Metal(Loids) Bioaccessibility in Road Dust from the Surrounding Villages of an Active Mine
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
Human Health Risk Assessment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mondal, S.; Singh, G. Pollution evaluation, human health effect and tracing source of trace elements on road dust of Dhanbad, a highly polluted industrial coal belt of India. Environ. Geochem. Health 2021, 43, 2081–2103. [Google Scholar] [CrossRef]
- Aguilera, A.; Bautista, F.; Gutiérrez-Ruiz, M.; Ceniceros-Gómez, A.E.; Cejudo, R.; Goguitchaichvili, A. Heavy metal pollution of street dust in the largest city of Mexico, sources and health risk assessment. Environ. Monit. Assess. 2021, 193, 1–16. [Google Scholar] [CrossRef]
- Men, C.; Liu, R.; Wang, Q.; Miao, Y.; Wang, Y.; Jiao, L.; Li, L.; Cao, L.; Shen, Z.; Li, Y.; et al. Spatial-temporal characteristics, source-specific variation and uncertainty analysis of health risks associated with heavy metals in road dust in Beijing, China. Environ. Pollut. 2021, 278, 116866. [Google Scholar] [CrossRef]
- Rainbow, P. Trace Metals in the Environment and Living Organisms. The British Isles as a Case Study; Cambridge University Press: Cambridge, UK, 2018; ISBN 978-1-108-47093-3. [Google Scholar]
- Zheng, J.; Noller, B.; Huynh, T.; Ng, J.; Taga, R.; Diacomanolis, V.; Harris, H. How the population in Mount Isa is living with lead exposure from mining activities. Extr. Ind. Soc. 2021, 8, 123–134. [Google Scholar] [CrossRef]
- Shahab, A.; Zhang, H.; Ullah, H.; Rashid, A.; Rad, S.; Li, J.; Xiao, H. Pollution characteristics and toxicity of potentially toxic elements in road dust of a tourist city, Guilin, China: Ecological and health risk assessment☆. Environ. Pollut. 2020, 266, 115419. [Google Scholar] [CrossRef]
- Eulises, C.-S.J.; González-Chávez, M.D.C.A.; Carrillo-González, R.; García-Cué, J.L.; Fernández-Reynoso, D.S.; Noerpel, M.; Scheckel, K.G. Bioaccessibility of potentially toxic elements in mine residue particles. Environ. Sci. Process. Impacts 2021, 23, 367–380. [Google Scholar] [CrossRef]
- Zupančič, M.; Šušteršič, M.; Bavec, Š.; Gosar, M. Oral and inhalation bioaccessibility of potentially toxic elements in household dust from former Hg mining district, Idrija, Slovenia. Environ. Geochem. Health 2021, 1–27. [Google Scholar] [CrossRef]
- Zhou, F.; Li, Y.; Ma, Y.; Peng, Q.; Cui, Z.; Liu, Y.; Wang, M.; Zhai, H.; Zhang, N.; Liang, D. Selenium bioaccessibility in native seleniferous soil and associated plants: Comparison between in vitro assays and chemical extraction methods. Sci. Total. Environ. 2021, 762, 143119. [Google Scholar] [CrossRef]
- Ávila, P.F.; Da Silva, E.F.; Salgueiro, A.R.; Farinha, J.A. Geochemistry and Mineralogy of Mill Tailings Impoundments from the Panasqueira Mine (Portugal): Implications for the Surrounding Environment. Mine Water Environ. 2008, 27, 210–224. [Google Scholar] [CrossRef]
- Candeias, C.; Melo, R.; Ávila, P.F.; da Silva, E.F.; Salgueiro, A.R.; Teixeira, J.P. Heavy metal pollution in mine–soil–plant system in S. Francisco de Assis—Panasqueira mine (Portugal). Appl. Geochem. 2014, 44, 12–26. [Google Scholar] [CrossRef] [Green Version]
- Ávila, P.F.; Da Silva, E.F.; Candeias, C. Health risk assessment through consumption of vegetables rich in heavy metals: The case study of the surrounding villages from Panasqueira mine, Central Portugal. Environ. Geochem. Health 2016, 39, 565–589. [Google Scholar] [CrossRef]
- Estanqueiro, A. (Ed.) Atlas do Potencial Eólico para Portugal Continental, V 1.0; CD-ROM; INETI: Lisboa, Portugal, 2004; ISBN 972-676-196-4. (In Portuguese) [Google Scholar]
- Li, X.; Gao, Y.; Zhang, M.; Zhang, Y.; Zhou, M.; Peng, L.; He, A.; Zhang, X.; Yan, X.; Wang, Y.; et al. In vitro lung and gastrointestinal bioaccessibility of potentially toxic metals in Pb-contaminated alkaline urban soil: The role of particle size fractions. Ecotoxicol. Environ. Saf. 2020, 190, 110151. [Google Scholar] [CrossRef]
- Soltani, N.; Keshavarzi, B.; Moore, F.; Cave, M.; Sorooshian, A.; Mahmoudi, M.R.; Golshani, R. In vitro bioaccessibility, phase partitioning, and health risk of potentially toxic elements in dust of an iron mining and industrial complex. Ecotoxicol. Environ. Saf. 2021, 212, 111972. [Google Scholar] [CrossRef]
- Wragg, J.; Cave, M.; Basta, N.; Brandon, E.; Casteel, S.; Denys, S.; Gron, C.; Oomen, A.; Reimer, K.; Tack, K.; et al. An inter-laboratory trial of the unified BARGE bioaccessibility method for arsenic, cadmium and lead in soil. Sci. Total. Environ. 2011, 409, 4016–4030. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.; Zhang, X.; Zhang, C.; Xu, T. Mineralogical and morphological properties of individual dust particles in ice cores from the Tibetan Plateau. J. Glaciol. 2016, 62, 46–53. [Google Scholar] [CrossRef] [Green Version]
- Jose, J.; Srimuruganandam, B. Investigation of road dust characteristics and its associated health risks from an urban environment. Environ. Geochem. Health 2020, 42, 2819–2840. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.S.; Kumar, S.; Nasiruddin, M.; Saha, N. Deciphering the origin of Cu, Pb and Zn contamination in school dust and soil of Dhaka, a megacity in Bangladesh. Environ. Sci. Pollut. Res. 2021, 1–16. [Google Scholar] [CrossRef]
- RAIS. The Risk Assessment Information System (RAIS); U.S. Department of Energy’s Oak Ridge Operations Office (ORO): Oak Ridge, TN, USA, 2021. Available online: https://rais.ornl.gov/ (accessed on 4 February 2021).
- Sezgin, N.; Ozcan, H.; Demir, G.; Nemlioglu, S.; Bayat, C. Determination of heavy metal concentrations in street dusts in Istanbul E-5 highway. Environ. Int. 2004, 29, 979–985. [Google Scholar] [CrossRef]
- Candeias, C.; Ávila, P.F.; Da Silva, E.F.; Teixeira, J.P. Integrated approach to assess the environmental impact of mining activities: Estimation of the spatial distribution of soil contamination (Panasqueira mining area, Central Portugal). Environ. Monit. Assess. 2015, 187, 22. [Google Scholar] [CrossRef]
- Qin, J.; Nworie, O.E.; Lin, C. Particle size effects on bioaccessible amounts of ingestible soil-borne toxic elements. Chemosphere 2016, 159, 442–448. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Padoan, E.; Ajmone-Marsan, F. Soil particle size fraction and potentially toxic elements bioaccessibility: A review. Ecotoxicol. Environ. Saf. 2021, 209, 111806. [Google Scholar] [CrossRef]
- Pelfrêne, A.; Douay, F. Assessment of oral and lung bioaccessibility of Cd and Pb from smelter-impacted dust. Environ. Sci. Pollut. Res. 2017, 25, 3718–3730. [Google Scholar] [CrossRef] [PubMed]
- Ollson, C.J.; Smith, E.; Scheckel, K.; Betts, A.R.; Juhasz, A. Assessment of arsenic speciation and bioaccessibility in mine-impacted materials. J. Hazard. Mater. 2016, 313, 130–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meunier, L.; Walker, S.R.; Wragg, J.; Parsons, M.B.; Koch, I.; Jamieson, H.E.; Reimer, K.J. Effects of Soil Composition and Mineralogy on the Bioaccessibility of Arsenic from Tailings and Soil in Gold Mine Districts of Nova Scotia. Environ. Sci. Technol. 2010, 44, 2667–2674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palumbo-Roe, B.; Klinck, B. Bioaccessibility of arsenic in mine waste-contaminated soils: A case study from an abandoned arsenic mine in SW England (UK). J. Environ. Sci. Health Part A 2007, 42, 1251–1261. [Google Scholar] [CrossRef] [Green Version]
- Antônio, D.C.; Caldeira, C.L.; Freitas, E.T.; Delbem, I.D.; Gasparon, M.; Olusegun, S.J.; Ciminelli, V.S. Effects of aluminum and soil mineralogy on arsenic bioaccessibility. Environ. Pollut. 2021, 274, 116482. [Google Scholar] [CrossRef]
- Ollson, C.J.; Smith, E.; Herde, P.; Juhasz, A.L. Influence of co-contaminant exposure on the absorption of arsenic, cadmium and lead. Chemosphere 2017, 168, 658–666. [Google Scholar] [CrossRef]
- Saini, S.; Dhania, G. Cadmium as an Environmental Pollutant: Ecotoxicological Effects, Health Hazards, and Bioremediation Approaches for Its Detoxification from Contaminated Sites. In Bioremediation of Industrial Waste for Environmental Safety; Bharagava, R., Saxena, G., Eds.; Springer: Singapore, 2020. [Google Scholar] [CrossRef]
- Mendoza, C.J.; Garrido, R.T.; Quilodrán, R.C.; Segovia, C.M.; Parada, A.J. Evaluation of the bioaccessible gastric and intestinal fractions of heavy metals in contaminated soils by means of a simple bioaccessibility extraction test. Chemosphere 2017, 176, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Leyssens, L.; Vinck, B.; Van Der Straeten, C.; Wuyts, F.; Maes, L. Cobalt toxicity in humans—A review of the potential sources and systemic health effects. Toxicology 2017, 387, 43–56. [Google Scholar] [CrossRef]
- Laxmi, V.; Kaushik, G. Toxicity of hexavalent chromium in environment, health threats, and its bioremediation and detoxification from Tannery wastewater for environmental safety. In Bioremediation of Industrial Waste for Environmental Safety; Saxena, G., Bharagava, R., Eds.; Springer: Singapore, 2020. [Google Scholar]
- Al-Sareji, O.; Grmasha, R.; Salman, J.; Hashim, K. Street dust contamination by heavy metals in Babylon governorate. J. Eng. Sci. Technol. 2021, 16, 455–469. [Google Scholar]
- Doyi, I.N.; Strezov, V.; Isley, C.F.; Yazdanparast, T.; Taylor, M.P. The relevance of particle size distribution and bioaccessibility on human health risk assessment for trace elements measured in indoor dust. Sci. Total. Environ. 2020, 733, 137931. [Google Scholar] [CrossRef]
- Han, Q.; Wang, M.; Cao, J.; Gui, C.; Liu, Y.; He, X.; He, Y.; Liu, Y. Health risk assessment and bioaccessibilities of heavy metals for children in soil and dust from urban parks and schools of Jiaozuo, China. Ecotoxicol. Environ. Saf. 2020, 191, 110157. [Google Scholar] [CrossRef]
- Nurchi, V.M.; Djordjevic, A.B.; Crisponi, G.; Alexander, J.; Bjørklund, G.; Aaseth, J. Arsenic Toxicity: Molecular Targets and Therapeutic Agents. Biomolecules 2020, 10, 235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
EF | As | Cd | Co | Cr | Cu | Fe | Pb | |
---|---|---|---|---|---|---|---|---|
SFA | max | 699 | 77 | 1.4 | 0.5 | 40 | 11 | 24 |
min | 29 | 3.4 | 0.8 | 0.2 | 4.9 | 3.5 | 1.4 | |
mean | 194 | 23 | 1.0 | 0.4 | 18 | 5.3 | 4.7 | |
Barroca | max | 189 | 19 | 1.2 | 0.6 | 21 | 7.5 | 3.2 |
min | 21 | 2.0 | 0.7 | 0.3 | 4.4 | 4.6 | 1.9 | |
mean | 80 | 7.5 | 1.0 | 0.4 | 12 | 5.7 | 2.4 | |
Casegas | max | 572 | 68 | 1.3 | 0.8 | 74 | 9.3 | 19 |
min | 5 | 0.5 | 0.6 | 0.2 | 1.4 | 3.7 | 1.2 | |
mean | 75 | 10 | 0.9 | 0.4 | 14 | 5.4 | 3.0 | |
UV | max | 494 | 63 | 1.2 | 0.7 | 119 | 15 | 3.5 |
min | 15 | 1.7 | 0.6 | 0.2 | 8.7 | 5.2 | 0.9 | |
mean | 202 | 23 | 0.9 | 0.4 | 34 | 7.6 | 1.7 |
ID | GIng | GTotal | GIIng | GITotal | PTIng | PTTotal |
---|---|---|---|---|---|---|
SFA1 | 1.34 × 10−6 | 1.62 × 10−6 | 1.19 × 10−6 | 1.44 × 10−6 | 8.83 × 10−4 | 1.07 × 10−3 |
SFA2 | 7.18 × 10−7 | 8.71 × 10−7 | 5.45 × 10−7 | 6.61 × 10−7 | 5.61 × 10−4 | 6.80 × 10−4 |
B1 | 2.72 × 10−6 | 3.30 × 10−6 | 2.48 × 10−6 | 3.00 × 10−6 | 1.29 × 10−4 | 1.56 × 10−4 |
B2 | 2.23 × 10−7 | 2.70 × 10−7 | 2.23 × 10−7 | 2.70 × 10−7 | 7.08 × 10−5 | 8.59 × 10−5 |
C1 | 8.42 × 10−6 | 1.02 × 10−5 | 8.92 × 10−6 | 1.08 × 10−5 | 1.60 × 10−4 | 1.94 × 10−4 |
C2 | 4.95 × 10−6 | 6.01 × 10−6 | 5.20 × 10−6 | 6.31 × 10−6 | 5.67 × 10−4 | 6.87 × 10−4 |
UV1 | 1.66 × 10−6 | 2.01 × 10−6 | 1.88 × 10−6 | 2.28 × 10−6 | 4.40 × 10−4 | 5.34 × 10−4 |
UV2 | 2.38 × 10−6 | 2.88 × 10−6 | 2.48 × 10−6 | 3.00 × 10−6 | 2.29 × 10−4 | 2.78 × 10−4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Candeias, C.; Ávila, P.F.; Ferreira da Silva, E.; Rocha, F. Metal(Loids) Bioaccessibility in Road Dust from the Surrounding Villages of an Active Mine. Atmosphere 2021, 12, 685. https://doi.org/10.3390/atmos12060685
Candeias C, Ávila PF, Ferreira da Silva E, Rocha F. Metal(Loids) Bioaccessibility in Road Dust from the Surrounding Villages of an Active Mine. Atmosphere. 2021; 12(6):685. https://doi.org/10.3390/atmos12060685
Chicago/Turabian StyleCandeias, Carla, Paula F. Ávila, Eduardo Ferreira da Silva, and Fernando Rocha. 2021. "Metal(Loids) Bioaccessibility in Road Dust from the Surrounding Villages of an Active Mine" Atmosphere 12, no. 6: 685. https://doi.org/10.3390/atmos12060685
APA StyleCandeias, C., Ávila, P. F., Ferreira da Silva, E., & Rocha, F. (2021). Metal(Loids) Bioaccessibility in Road Dust from the Surrounding Villages of an Active Mine. Atmosphere, 12(6), 685. https://doi.org/10.3390/atmos12060685