Visibility Prediction over South Korea Based on Random Forest
Abstract
:1. Introduction
2. Data and Research Methods
2.1. Datasets
2.2. Evaluation of Predictions
2.3. Random Forest (RF) Model Sets
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WMO. Guide to Meteorological Instruments and Methods of Observation; World Meteorological Organization: Geneva, Switzerland, 2014. [Google Scholar]
- Lee, Z.; Shang, S. Visibility: How Applicable is the Century-Old Koschmieder Model? J. Atmos. Sci. 2016, 73, 4573–4581. [Google Scholar] [CrossRef]
- Kim, M.; Lee, K.; Lee, Y.H. Visibility Data Assimilation and Prediction Using an Observation Network in South Korea. Pure Appl. Geophys. PAGEOPH 2020, 177, 1125–1141. [Google Scholar] [CrossRef]
- Watson, J.G. Visibility: Science and Regulation. J. Air Waste Manag. Assoc. 2002, 52, 628–713. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Fu, C.; Zhang, L.; Tang, J. Trends of visibility on sunny days in China in the recent 50 years. Atmos. Environ. 2012, 55, 339–346. [Google Scholar] [CrossRef]
- Liu, F.; Tan, Q.; Jiang, X.; Yang, F.; Jiang, W. Effects of relative humidity and PM2.5 chemical compositions on visibility impairment in Chengdu, China. J. Environ. Sci. 2019, 86, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Ma, X.; He, Y.; Jiang, J.; Wang, X.; Wang, Y.; Sheng, L.; Hu, J.; Yan, N. Mass extinction efficiency and extinction hygroscopicity of ambient PM2.5 in urban China. Environ. Res. 2017, 156, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhao, Z.; Wang, H.; Wang, Y.; Liu, N.; Li, X.; Ma, Y. Concentrations of Four Major Air Pollutants among Ecological Functional Zones in Shenyang, Northeast China. Atmosphere 2020, 11, 1070. [Google Scholar] [CrossRef]
- Thach, T.Q.; Wong, C.M.; Chan, K.P.; Chau, Y.K.; Chung, Y.N.; Ou, C.Q.; Yang, L.; Hedley, A.J. Daily visibility and mortality: Assessment of health benefits from improved visibility in Hong Kong. Environ. Res. 2010, 110, 617–623. [Google Scholar] [CrossRef]
- Huang, H.; Zhang, G. Case Studies of Low-Visibility Forecasting in Falling Snow With WRF Model. J. Geophys. Res. Atmos. 2017, 122, 12–862. [Google Scholar] [CrossRef]
- Wu, X.; Wang, Y.; He, S.; Wu, Z. PM 2.5/PM 10 ratio prediction based on a long short-term memory neural network in Wuhan, China. Geosci. Model Dev. 2020, 13, 1499–1511. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; George, J.P.; Iyengar, G.R. Prediction of fog/visibility over India using NWP Model. J. Earth Syst. Sci. 2018, 127, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Fita, L.; Polcher, J.; Giannaros, T.M.; Lorenz, T.; Milovac, J.; Sofiadis, G.; Katragkou, E.; Bastin, S. CORDEX-WRF v1. 3: De-velopment of a module for the Weather Research and Forecasting (WRF) model to support the CORDEX community. Geosci. Model Dev. 2019, 12, 1029–1066. [Google Scholar] [CrossRef] [Green Version]
- Bang, C.H.; Lee, J.W.; Hong, S.Y. Predictability experiments of fog and visibility in local airports over Korea using the WRF model. J. Korean Soc. Atmos. 2008, 24, 92–101. [Google Scholar]
- Gultepe, I.; Milbrandt, J.A.; Zhou, B. Marine Fog: A Review on Microphysics and Visibility Prediction. In Marine Fog: Challenges and Advancements in Observations, Modeling, and Forecasting; Springer Science and Business Media LLC: Berlin, Germany, 2017; pp. 345–394. [Google Scholar]
- Cornejo-Bueno, S.; Casillas-Pérez, D.; Cornejo-Bueno, L.; Chidean, M.I.; Caamaño, A.J.; Sanz-Justo, J.; Casanova-Mateo, C.; Salcedo-Sanz, S. Persistence Analysis and Prediction of Low-Visibility Events at Valladolid Airport, Spain. Symmetry 2020, 12, 1045. [Google Scholar] [CrossRef]
- Gultepe, I.; Zhou, B.; Milbrandt, J.A.; Bott, A.; Li, Y.; Heymsfield, A.J.; Ferrier, B.S.; Ware, R.; Pavolonis, M.J.; Kuhn, T.S.; et al. A review on ice fog measurements and modeling. Atmos. Res. 2015, 151, 2–19. [Google Scholar] [CrossRef] [Green Version]
- Boutle, I.A.; Finnenkoetter, A.; Lock, A.P.; Wells, H. The London Model: Forecasting fog at 333 m resolution. Q. J. R. Meteorol. Soc. 2016, 142, 360–371. [Google Scholar] [CrossRef]
- Cornejo-Bueno, L.; Casanova-Mateo, C.; Sanz-Justo, J.; Cerro-Prada, E.; Salcedo-Sanz, S. Efficient Prediction of Low-Visibility Events at Airports Using Machine-Learning Regression. Bound. -Layer Meteorol. 2017, 165, 349–370. [Google Scholar] [CrossRef]
- Gultepe, I.; Müller, M.D.; Boybeyi, Z. A New Visibility Parameterization for Warm-Fog Applications in Numerical Weather Prediction Models. J. Appl. Meteorol. Clim. 2006, 45, 1469–1480. [Google Scholar] [CrossRef]
- Zhou, B.; Du, J.; Gultepe, I.; DiMego, G. Forecast of Low Visibility and Fog from NCEP: Current Status and Efforts. Pure Appl. Geophys. PAGEOPH 2011, 169, 895–909. [Google Scholar] [CrossRef]
- Zong, P.; Zhu, Y.; Wang, H.; Liu, D. WRF-Chem Simulation of Winter Visibility in Jiangsu, China, and the Application of a Neural Network Algorithm. Atmosphere 2020, 11, 520. [Google Scholar] [CrossRef]
- Wu, D.; Tie, X.; Li, C.; Ying, Z.; Lau, A.K.H.; Huang, J.; Deng, X.; Bi, X. An extremely low visibility event over the Guangzhou region: A case study. Atmos. Environ. 2005, 39, 6568–6577. [Google Scholar] [CrossRef]
- Wu, D.; Tie, X.; Deng, X. Chemical characterizations of soluble aerosols in southern China. Chemosphere 2006, 64, 749–757. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Tie, X.; Wu, D.; Zhou, X.; Bi, X.; Tan, H.; Li, F.; Jiang, C. Long-term trend of visibility and its characterizations in the Pearl River Delta (PRD) region, China. Atmos. Environ. 2008, 42, 1424–1435. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Jo, W.-K.; Chun, H.-H. Characteristics of Atmospheric Visibility and Its Relationship with Air Pollution in Korea. J. Environ. Qual. 2014, 43, 1519–1526. [Google Scholar] [CrossRef]
- Ji, D.; Deng, Z.; Sun, X.; Ran, L.; Xia, X.; Fu, D.; Song, Z.; Wang, P.; Wu, Y.; Tian, P.; et al. Estimation of PM2.5 Mass Concentration from Visibility. Adv. Atmos. Sci. 2020, 37, 671–678. [Google Scholar] [CrossRef]
- Deng, H.; Tan, H.; Li, F.; Cai, M.; Chan, P.W.; Xu, H.; Huang, X.; Wu, D. Impact of relative humidity on visibility degrada-tion during a haze event: A case study. Sci. Total Environ. 2016, 569, 1149–1158. [Google Scholar] [CrossRef]
- Luan, T.; Guo, X.; Guo, L.; Zhang, T. Quantifying the relationship between PM2.5 concentration, visibility and planetary boundary layer height for long-lasting haze and fog–haze mixed events in Beijing. Atmos. Chem. Phys. Discuss. 2018, 18, 203–225. [Google Scholar] [CrossRef] [Green Version]
- Lagrosas, N.; Bagtasa, G.; Manago, N.; Kuze, H. Influence of Ambient Relative Humidity on Seasonal Trends of the Scatter-ing Enhancement Factor for Aerosols in Chiba, Japan. Aerosol Air Qual. Res. 2019, 19, 1856–1871. [Google Scholar] [CrossRef] [Green Version]
- Guo, B.; Wang, Y.; Zhang, X.; Che, H.; Zhong, J.; Chu, Y.; Cheng, L. Temporal and spatial variations of haze and fog and the characteristics of PM2.5 during heavy pollution episodes in China from 2013 to 2018. Atmos. Pollut. Res. 2020, 11, 1847–1856. [Google Scholar] [CrossRef]
- Jung, J.; Lee, H.; Kim, Y.J.; Liu, X.; Zhang, Y.; Hu, M.; Sugimoto, N. Optical properties of atmospheric aerosols obtained by in situ and remote measurements during 2006 Campaign of Air Quality Research in Beijing (CAREBeijing-2006). J. Geophys. Res. Space Phys. 2009, 114, D2. [Google Scholar] [CrossRef]
- Gültepe, I.; Milbrandt, J.A. Probabilistic Parameterizations of Visibility Using Observations of Rain Precipitation Rate, Relative Humidity, and Visibility. J. Appl. Meteorol. Clim. 2010, 49, 36–46. [Google Scholar] [CrossRef]
- Du, K.; Mu, C.; Deng, J.; Yuan, F. Study on atmospheric visibility variations and the impacts of meteorological parameters using high temporal resolution data: An application of Environmental Internet of Things in China. Int. J. Sustain. Dev. World Ecol. 2013, 20, 238–247. [Google Scholar] [CrossRef]
- Dehghan, M.; Omidvar, K.; Mozafari, G.; Mazidi, A. Estimation of Relationship Between Aerosol Optical Depth, PM10 and Visibility in Separation of Synoptic Codes, As Important Parameters in Researches Connected to Aerosols; Using Genetic Algorithm in Yazd. Int. J. Environ. Sci. Nat. Resour. 2017, 7, 108–116. [Google Scholar]
- Stirnberg, R.; Cermak, J.; Andersen, H. An Analysis of Factors Influencing the Relationship between Satellite-Derived AOD and Ground-Level PM10. Remote. Sens. 2018, 10, 1353. [Google Scholar] [CrossRef] [Green Version]
- Ortega, L.; Otero, L.D.; Otero, C. Application of Machine Learning Algorithms for Visibility Classification. In Proceedings of the 2019 IEEE International Systems Conference (SysCon), Orlando, FL, USA, 8–11 April 2019; pp. 1–5. [Google Scholar]
- Bari, D. Visibility Prediction Based on Kilometric NWP Model Outputs Using Machine-Learning Regression. In Proceedings of the 2018 IEEE 14th International Conference on E-Science (E-Science), Amsterdam, The Netherlands, 29 October–1 November 2018; p. 278. [Google Scholar]
- Pal, M.; Mather, P.M. An assessment of the effectiveness of decision tree methods for land cover classification. Remote. Sens. Environ. 2003, 86, 554–565. [Google Scholar] [CrossRef]
- Martínez, F.; Frías, M.P.; Charte, F.; Rivera, A.J. Time Series Forecasting with KNN in R: The tsfknn Package. R J. 2019, 11, 229–242. [Google Scholar] [CrossRef]
- Karatzoglou, A.; Meyer, D.; Hornik, K. Support vector machines in R. J. Stat. Softw. 2006, 15, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Al Banna, M.H.; Taher, K.A.; Kaiser, M.S.; Mahmud, M.; Rahman, M.S.; Hosen, A.S.; Cho, G.H. Application of artificial intel-ligence in predicting earthquakes: State-of-the-art and future challenges. IEEE Access 2020, 8, 192880–192923. [Google Scholar] [CrossRef]
- Singh, B.; Sihag, P.; Singh, K. Modelling of impact of water quality on infiltration rate of soil by random forest regression. Model. Earth Syst. Environ. 2017, 3, 999–1004. [Google Scholar] [CrossRef]
- Joharestani, M.Z.; Cao, C.; Ni, X.; Bashir, B.; Talebiesfandarani, S. PM2.5 Prediction Based on Random Forest, XGBoost, and Deep Learning Using Multisource Remote Sensing Data. Atmosphere 2019, 10, 373. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Wright, M.N.; Ziegler, A. Ranger: A fast implementation of random forests for high dimensional data in C++ and R. J. Stat. Softw. 2017, 77, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Akritidis, D.; Antonakaki, T.; Blechschmidt, M.; Clark, H.; Gielen, C.; Hendrick, F.; Kapsomenakis, J.; Kartsios, S.; Kat-ragkou, E.; Melas, D. Validation of the CAMS Regional Services: Concentrations above the Surface; Copernicus Atmosphere Monitoring Service: Reading, UK, 2017. [Google Scholar]
- Bozzo, A.; Benedetti, A.; Flemming, J.; Kipling, Z.; Rémy, S. An aerosol climatology for global models based on the tropo-spheric aerosol scheme in the Integrated Forecasting System of ECMWF. Geosci. Model Dev. 2020, 13, 1007–1034. [Google Scholar] [CrossRef]
- Alexandrov, M.D.; Lacis, A.A.; Carlson, B.E.; Cairns, B. Remote Sensing of Atmospheric Aerosols and Trace Gases by Means of Multifilter Rotating Shadowband Radiometer. Part I: Retrieval Algorithm. J. Atmos. Sci. 2002, 59, 524–543. [Google Scholar] [CrossRef]
- Yuan, C.S.; Lee, C.G.; Liu, S.H.; Chang, J.C.; Yuan, C.; Yang, H.Y. Correlation of atmospheric visibility with chemical com-position of Kaohsiung aerosols. Atmos. Res. 2006, 82, 663–679. [Google Scholar] [CrossRef]
- Da Silva, A.M.; Randles, C.A.; Buchard, V.; Darmenov, A.; Colarco, P.R.; Govindaraju, R. File Specification for the MERRA Aer-osol Reanalysis (MERRAero); National Aeronautics and Space Administration: Washington, DC, USA, 2015. [Google Scholar]
- Gelaro, R.; Mccarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef]
- Yang, K.-L. Spatial and seasonal variation of PM10 mass concentrations in Taiwan. Atmos. Environ. 2002, 36, 3403–3411. [Google Scholar] [CrossRef]
- Huijnen, V.; Eskes, H.J.; Wagner, A.; Schulz, M.; Christophe, Y.; Ramonet, M.; Basart, S.; Benedictow, A.; Blechschmidt, A.M.; Chabrillat, S.; et al. Validation Report of the CAMS Near-Real-Time Global Atmospheric Composition Service: System Evolution and Performance Statistics; Copernicus Atmosphere Monitoring Service: Reading, UK, 2016. [Google Scholar]
- Gueymard, C.A.; Yang, D. Worldwide validation of CAMS and MERRA-2 reanalysis aerosol optical depth products using 15 years of AERONET observations. Atmos. Environ. 2020, 225, 117216. [Google Scholar] [CrossRef]
- Rontu, L.; Gleeson, E.; Martin Perez, D.; Pagh Nielsen, K.; Toll, V. Sensitivity of radiative fluxes to aerosols in the ALA-DIN-HIRLAM numerical weather prediction system. Atmosphere 2020, 11, 205. [Google Scholar] [CrossRef] [Green Version]
- Cullen, M.J.P. The unified forecast/climate model. Meteorol. Mag. 1993, 122, 81–94. [Google Scholar]
- Vaisala. User’s guide: Present Weather Detector PWD22. M210543EN-B January 2004, Vaisala Oyj, Finland. Available online: https://www.vaisala.com/en/products/instruments-sensors-and-other-measurement-devices/weather-stations-and-sensors/pwd22-52 (accessed on 1 March 2021).
- Biral. VPF-730: Visibility & Present Weather Sensor. Available online: https://www.biral.com/product/vpf-730-visibility-present-weather-sensor (accessed on 1 March 2021).
- Prasanna, V.; Choi, H.W.; Jung, J.; Lee, Y.G.; Kim, B.J. High-Resolution Wind Simulation over Incheon International Airport with the Unified Model’s Rose Nesting Suite from KMA Operational Forecasts. Asia-Pacific J. Atmos. Sci. 2018, 54, 187–203. [Google Scholar] [CrossRef]
- Kim, E.-H.; Lee, E.; Lee, S.-W.; Lee, Y.H. Characteristics and Effects of Ground-Based GNSS Zenith Total Delay Observation Errors in the Convective-Scale Model. J. Meteorol. Soc. Jpn. 2019, 97, 1009–1021. [Google Scholar] [CrossRef] [Green Version]
- Shin, J.Y.; Kim, B.-Y.; Park, J.; Kim, K.R.; Cha, J.W. Prediction of Leaf Wetness Duration Using Geostationary Satellite Obser-vations and Machine Learning Algorithms. Remote Sens. 2020, 12, 3076. [Google Scholar] [CrossRef]
- Oshiro, T.M.; Perez, P.S.; Baranauskas, J.A. How Many Trees in A Random Forest? In International Workshop on Machine Learning and Data Mining in Pattern Recognition; Springer: Berlin/Heidelberg, Germany, 2012; pp. 154–168. [Google Scholar]
- Qu, W.; Wang, J.; Zhang, X.; Wang, D.; Sheng, L. Influence of relative humidity on aerosol composition: Impacts on light extinction and visibility impairment at two sites in coastal area of China. Atmos. Res. 2015, 153, 500–511. [Google Scholar] [CrossRef]
- Bai, D.; Wang, H.; Tan, Y.; Yin, Y.; Wu, Z.; Guo, S.; Shen, L.; Zhu, B.; Wang, J.; Kong, X. Optical Properties of Aerosols and Chemical Composition Apportionment under Different Pollution Levels in Wuhan during January 2018. Atmosphere 2019, 11, 17. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Lu, Y. Bias-corrected random forests in regression. J. Appl. Stat. 2012, 39, 151–160. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Huang, J.Z.; Nguyen, T.T. Two-level quantile regression forests for bias correction in range prediction. Mach. Learn. 2015, 101, 325–343. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.-Y.; Cha, J.W.; Ko, A.-R.; Jung, W.; Ha, J.-C. Analysis of the Occurrence Frequency of Seedable Clouds on the Korean Peninsula for Precipitation Enhancement Experiments. Remote. Sens. 2020, 12, 1487. [Google Scholar] [CrossRef]
- Kim, B.-Y.; Cha, J.W. Cloud Observation and Cloud Cover Calculation at Nighttime Using the Automatic Cloud Observa-tion System (ACOS) Package. Remote Sens. 2020, 12, 2314. [Google Scholar] [CrossRef]
- Kim, B.-Y.; Cha, J.; Jung, W.; Ko, A.-R. Precipitation Enhancement Experiments in Catchment Areas of Dams: Evaluation of Water Resource Augmentation and Economic Benefits. Remote. Sens. 2020, 12, 3730. [Google Scholar] [CrossRef]
- Bodor, Z.; Bodor, K.; Keresztesi, Á.; Szép, R. Major air pollutants seasonal variation analysis and long-range transport of PM10 in an urban environment with specific climate condition in Transylvania (Romania). Environ. Sci. Pollut. Res. 2020, 27, 38181–38199. [Google Scholar] [CrossRef]
- Verma, N.; Lakhani, A.; Kumari, K.M. Synergistic relationship between surface ozone and meteorological parameters: A case study. In Proceedings of the 2016 IEEE Region 10 Humanitarian Technology Conference (R10-HTC), Agra, India, 21–23 December 2016; pp. 1–6. [Google Scholar]
- Lee, H.-J.; Jo, H.-Y.; Kim, S.-W.; Park, M.-S.; Kim, C.-H. Impacts of atmospheric vertical structures on transboundary aerosol transport from China to South Korea. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef]
- Heim, E.; Dibb, J.; Scheuer, E.; Jost, P.C.; Nault, B.; Jimenez, J.; Peterson, D.; Knote, C.; Fenn, M.; Hair, J.; et al. Asian dust observed during KORUS-AQ facilitates the uptake and incorporation of soluble pollutants during transport to South Korea. Atmos. Environ. 2020, 224, 117305. [Google Scholar] [CrossRef]
- Lee, H.S.; Kang, C.M.; Kang, B.W.; Kim, H.K. Seasonal variations of acidic air pollutants in Seoul, South Korea. Atmos. Environ. 1999, 33, 3143–3152. [Google Scholar] [CrossRef]
- Wang, X.-K.; Lu, W.-Z. Seasonal variation of air pollution index: Hong Kong case study. Chemosphere 2006, 63, 1261–1272. [Google Scholar] [CrossRef]
- Cichowicz, R.; Wielgosiński, G.; Fetter, W. Dispersion of atmospheric air pollution in summer and winter season. Environ. Monit. Assess. 2017, 189, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.-Y.; Lee, K.-T. Radiation Component Calculation and Energy Budget Analysis for the Korean Peninsula Region. Remote. Sens. 2018, 10, 1147. [Google Scholar] [CrossRef] [Green Version]
- Bárdossy, A.; Das, T. Influence of rainfall observation network on model calibration and application. Hydrol. Earth Syst. Sci. 2008, 12, 77–89. [Google Scholar] [CrossRef] [Green Version]
- Rakovec, O.; Weerts, A.H.; Hazenberg, P.; Torfs, P.J.J.F.; Uijlenhoet, R. State updating of a distributed hydrological model with Ensemble Kalman Filtering: Effects of updating frequency and observation network density on forecast accuracy. Hydrol. Earth Syst. Sci. 2012, 16, 3435–3449. [Google Scholar] [CrossRef] [Green Version]
- Iwashita, H.; Kobayashi, F. Transition of meteorological variables while downburst occurrence by a high density ground surface observation network. J. Wind. Eng. Ind. Aerodyn. 2019, 184, 153–161. [Google Scholar] [CrossRef]
ASOS Observation Variables (7) |
2 m temperature (°C, T), 2 m relative humidity (%, RH), 10 m wind direction (°, WD), 10 m wind speed (m/s, WS), precipitation (mm), pressure (hPa, P), and visibility (km) |
ASOS Observation Sites (72) |
ASOS sites (24) using Biral VPF730 visibility sensor: Sokcho (#90), Cheorwon (#95), Dongducheon (#98), Incheon (#112), Ulleungdo (#115), Cheongju (#131), Daejeon (#133), Changwon (#155), Yeosu (#168), Jeju (#184), Seongsan (#188), Seogwipo (#189), Ganghwa (#201), Boeun (#226), Cheonan (#232), Buan (#243), Namwon (#247), Jangheung (#260), Haenam (#261), Mungyeong (#273), Yeongcheon (#281), Geochang (#284), Miryang (#288), and Sancheong (#289) ASOS sites (48) using Vaisala PWD22 visibility sensor: Daegwallyeong (#100), Chuncheon (#101), Baengnyeongdo (#102), Bukgangneung (#104), Donghae (#106), Seoul (#108), Wonju (#114), Suwon (#119), Yeongwol (#121), Chungju (#127), Uljin (#130), Chupungnyeong (#135), Andong (#136), Pohang (#138), Gunsan (#140), Daegu (#143), Jeonju (#146), Ulsan (#152), Gwangju (#156), Busan (#159), Tongyeong (#162), Mokpo (#165), Heuksando (#169), Wando (#170), Suncheon (#174), Gosan (#185), Jinju (#192), Yangpyeong (#202), Icheon (#203), Taebaek (#216), Jecheon (#221), Boryeong (#235), Buyeo (#236), Geumsan (#238), Imsil (#244), Jeongeup (#245), Jangsu (#248), Goheung (#262), Jindogun (#268), Bongwhoa (#271), Yeongju (#272), Yeongdeok (#277), Uiseong (#278), Gumi (#279), Hapcheon (#285), Geoje (#294), Namhae (#295), and KMA (#410) |
CAMS Forecasting Variables (9) |
Sea salt (μg/, SS), dust (μg/, DU), organic matter (μg/, OM), black carbon (μg/, BC), sulfate (μg/, SU), (μg/), (μg/), (μg/), and CO (μg/) at 1000 hPa level |
Etc. Variables (5) |
Longitude (°), latitude (°), site height (m), month (1–12), and Julian day (1–365) |
Month | Model | Bias (km) | RMSE (km) | R | VISASOS (km) | T (°C) | P (hPa) | RH (%) | WS (m/s) | Precip. (mm) | SS | DU | OM | BC | SU | O3 | NO2 | SO2 | CO |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(μg/m3) | |||||||||||||||||||
1 | LDAPS | 3.59 | 5.67 | 0.54 | 14.14 | 0.48 | 1011.7 | 54.66 | 2.07 | 0.16 (2.75) | 21.48 | 2.01 | 32.32 | 2.90 | 11.08 | 42.28 | 30.15 | 25.82 | 491.81 |
RF | 0.61 | 2.23 | 0.91 | ||||||||||||||||
2 | LDAPS | 5.22 | 7.16 | 0.40 | 12.77 | 2.58 | 1010.1 | 57.97 | 2.02 | 0.31 (4.60) | 18.29 | 4.85 | 45.18 | 3.82 | 13.70 | 49.10 | 31.98 | 28.07 | 549.96 |
RF | 0.56 | 2.36 | 0.90 | ||||||||||||||||
3 | LDAPS | 5.35 | 7.28 | 0.47 | 12.61 | 7.45 | 1003.8 | 60.09 | 2.28 | 0.29 (5.36) | 23.41 | 7.63 | 45.49 | 3.77 | 15.59 | 59.83 | 29.88 | 23.75 | 553.53 |
RF | 0.19 | 2.76 | 0.86 | ||||||||||||||||
4 | LDAPS | 3.15 | 5.69 | 0.27 | 15.22 | 11.90 | 1001.7 | 63.44 | 1.96 | 0.54 (6.01) | 18.58 | 9.57 | 38.04 | 3.15 | 10.23 | 66.76 | 28.36 | 21.01 | 456.97 |
RF | −1.14 | 2.96 | 0.79 | ||||||||||||||||
5 | LDAPS | 1.81 | 4.75 | 0.35 | 15.88 | 18.26 | 999.1 | 58.21 | 2.05 | 0.64 (4.49) | 21.42 | 6.36 | 36.99 | 3.10 | 11.62 | 84.50 | 25.51 | 19.94 | 448.95 |
RF | −0.78 | 2.52 | 0.78 | ||||||||||||||||
6 | LDAPS | 4.70 | 7.17 | 0.11 | 13.54 | 20.97 | 994.6 | 75.16 | 1.68 | 0.91 (6.94) | 15.92 | 7.34 | 37.84 | 3.10 | 9.14 | 77.55 | 26.07 | 17.07 | 406.24 |
RF | −0.74 | 3.13 | 0.74 | ||||||||||||||||
7 | LDAPS | 4.33 | 6.91 | 0.28 | 13.25 | 24.44 | 994.1 | 81.18 | 1.89 | 0.93 (9.86) | 25.86 | 4.58 | 20.93 | 1.27 | 5.97 | 64.50 | 21.78 | 8.81 | 260.63 |
RF | 0.18 | 3.28 | 0.75 | ||||||||||||||||
8 | LDAPS | 3.25 | 5.86 | 0.22 | 14.60 | 25.72 | 994.2 | 79.62 | 1.67 | 0.73 (7.28) | 34.46 | 5.42 | 18.95 | 0.92 | 6.08 | 66.05 | 26.07 | 10.34 | 299.69 |
RF | 0.04 | 2.91 | 0.72 | ||||||||||||||||
9 | LDAPS | 3.21 | 5.84 | 0.33 | 14.88 | 21.44 | 1001.6 | 81.96 | 1.73 | 1.00 (9.83) | 58.59 | 3.66 | 14.69 | 0.84 | 3.29 | 51.82 | 27.23 | 10.90 | 267.81 |
RF | 0.17 | 3.26 | 0.71 | ||||||||||||||||
10 | LDAPS | 2.83 | 5.31 | 0.35 | 15.53 | 15.50 | 1005.4 | 75.43 | 1.79 | 1.45 (4.47) | 56.24 | 7.73 | 14.04 | 0.83 | 3.26 | 45.85 | 26.46 | 11.90 | 265.93 |
RF | 0.75 | 3.03 | 0.75 | ||||||||||||||||
11 | LDAPS | 2.61 | 5.12 | 0.39 | 15.35 | 8.75 | 1008.8 | 69.04 | 1.74 | 0.53 (4.32) | 36.53 | 13.08 | 18.87 | 1.04 | 3.01 | 37.61 | 29.23 | 17.33 | 320.80 |
RF | 0.35 | 2.54 | 0.82 | ||||||||||||||||
12 | LDAPS | 3.90 | 6.03 | 0.51 | 13.80 | 3.04 | 1011.3 | 65.76 | 1.83 | 0.24 (5.18) | 23.47 | 7.59 | 21.95 | 1.21 | 4.36 | 38.07 | 29.26 | 20.09 | 356.62 |
RF | 1.42 | 2.92 | 0.88 |
Region | Model | Bias (km) | RMSE (km) | R | VISASOS (km) | T (°C) | P (hPa) | RH (%) | WS (m/s) | Precip. (mm) | SS | DU | OM | BC | SU | O3 | NO2 | SO2 | CO |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(μg/m3) | |||||||||||||||||||
Urban | LDAPS | 1.01 | 3.28 | 0.63 | 14.47 | 14.03 | 1009.0 | 64.02 | 1.73 | 0.57 (69.25) | 12.38 | 8.08 | 41.83 | 3.43 | 9.60 | 48.02 | 42.95 | 34.29 | 555.81 |
RF | −0.26 | 2.10 | 0.85 | ||||||||||||||||
Island | LDAPS | 4.23 | 5.45 | 0.40 | 15.19 | 14.87 | 1006.5 | 73.55 | 3.82 | 0.83 (91.25) | 120.31 | 6.57 | 12.49 | 0.85 | 7.18 | 83.29 | 3.43 | 3.40 | 222.70 |
RF | 0.01 | 1.74 | 0.89 |
Region | T | RH | P | Precip. | WS | SS | DU | OM | BC | SU | O3 | NO2 | SO2 | CO |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Urban | −0.03 (0.10) | −0.40 (−0.33) | 0.24 (0.05) | −0.18 (−0.15) | 0.37 (0.35) | 0.21 (0.17) | −0.04 (−0.01) | −0.63 (−0.48) | −0.60 (−0.42) | −0.72 (−0.64) | −0.09 (0.01) | −0.60 (−0.47) | −0.52 (−0.38) | −0.61 (−0.48) |
Island | −0.37 (−0.33) | −0.72 (−0.66) | 0.61 (0.52) | −0.41 (−0.34) | 0.12 (0.06) | −0.07 (−0.12) | −0.04 (−0.02) | −0.31 (−0.27) | −0.33 (−0.30) | −0.39 (−0.38) | −0.22 (−0.16) | −0.11 (−0.15) | 0.21 (0.10) | −0.20 (−0.22) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, B.-Y.; Cha, J.W.; Chang, K.-H.; Lee, C. Visibility Prediction over South Korea Based on Random Forest. Atmosphere 2021, 12, 552. https://doi.org/10.3390/atmos12050552
Kim B-Y, Cha JW, Chang K-H, Lee C. Visibility Prediction over South Korea Based on Random Forest. Atmosphere. 2021; 12(5):552. https://doi.org/10.3390/atmos12050552
Chicago/Turabian StyleKim, Bu-Yo, Joo Wan Cha, Ki-Ho Chang, and Chulkyu Lee. 2021. "Visibility Prediction over South Korea Based on Random Forest" Atmosphere 12, no. 5: 552. https://doi.org/10.3390/atmos12050552
APA StyleKim, B. -Y., Cha, J. W., Chang, K. -H., & Lee, C. (2021). Visibility Prediction over South Korea Based on Random Forest. Atmosphere, 12(5), 552. https://doi.org/10.3390/atmos12050552