Impact of Assimilating Ground-Based Microwave Radiometer Data on the Precipitation Bifurcation Forecast: A Case Study in Beijing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Belt-Shaped Echo Splitting Case
2.2. Data Processing of Ground-Based Microwave Radiometer
2.3. Experiment Design
3. Results
3.1. Impact of Assimilated Ground-Based Microwave Radiometer Data on Analysis Field
3.2. Impact of Ground-Based Microwave Radiometer Data Assimilation on Belt-Shaped Convection Splitting Prediction
3.3. Impact of Ground-Based Microwave Radiometer Data Assimilation on Meteorological Element Prediction before Belt-Shaped Convection Splitting
4. Discussion
5. Conclusions
- (1)
- Assimilating the ground-based microwave radiometer data can improve the initial field to a certain extent. In view of this process, the vertical structure configuration of temperature field and humidity field was improved, which plays an important role in correcting the forecast bias of the model, addressing the deficiency of the model to a certain extent. The RMAPS-ST model system can provide a good simulation of the selected rainfall case assimilating the MWRPS data in Beijing. It can prominently reproduce the observed urban heat island of the main urban area in Beijing prior to the start of this rainfall, thus reproducing the forecast of short-term cumulative precipitation bifurcation in the urban area. The simulated precipitation, radar reflectivity and surface temperature, specific humidity, and wind speed are all closer to the observation compared to the Control experiment. The urban effect on rainfall in Beijing cannot be neglected;
- (2)
- Different assimilation cycles have their corresponding improvement impacts on the initial field. The closer the assimilation cycle is, the more effective the precipitation forecast is. The MWRPS test valid from 0600 UTC has the best prediction effect, which is attributed to the thermodynamic condition under which the ground-based microwave radiometer data can be adjusted in time by cyclic assimilation. After the data of ground-based microwave radiometers are assimilated, the observed weak heat island phenomenon is better reproduced. The simulated surface temperature, specific humidity, and wind speed are also closer to the observation prior to the start of rainfall. The model not only prominently improves the forecast of precipitation distribution, but also makes the precipitation intensity prediction closer to the actual situation, and accurately predicts the process of belt-shaped echo splitting and precipitation bifurcation process in Beijing urban area;
- (3)
- The belt-shaped convection echo splitting process in Beijing on 4 May 2019 shows that the assimilation of ground-based microwave radiometer data can improve the numerical prediction of this process, and makes a positive contribution to improving the simulation of precipitation in this belt-shaped convection splitting process. It indicates that the assimilation of ground-based microwave radiometer data have a bright application prospect in numerical models. Assimilating MWRPS data is of great importance for numerical models, improving the quality of the initial conditions and the subsequent forecasts. This rainfall event can also help us understand the effect of urban surface on the rainfall system under weak urban heat island conditions.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Westwater, E.R. Ground-based Microwave Remote Sensing of Meteorological Variables. In Atmospheric Remote Sensing by Microwave Radiometry; Janssen, M.A., Ed.; Wiley: New York, NY, USA, 1993; pp. 145–213. [Google Scholar]
- Lohnert, U.; Maier, O. Operational Profiling of Temperature Using Ground-based Microwave Radiometry at Payerne: Prospects and Challenges. Atmos. Meas. Tech. 2012, 5, 1121–1134. [Google Scholar] [CrossRef] [Green Version]
- Martinet, P.; Cimini, D.; De Angelis, F.; Canut, G.; Unger, V.; Guillot, R.; Tzanos, D.; Paci, A. Combining ground-based microwave radiometer and the AROME convective scale model through 1DVAR retrievals in complex terrain: An Alpine valley case study. Atmos. Meas. Tech. 2017, 10, 3385–3402. [Google Scholar] [CrossRef] [Green Version]
- Cimini, D.; Campos, E.; Ware, R.; Albers, S.; Giuliani, G.; Oreamuno, J.; Joe, P.; Koch, S.E.; Cober, S.; Westwate, E. Thermodynamic Atmospheric Profiling during the 2010 Winter Olympics Using Ground-based Microwave Radiometry. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4959–4969. [Google Scholar] [CrossRef]
- Cimini, D.; Nelson, M.; Guldner, J.; Ware, R. Forecast Indices from a Ground-based Microwave Radiometer for Operational Meteorology. Atmos. Meas. Tech. 2015, 8, 315–333. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Heygster, G.; Zhang, S.P. Comparison of CloudSat Cloud Liquid Water Paths in Arctic Summer Using Ground-Based Microwave Radiometer. J. Ocean. Univ. China 2010. (In Chinese) [Google Scholar] [CrossRef]
- Qiu, J.H.; Chen, H.B.; Wang, P.C.; Liu, Y.; Xia, X.A. Recent Progress in Atmospheric Observation Research in China. Adv. in Atmos. Sci. 2007, 24, 940–953. [Google Scholar] [CrossRef]
- Illingworth, A.J.; Cimini, D.; Haefele, A.; Haeffelin, M.; Hervo, M.; Kotthaus, S.; Löhnert, U.; Martinet, P.; Mattis, I.; O’Connor, E.J.; et al. How Can Existing Ground-Based Profiling Instruments Improve European Weather Forecasts? Bull. Am. Meteor. Soc. 2019. [Google Scholar] [CrossRef]
- Guo, L.J.; Guo, X.L.; Fang, C.G.; Zhu, S.C. Observation analysis on characteristics of formation, evolution and transition of a long-lasting severe fog and haze episode in North China. Sci. China Earth Sci. 2015, 58, 329–344. (In Chinese) [Google Scholar] [CrossRef]
- Hartung, D.C.; Otkin, J.A.; Petersen, R.A.; Turner, D.D.; Feltz, W.F. Assimilation of Surface-based Boundary-layer Profiler Observations during a Cool Season Weather Event Using an Observing System Simulation Experiment. Part II: Forecast Assessment. Mon. Weather Rev. 2011, 139, 2327–2346. [Google Scholar] [CrossRef]
- Vandenberghe, F.; Ware, R. Four-dimensional variational assimilation of ground-based microwave observations during a winter fog event. In Proceedings of the International Workshop on GPS Meteorology, International Symposium on Atmospheric Sensing with GPS, Tsukuba, Japan, 14–17 January 2003. [Google Scholar]
- Caumont, O.; Cimini, D.; Lohnert, U.; Alados-Arboledas, L.; Bleisch, R.; Buffa, F.; Ferrario, M.E.; Haefele, A.; Huet, T.; Madonna, F. Assimilation of Humidity and Temperature Observations Retrieved from Ground-based Microwave Radiometers into a Convective-scale NWP Model. Q. J. R. Meteorol. Soc. 2016, 142, 2692–2704. [Google Scholar] [CrossRef] [Green Version]
- Otkin, J.A.; Hartung, D.C.; Turner, D.D.; Petersen, R.A.; Feltz, W.F.; Janzon, E. Assimilation of surface-based boundary layer profiler observations during a cool-season weather event using an observing system simulation experiment. Part I: Analysis impact. Mon. Weather Rev. 2011, 139, 2309–2326. [Google Scholar] [CrossRef]
- Wang, Y.H.; Lai, A.W.; Zhao, Y.C. Numerical Study of an Excessive Heavy Rain Event by Assimilating Humidity Profiles Retrieved from Ground-based Microwave Radiometers. Torrential Rain Disasters 2010, 29, 201–207. (In Chinese) [Google Scholar]
- Wenying, H.; Chen, H.; Li, J. Influence of assimilating ground-based microwave radiometer data into the WRF model on precipitation. Atmos. Ocean. Sci. Lett. 2020, 13, 107–112. [Google Scholar]
- Yin, J.B.; Guo, S.L.; Gu, L.; Zeng, Z.Y.; Liu, D.D.; Chen, J.; Shen, Y.J.; Xu, C.Y. Blending multi-satellite, atmospheric reanalysis and gauge precipitation products to facilitate hydrological modelling. J. Hydrol. 2021, 593, 125878. [Google Scholar] [CrossRef]
- Zhang, L.; Li, X.; Zheng, D.; Zhang, K.; Ma, Q.; Zhao, Y.; Ge, Y. Merging multiple satellite-based precipitation products and gauge observations using a novel double machine learning approach. J. Hydrol. 2021, 594, 125969. [Google Scholar] [CrossRef]
- Kumar, A.; Ramsankaran, R.; Brocca, L.; Munoz-Arriola, F. A Machine Learning Approach for Improving Near-Real-Time Satellite-Based Rainfall Estimates by Integrating Soil Moisture. Remote Sens. 2019, 11, 2221. [Google Scholar] [CrossRef] [Green Version]
- Bhuiyan, M.A.E.; Yang, F.; Biswas, N.K.; Rahat, S.H.; Neelam, T.J. Machine learning-based error modeling to improve GPM IMERG precipitation product over the Brahmaputra river basin. Forecasting 2020, 2, 248–266. [Google Scholar] [CrossRef]
- Yagmur, D.; Bhuiyan, M.A.E.; Anagnostou, E.; Kalogiros, J.; Anagnostou, M.N. Modeling Level 2 Passive Microwave Precipitation Retrieval Error Over Complex Terrain Using a Nonparametric Statistical Technique. IEEE Trans. Geosci. Remote Sens. 2020. [Google Scholar] [CrossRef]
- Collard, A.; Hilton, F.; Forsythe, M.; Candy, B. From Observations to Forecasts—Part 8: The use of satellite observations in numerical weather prediction. Weather 2011, 66, 31–36. [Google Scholar] [CrossRef] [Green Version]
- Bromwich, D.H.; Monaghan, A.J.; Manning, K.W.; Powers, J.G. Real-time forecasting for the Antarctic: An evaluation of the Antarctic Mesoscale Prediction System (AMPS). Mon. Weather Rev. 2005, 133, 579–603. [Google Scholar] [CrossRef] [Green Version]
- Wille, J.D.; Bromwich, D.H.; Cassano, J.J.; Nigro, M.A.; Mateling, M.E.; Lazzara, M.A. Evaluation of the AMPS boundary layer simulations on the ross ice shelf, Antarctica, with unmanned aircraft observations. J. Appl. Meteorol. Climatol. 2017, 56, 2239–2258. [Google Scholar] [CrossRef]
- Atlaskin, E.; Vihma, T. Evaluation of NWP results for wintertime nocturnal boundary-layer temperatures over Europe and Finland. Quart. J. R. Meteorol. Soc. 2012, 138, 1440–1451. [Google Scholar] [CrossRef]
- Kalnay, E. Atmospheric Modeling, Data Assimilation and Predictability; Press Syndicate of the University of Cambridge: London, UK, 2003. [Google Scholar]
- Sun, J.; Trier, S.B.; Xiao, Q.; Weisman, M.L.; Wang, H.; Ying, Z.; Xu, M.; Zhang, Y. Sensitivity of 0~12-h warm-season precipitation forecasts over the Central United States to model initialization. Weather Forecast. 2012, 27, 832–855. [Google Scholar] [CrossRef]
- Xu, D.; Min, J.; Shen, F.; Ban, J.; Chen, P. Assimilation of MWHS radiance data from the FY-3B satellite with the WRF Hybrid-3DVAR system for the forecasting of binary typhoons. J. Adv. Model. Earth Syst. 2016, 8, 1014–1028. [Google Scholar] [CrossRef] [Green Version]
- Barker, D.; Huang, W.; Guo, Y.R.A. Three-dimensional Variational (3DVAR) Data Assimilation System for Use with MM5; NCAR Tech Note: Boulder, CO, USA, 2003; pp. 1–68. [Google Scholar]
- Barker, D.; Huang, W.; Guo, Y.R.; Bourgeois, J.A.; Xiao, N.Q. A three-dimensional variational data assimilation system for MM5: Implementation and initial results. Mon. Weather Rev. 2004, 132, 897–914. [Google Scholar] [CrossRef] [Green Version]
- Barker, D.; Huang, X.Y.; Liu, Z.; Auligné, T.; Zhang, X.; Rugg, S.; Ajjaji, R.; Bourgeois, A.; Bray, J.; Chen, Y. The weather research and forecasting (WRF) model’s community variational/ensemble data assimilation system: WRFDA. Bull. Am. Meteorol. Soc. 2012, 93, 831–843. [Google Scholar] [CrossRef] [Green Version]
- Fan, S.; Wang, H.L.; Chen, M.; Gao, H. Study of the data assimilation of radar reflectivity with the WRF 3DVar. Acta Meteor. Sin. 2013, 71, 527–537. (In Chinese) [Google Scholar]
- Wilson, J.; Feng, Y.; Chen, M.; Roberts, R.D. Nowcasting challenges during the Beijing Olympics: Successes, failures, and implications for future nowcasting systems. Weather Forecast. 2010, 25, 1691–1714. [Google Scholar] [CrossRef]
- Zhang, L.; Ni, Y.Q. Four-Dimensional Variational Data Assimilation of Radar Radial Velocity Observations. Chin. J. Atmos. Sci. 2006, 30, 433–440. (In Chinese) [Google Scholar]
- Qi, Y.J.; Chen, M.; Zhong, J.Q.; Fan, S.Y.; Liu, R.T.; Guo, C.W. Effect evaluation of short-term forecast of surface meteorological elements by using RMAPS-ST coupled urban canopy model. J. Arid Meteorol. 2020, 38, 859–868. (In Chinese) [Google Scholar]
- Xie, Y.H.; Shi, J.C.; Fan, S.Y.; Dou, Y.J.; Ji, D. Impact of radiance data assimilation on the prediction of heavy rainfall in RMAPS: A case study. Remote Sens. 2018, 10, 1380. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.H.; Chen, M.; Shi, J.C.; Fan, S.Y.; He, J.; Dou, Y.J.; Ji, D. Impacts of Assimilating ATMS Radiances on Heavy Rainfall Forecast in RMAPS-ST. Remote Sens. 2020, 12, 1147. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.Y.; Noh, Y.; Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef] [Green Version]
- Pincus, R.; Mlawer, E.J.; Oreopoulos, L.; Ackerman, A.S.; Baek, S.; Brath, M.; Buehler, S.A.; Cady-Pereira, K.E.; Cole, J.N.S.; Dufresne, J.L. Radiative flux and forcing parameterization error in aerosol-free clear skies. Geophys. Res. Lett. 2015, 42, 5485–5492. [Google Scholar] [CrossRef] [Green Version]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. 1997, 102, 16663–16682. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Wang, H.; Tong, W.; Zhang, Y.; Xu, D. Comparison of the impacts of momentum control variables on high-resolution variational data assimilation and precipitation forecasting. Mon. Weather Rev. 2015, 144, 149–169. [Google Scholar] [CrossRef]
- Parrish, D.F.; Derber, J.C. The national meteorological center’s spectral statistical-interpolation analysis system. Mon. Weather Rev. 1992, 120, 1747–1763. [Google Scholar] [CrossRef]
- Hsiao, L.F.; Chen, D.S.; Kuo, Y.H.; Guo, Y.R.; Yeh, T.C.; Hong, J.S.; Fong, C.T. Application of WRF 3DVAR to operational typhoon prediction in Taiwan: Impact of outer loop and partial cycling approaches. Weather Forecast. 2012, 27, 1249–1263. [Google Scholar] [CrossRef]
- Zhang, Y.; Miao, S.; Dai, Y.; Bornstein, R. Numerical simulation of urban land surface effects on summer convective rainfall under different UHI intensity in Beijing. J. Geophys. Res. Atmos. 2017, 122, 7851–7868. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, X.; Zuo, L.; Zhang, Z.; Wang, X.; Yi, L.; Liu, F.; Xu, J. Spatial Differentiation of Land Use and Landscape Pattern Changes in the Beijing–Tianjin–Hebei Area. Sustainability 2020, 12, 3040. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Huang, G.; Qi, Y.J.; Jia, G.S. Impact of urbanization on summer rainfall in Beijing-Tianjin-Hebei metropolis under different climate backgrounds. Theor. Appl. Climatol. 2018, 133, 1093–1106. [Google Scholar] [CrossRef]
- Lin, D.W.; Bueh, C.L.; Xie, Z.W. A study on the coupling relationships among Pacific sea surface temperature and summer rainfalls over North China and India. Chin. J. Atmos. Sci. 2018, 42, 1175–1190. (In Chinese) [Google Scholar]
- Dou, J.; Wang, Y.; Bornstein, R.D.; Miao, S. Observed spatial characteristics of Beijing urban climate impacts on summer thunderstorms. J. Appl. Meteorol. Climatol. 2015, 54, 94–105. [Google Scholar] [CrossRef]
- Bornstein, R.D. Establishment of meso-met modeling case studies to evaluate the relative roles of urban dynamics and aerosols on summer thunderstorms: A proposal. In Proceedings of the 18th Conference on Planned and Inadvertent Weather Modification, and Third Symposium on Aerosol–Cloud–Climate Interactions, San Jose, CA, USA, 27 January 2011. [Google Scholar]
- Song, H.O.; Wang, Y.H.; Gu, S.Q.; Liu, J.X. An experiment on forecasting metaphase precipitation using K-exponent and Tot-exponent. Sci. Meteorol. Sin. 2002, 22, 242–246. (In Chinese) [Google Scholar]
- Gao, Y.D.; Wan, Q.L.; Xue, J.S. Effects of assimilating radar rainfall rate estimation on torrential rain forecast. J. Appl. Meteorol. Sci. 2015, 26, 45–56. (In Chinese) [Google Scholar]
Experiment | 2 m Temperature(°C) | 2 m Specific Humidity (g/kg) | 10 m Wind Speed(m/s) | |||
---|---|---|---|---|---|---|
Bias | RMSE | Bias | RMSE | Bias | RMSE | |
Control | 1.65 | 1.67 | −0.43 | 0.59 | 1.21 | 1.32 |
MWRPS | 1.05 | 1.14 | 0.74 | 0.78 | −0.32 | 0.59 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, Y.; Fan, S.; Mao, J.; Li, B.; Guo, C.; Zhang, S. Impact of Assimilating Ground-Based Microwave Radiometer Data on the Precipitation Bifurcation Forecast: A Case Study in Beijing. Atmosphere 2021, 12, 551. https://doi.org/10.3390/atmos12050551
Qi Y, Fan S, Mao J, Li B, Guo C, Zhang S. Impact of Assimilating Ground-Based Microwave Radiometer Data on the Precipitation Bifurcation Forecast: A Case Study in Beijing. Atmosphere. 2021; 12(5):551. https://doi.org/10.3390/atmos12050551
Chicago/Turabian StyleQi, Yajie, Shuiyong Fan, Jiajia Mao, Bai Li, Chunwei Guo, and Shuting Zhang. 2021. "Impact of Assimilating Ground-Based Microwave Radiometer Data on the Precipitation Bifurcation Forecast: A Case Study in Beijing" Atmosphere 12, no. 5: 551. https://doi.org/10.3390/atmos12050551
APA StyleQi, Y., Fan, S., Mao, J., Li, B., Guo, C., & Zhang, S. (2021). Impact of Assimilating Ground-Based Microwave Radiometer Data on the Precipitation Bifurcation Forecast: A Case Study in Beijing. Atmosphere, 12(5), 551. https://doi.org/10.3390/atmos12050551