golubkov, G.V., Nikitin, A.I., Eds.; Springer: New York, NY, USA, 2010; pp. 69–95. [Google Scholar] [CrossRef]
- Lushnikov, A.A. Introduction to aerosols. In Aerosols—Science and Technology; Agranovski, I., Ed.; Wiley–VCH Verlag: Weinheim, Germany, 2010; pp. 1–41. [Google Scholar] [CrossRef]
- Lushnikov, A.A. Nanoaerosols in the atmosphere. In the Atmosphere and Ionosphere: Elementary Processes, Discharges and Plasmoids; Bychkov, V.L., Golubkov, G.V., Nikitin, A.I., Eds.; Springer: New York, NY, USA, 2013; pp. 79–164. [Google Scholar] [CrossRef]
- Elperin, T.; Fominykh, A.; Krasovitov, B.; Lushnikov, A. Isothermal absorption of soluble gases by atmospheric nanoaerosols. Phys. Rev. E 2013, 87, 012807:1–012807:8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lushnikov, A.A.; Golubkov, G.V. Evaporation of a particle into chemically reactive carrier gas. Russ. J. Phys. Chem. B 2011, 5, 959–968. [Google Scholar] [CrossRef]
- Kravitz, B.; Robock, A.; Oman, L.; Stenchikov, G.; Marquardt, A.B. Sulfuric acid deposition from stratospheric geoengineering with sulfate aerosols. J. Geophys. Res. Atmos. 2009, 114, D14109:1–D14109:7. [Google Scholar] [CrossRef] [Green Version]
- Vasiliev, E.S.; Knyazev, V.D.; Savelieva, E.S.; Morozov, I.I. Kinetics and mechanism of the reaction of fluorine atoms with trifluoroacetic acid. Chem. Phys. Lett. 2011, 512, 172–177. [Google Scholar] [CrossRef]
- Karpov, G.V.; Morozov, I.I.; Vasiliev, E.S.; Strokova, N.E.; Savilov, S.V.; Lunin, V.V. Hydration of negative ions of trichloroacetic acid in aqueous solutions. Chem. Phys. Lett. 2013, 586, 40–43. [Google Scholar] [CrossRef]
- Cai, W.; Shalaev, V. Optical Metamaterials: Fundamentals and Applications; Springer: New York, NY, USA, 2009; p. 200. [Google Scholar] [CrossRef] [Green Version]
- Yu, N.; Genevet, P.; Kats, M.A.; Francesco, A.; Tetienne, J.P.; Capasso, F.; Caburro, Z. Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science 2011, 334, 333–337. [Google Scholar] [CrossRef] [Green Version]
- Ueda, T.; Komiyama, S. Novel ultra-sensitive detectors in the 10–50 μm wavelength range. Sensors 2010, 10, 8411–8423. [Google Scholar] [CrossRef]
- Cataldo, G. Development of Ultracompact High-Sensitivity, Space-Based Instrumentation for Far-Infrared and Submillimeter Astronomy. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2015; p. 131. [Google Scholar]
- Müller, R. Calibration and verification of remote sensing instruments and observations. Remote Sens. 2014, 6, 5692–5695. [Google Scholar] [CrossRef] [Green Version]
- Sharkov, E.A. Passive Microwave Remote Sensing of the Earth. Physical Foundations; Springer: Berlin/Heidelberg, Germany, 2003; p. 613. [Google Scholar]
- Eppelbaum, L.; Alperovich, L.; Zheludev, V.; Pechersky, A. Application of informational and wavelet approaches for integrated processing of geophysical data in complex environments. In Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems, Charleston, South Carolina, 10–14 April 2011; pp. 461–497. [Google Scholar] [CrossRef]
- Alperovich, L.; Eppelbaum, L.; Zheludev, V.; Dumoulin, J.; Soldovieri, F.; Proto, M.; Bavusi, M.; Loperte, A. A new combined wavelet methodology: Implementation to GPR and ERT data obtained in the Montagnole experiment. J. Geophys. Eng. 2011, 10, 025017:1–025017:17. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Golubkov, G.V.; Manzhelii, M.I.; Berlin, A.A.; Eppelbaum, L.V.; Lushnikov, A.A.; Morozov, I.I.; Dmitriev, A.V.; Adamson, S.O.; Dyakov, Y.A.; Morozov, A.N.; et al. The Problems of Passive Remote Sensing of the Earth’s Surface in the Range of 1.2–1.6 GHz. Atmosphere 2020, 11, 650. https://doi.org/10.3390/atmos11060650
Golubkov GV, Manzhelii MI, Berlin AA, Eppelbaum LV, Lushnikov AA, Morozov II, Dmitriev AV, Adamson SO, Dyakov YA, Morozov AN, et al. The Problems of Passive Remote Sensing of the Earth’s Surface in the Range of 1.2–1.6 GHz. Atmosphere. 2020; 11(6):650. https://doi.org/10.3390/atmos11060650
Chicago/Turabian StyleGolubkov, Gennady V., Mikhail I. Manzhelii, Alexandr A. Berlin, Lev V. Eppelbaum, Alexey A. Lushnikov, Igor I. Morozov, Alexey V. Dmitriev, Sergey O. Adamson, Yuri A. Dyakov, Andrey N. Morozov, and et al. 2020. "The Problems of Passive Remote Sensing of the Earth’s Surface in the Range of 1.2–1.6 GHz" Atmosphere 11, no. 6: 650. https://doi.org/10.3390/atmos11060650
APA StyleGolubkov, G. V., Manzhelii, M. I., Berlin, A. A., Eppelbaum, L. V., Lushnikov, A. A., Morozov, I. I., Dmitriev, A. V., Adamson, S. O., Dyakov, Y. A., Morozov, A. N., & Golubkov, M. G. (2020). The Problems of Passive Remote Sensing of the Earth’s Surface in the Range of 1.2–1.6 GHz. Atmosphere, 11(6), 650. https://doi.org/10.3390/atmos11060650