The Dichotomy between Indoor Air Quality and Energy Efficiency in Light of the Onset of the COVID-19 Pandemic
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huynh, A.; Barkokebas, R.D.; Al-Hussein, M.; Cruz-Noguez, C.; Chen, Y. Energy-efficiency requirements for residential building envelopes in cold-climate regions. Atmosphere 2021, 12, 405. [Google Scholar] [CrossRef]
- Settimo, G.; Manigrasso, M.; Avino, P. Indoor air quality: A focus on the European legislation and state-of-the-art research in Italy. Atmosphere 2020, 11, 370. [Google Scholar] [CrossRef] [Green Version]
- United Nations Framework Convention on Climate Change. Available online: https://unfccc.int/ (accessed on 5 May 2021).
- European Commission. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions. The European Green Deal. COM/2019/640 Final. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1588580774040&uri=CELEX:52019DC0640 (accessed on 28 May 2021).
- Stabile, L.; Buonanno, G.; Avino, P.; Fuoco, F.C. Dimensional and chemical characterization of airborne particles in schools: Respiratory effects in children. Aerosol Air Qual. Res. 2013, 13, 887–900. [Google Scholar] [CrossRef]
- Manigrasso, M.; Vitali, M.; Protano, C.; Avino, P. Temporal evolution of ultrafine particles and of alveolar deposited surface area from main indoor combustion and non-combustion sources in a model room. Sci. Total Environ. 2017, 598, 1015–1026. [Google Scholar] [CrossRef]
- Manigrasso, M.; Protano, C.; Astolfi, M.L.; Massimi, L.; Avino, P.; Vitali, M.; Canepari, S. Evidences of copper nanoparticle exposure in indoor environments: Long-term assessment, high-resolution field emission scanning electron microscopy evaluation, in silico respiratory dosimetry study and possible health implications. Sci. Total Environ. 2019, 653, 1192–1203. [Google Scholar] [CrossRef]
- Settimo, G.; Gola, M.; Capolongo, S. the relevance of indoor air quality in hospital settings: From an exclusively biological issue to a global approach in the Italian context. Atmosphere 2020, 11, 361. [Google Scholar] [CrossRef] [Green Version]
- Gola, M.; Settimo, G.; Capolongo, S. How Can design features and other factors affect the indoor air quality in inpatient rooms? Check-lists for the design phase, daily procedures and maintenance activities for reducing the air concentrations of chemical pollution. Int. J. Environ. Res. Public Health 2020, 17, 4280. [Google Scholar] [CrossRef]
- Settimo, G.; Indinnimeo, L.; Inglessis, M.; De Felice, M.; Morlino, R.; di Coste, A.; Fratianni, A.; Avino, P. Indoor air quality levels in schools: Role of student activities and no activities. Int. J. Environ. Res. Public Health 2020, 17, 6695. [Google Scholar] [CrossRef]
- European Court of Auditors. Energy Efficiency in Buildings: Greater Focus on Cost-Effectiveness Still Needed. Available online: https://op.europa.eu/webpub/eca/special-reports/energy-efficiency-11-2020/en/index.html (accessed on 28 May 2021).
- Carrer, P.; Wargocki, P.; De Oliveira Fernandes, E.; Hänninen, O.; Kephalopoulos, S.; Allard, F.; Asikainen, A.; Asimakopoulos, D.; Asimakopoulou, M.-N.; Bischoff, W.; et al. European Collaborative Action—Urban Air, Indoor Environment and Human Exposure, Report No 30, Framework for Health-Based Ventilation Guidelines in Europe, EUR 27640 EN; Publications Office of the European Union: Luxembourg, 2020; ISBN 978-92-79-54143-8. JRC88207. [Google Scholar] [CrossRef]
- Kephalopoulos, S.; Geiss, O.; Barrero, J.; D’Agostino, D.; Paci, D. Promoting Healthy and Energy Efficient Buildings in the European Union: National Implementation of Related Requirements of the Energy Performance Buildings Directive (2010/31/EU), EUR 27665 EN; Publications Office of the European Union: Luxembourg, 2017; ISBN 978-92-79-70594-6. [Google Scholar] [CrossRef]
- Tobia, L.; Santostefano, M.; Casilli, A.; Spera, G.; Paglione, M.; Tarquini, M.; Grandi, G.; Tiberti, S.; Paoletti, A. Assessment of microclimatic conditions in open space offices through more than 600 measurements. G. Ital. Med. Lav. Ergon. 2004, 26, 147–148. [Google Scholar]
- Valeriani, F.; Cianfanelli, C.; Gianfranceschi, G.; Santucci, S.; Spica, V.R.; Mucci, N. Monitoring biodiversity in libraries: A pilot study and perspectives for indoor air quality. J. Prev. Med. Hyg. 2017, 58, E238–E251. [Google Scholar]
- Wilson, J.; Dixon, S.L.; Zuluaga, M.; Jacobs, D.E.; Breysse, J.; Berger, D. Venting for health: Indoor air quality improvements from upgraded ventilation systems in multifamily high-rise housing. Energy Effic. 2020, 13, 1727–1735. [Google Scholar] [CrossRef]
- Zender-Świercz, E. Review of IAQ in premises equipped with façade–ventilation systems. Atmosphere 2021, 12, 220. [Google Scholar] [CrossRef]
- Megahed, N.A.; Ghoneim, E.M. Indoor Air Quality: Rethinking rules of building design strategies in post-pandemic architecture. Environ. Res. 2021, 193, 110471. [Google Scholar] [CrossRef] [PubMed]
- UNI EN Energy Performance of Buildings—Ventilation for Buildings—Part 1: Indoor Environmental Input Parameters for Design and Assessment of Energy Performance of Buildings Addressing Indoor Air Quality, Thermal Environment, Lighting and Acoustics; UNI EN 16798-1:2019; UNI: Milan, Italy, 2019.
- Proposta di “Piano Nazionale di Ripresa e Resilienza”. Documento XXVII n. 18, XVIII Legislatura. 2021. Available online: http://www.senato.it/leg/18/BGT/Schede/docnonleg/41806.htm (accessed on 20 May 2021).
- Global Alliance for Buildings and Construction & UN Environment. Global Roadmap towards Low-GHG and Resilient Buildings. Available online: http://globalabc.org/resources/publications/global-roadmap-towards-low-ghg-and-resilient-buildings (accessed on 23 May 2021).
- ISO. Indoor Air—Part 6: Determination of Volatile Organic Compounds in Indoor and Test Chamber Air by Active Sampling on Tenax TA Sorbent, Thermal Desorption and Gas Chromatography Using MS or MS-FID; ISO 16000-6:2011; ISO: Geneva, Switzerland, 2011. [Google Scholar]
- Etxebarria-Mallea, M.; Oregi, X.; Grijalba, O.; Hernández-Minguillón, R. The impact of energy refurbishment interventions on annual energy demand, indoor thermal behaviour and temperature-related health risk. Energy Policy 2021, 153, 112276. [Google Scholar] [CrossRef]
- WHO. Guidelines for Indoor Air Quality: Selected Pollutants. Available online: https://www.euro.who.int/__data/assets/pdf_file/0009/128169/e94535.pdf (accessed on 5 May 2021).
- Barua, S.; Nath, S.D. The impact of COVID-19 on air pollution: Evidence from global data. J. Clean. Prod. 2021, 298, 126755. [Google Scholar] [CrossRef]
- Goodwin, L.; Hayward, T.; Krishan, P.; Nolan, G.; Nundy, M.; Ostrishko, K.; Attili, A.; Cárceles, S.B.; Epelle, E.I.; Gabl, R.; et al. Which factors influence the extent of indoor transmission of SARS-CoV-2? A rapid evidence review. J. Glob. Health 2021, 11, 10002. [Google Scholar] [CrossRef] [PubMed]
- Jones, W. Horizons: Sick building syndrome. Appl. Occup. Environ. Hyg. 1990, 5, 74–83. [Google Scholar] [CrossRef]
- Cheek, E.; Guercio, V.; Shrubsole, C.; Dimitroulopoulou, S. Portable air purification: Review of impacts on indoor air quality and health. Sci. Total Environ. 2021, 766, 142585. [Google Scholar] [CrossRef] [PubMed]
- Khan, D.S.; Kolarik, J.; Hviid, C.A.; Weitzmann, P. Method for long-term mapping of occupancy patterns in open-plan and single office spaces by using passive-infrared (PIR) sensors mounted below desks. Energy Build. 2021, 230, 110534. [Google Scholar] [CrossRef]
- ISS Working Group Environment and Indoor Air Quality. Ad interim provisions to prevent and manage the indoor environment in relation to the transmission of the infection by the SARS-CoV-2 virus. Updating Rapporto ISS COVID-19 n. 5/2020 Rev. 2. Version of April 18, 2021. Rapp. ISS COVID-19 2021, 11, 21. Available online: https://www.iss.it/rapporti-covid-19/-/asset_publisher/btw1J82wtYzH/content/rapporto-iss-covid-19-n.-11-2021-indicazioni-ad-interim-per-la-prevenzione-e-gestione-degli-ambienti-indoor-in-relazione-alla-trasmissione-dell-infezione-da-virus-sars-cov-2.-aggiornamento-del-rapporto-iss-covid-19-n.-5-2020-rev.-2.-versione-del-18-aprile (accessed on 1 June 2021).
- Aviv, D.; Chen, K.W.; Teitelbaum, E.; Sheppard, D.; Pantelic, J.; Rysanek, A.; Meggers, F. A fresh (air) look at ventilation for COVID-19: Estimating the global energy savings potential of coupling natural ventilation with novel radiant cooling strategies. Appl. Energy 2021, 292, 116848. [Google Scholar] [CrossRef] [PubMed]
- Carrer, P.; De Oliveira Fernandes, E.; Santos, H.; Hänninen, O.; Kephalopoulos, S.; Wargocki, P. On the development of health-based ventilation guidelines: Principles and framework. Int. J. Environ. Res. Public Health 2018, 15, 1360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- United Nations Environment Programme. 2020 Global Status Report for Buildings and Construction: Towards a Zero-Emission, Efficient and Resilient Buildings and Construction Sector. Nairobi. 2020. Available online: https://globalabc.org/sites/default/files/inline-files/2020%20Buildings%20GSR_FULL%20REPORT.pdf (accessed on 28 May 2021).
- Poirier, B.; Guyot, G.; Geoffroy, H.; Woloszyn, M.; Ondarts, M.; Gonze, E. Pollutants emission scenarios for residential ventilation performance assessment. A review. J. Build. Eng. 2021, 42, 102488. [Google Scholar] [CrossRef]
- European Commission. Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings. O. J. 2010, 153, 13–35. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex:32010L0031 (accessed on 14 June 2021).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Settimo, G.; Avino, P. The Dichotomy between Indoor Air Quality and Energy Efficiency in Light of the Onset of the COVID-19 Pandemic. Atmosphere 2021, 12, 791. https://doi.org/10.3390/atmos12060791
Settimo G, Avino P. The Dichotomy between Indoor Air Quality and Energy Efficiency in Light of the Onset of the COVID-19 Pandemic. Atmosphere. 2021; 12(6):791. https://doi.org/10.3390/atmos12060791
Chicago/Turabian StyleSettimo, Gaetano, and Pasquale Avino. 2021. "The Dichotomy between Indoor Air Quality and Energy Efficiency in Light of the Onset of the COVID-19 Pandemic" Atmosphere 12, no. 6: 791. https://doi.org/10.3390/atmos12060791
APA StyleSettimo, G., & Avino, P. (2021). The Dichotomy between Indoor Air Quality and Energy Efficiency in Light of the Onset of the COVID-19 Pandemic. Atmosphere, 12(6), 791. https://doi.org/10.3390/atmos12060791