Urban Resilience of Shenzhen City under Climate Change
Abstract
:1. Introduction
2. Literature Review
2.1. Resilient City
2.2. Resilient Strategies
3. Materials and Methods
3.1. Study Area
3.2. Data Sources
3.3. Analysis Method
3.3.1. Extreme Precipitation Index Method
3.3.2. Evaluation of Climate Model Simulation Results
4. Results and Discussion
4.1. Analysis of Historical Precipitation Evolution in Shenzhen
4.1.1. Changes in Measured Precipitation in Shenzhen
4.1.2. Time Series Evaluation of Historical Extreme Precipitation Indices in Shenzhen
4.2. Preferred Climate Model for Shenzhen and Prediction of Future Trend of Extreme Precipitation Index
4.2.1. Taylor Diagram-Based Simulation Evaluation
4.2.2. Preferred Extreme Precipitation index Model in Shenzhen
4.2.3. Trend Analysis of Future Extreme Precipitation Indices in Shenzhen
4.3. Main Measures to Cope with Climate Change Risks in Shenzhen
4.3.1. Strengthening Smart City and Smart Water Utilities Construction
4.3.2. Promotion of Sponge City Construction
4.3.3. Engineering and Non-Engineering Measures
- Flood standard ≤ once in 50 years: Risk control as the main measure.
- 2.
- Flood standard > once in 50 years: Consider risk transfer.
5. Conclusions
- The mean monthly rainfall in Shenzhen is 160.8 mm, and the maximum monthly rainfall is 1395.3 mm. Rainfall is mainly concentrated from April to September, during which the rainfall in Shenzhen Station accounts for 85.11% of the annual rainfall. Extreme rainfall mainly occurs in June. During the period from 1953 to 2020, extreme precipitation at Shenzhen Station changed insignificantly, and the total amount of precipitation showed a weakly increasing trend. Although the intensity of precipitation decreased, the number of persistently dry days decreased, the number of persistently wet days increased (though not significantly), and the frequencies of light and heavy rainfall increased. These results indicated that extreme wet events were more frequent and that the risk of heavy rainfall and flooding increased from 1953 to 2020.
- The MR composite score shows that the models with the best to worst ability to simulate extreme precipitation indices in Shenzhen are BCC-CSM2-MR > PI-ESM1-2-LR > GOALS-g3 > PSL-CM6A-L > MCC-CM2-SR5 > CanESM5. The series of extreme precipitation index changes under the four scenarios indicate that future precipitation will tend to be unstable. Except for the R95p index, which shows a significant decrease in the future, other extreme precipitation indexes will generally increase. R99p, Rx1day, Rx5day, R20, and R25 will be the most important factors leading to flood events. In the future, extreme weather events will increase, and the risk of precipitation in Shenzhen will also increase.
- The causes of flooding in Shenzhen are multifaceted, complex, and comprehensive. The weather process of short-duration heavy precipitation is the direct meteorological factor triggering flooding in Shenzhen, and the drainage capacity is the key factor for the occurrence of flooding. Specific resilience strategies for integrated urban flood risk management include strengthening the construction of new smart cities, promoting smart water utilities, and sponge city construction. In addition, risk control is the main measure when the flood standard is ≤ once in 50 years. When the flood standard is > once in 50 years, the main consideration is to transfer the flood risk by market-based means such as catastrophic insurance.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xiong, Y.; Ta, Z.; Gan, M.; Yang, M.L.; Yu, Y. Evaluation of cmip5 climate models using historical surface air temperatures in central Asia. Atmosphere 2021, 12, 308. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. [Google Scholar]
- IPCC. Climate Change 2014: Synthesis Report; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Piras, M.; Mascaro, G.; Deidda, R.; Vivoni, E.R. Impacts of climate change on precipitation and discharge extremes through the use of statistical downscaling approaches in a Mediterranean basin. Sci. Total Environ. 2016, 543, 952–964. [Google Scholar] [CrossRef]
- Aslam, A.Q.; Ahmad, S.R.; Ahmad, I.; Hussain, Y.; Hussain, M.S. Vulnerability and impact assessment of extreme climatic event: A case study of southern Punjab, Pakistan. Sci. Total Environ. 2017, 580, 468–481. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, S.L.; Butt, N.; Maron, M.; McAlpine, C.A.; Chapman, S.; Ullmann, A.; Segan, D.B.; Watson, J.E. Conservation implications of ecological responses to extreme weather and climate events. Divers. Distrib. 2019, 25, 613–625. [Google Scholar] [CrossRef]
- Lancia, M.; Zheng, C.; He, X.; Lerner, D.N.; Andrews, C.; Tian, Y. Hydrogeological constraints and opportunities for “Sponge City” development: Shenzhen, Southern China. J. Hydrol. Reg. Stud. 2020, 28, 100679. [Google Scholar] [CrossRef]
- Nyaupane, N.; Thakur, B.; Kalra, A.; Ahmad, S. Evaluating future flood scenarios using CMIP5 climate projections. Water 2018, 10, 1866. [Google Scholar] [CrossRef] [Green Version]
- Lehtonen, I.; Jylhä, K. Tendency towards a more extreme precipitation climate in the Coupled Model Intercomparison Project Phase 5 models. Atmos. Sci. Lett. 2019, 20, e895. [Google Scholar] [CrossRef]
- Alfieri, L.; Feyen, L.; Di Baldassarre, G. Increasing flood risk under climate change: A pan-European assessment of the benefits of four adaptation strategies. Clim. Chang. 2016, 136, 507–521. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Chen, S.; Zhu, W.; Ren, H.; Zhang, L.; Zhu, L. Spatiotemporal variations of extreme precipitation and its potential driving factors in China’s North-South Transition Zone during 1960–2017. Atmos. Res. 2021, 252, 105429. [Google Scholar] [CrossRef]
- Tegegne, G.; Melesse, A.M.; Alamirew, T. Projected changes in extreme precipitation indices from CORDEX simulations over Ethiopia, East Africa. Atmos. Res. 2020, 247, 105156. [Google Scholar] [CrossRef]
- Liang, K.; Bai, P.; Li, J.; Liu, C. Variability of temperature extremes in the Yellow River basin during 1961–2011. Quat. Int. 2014, 336, 52–64. [Google Scholar] [CrossRef]
- Sun, W.; Mu, X.; Song, X.; Wu, D.; Cheng, A.; Qiu, B. Changes in extreme temperature and precipitation events in the Loess Plateau (China) during 1960–2013 under global warming. Atmos. Res. 2016, 168, 33–48. [Google Scholar] [CrossRef]
- Zolina, O.; Kapala, A.; Simmer, C.; Gulev, S.K. Analysis of extreme precipitation over Europe from different reanalyses: A comparative assessment. Glob. Planet. Chang. 2004, 44, 129–161. [Google Scholar] [CrossRef]
- Liu, K.; Nie, G.; Zhang, S. Study on the Spatiotemporal Evolution of Temperature and Precipitation in China from 1951 to 2018. Adv. Earth Sci. 2020, 35, 1113–1126. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, B.C.; Tebaldi, C.; Vuuren, D.P.V.; Eyring, V.; Friedlingstein, P.; Hurtt, G.; Knutti, R.; Kriegler, E.; Lamarque, J.; Lowe, J.; et al. The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 2016, 9, 3461–3482. [Google Scholar] [CrossRef] [Green Version]
- Ukkola, A.M.; de Kauwe, M.G.; Roderick, M.L.; Abramowitz, G.; Pitman, A.J. Robust future changes in meteorological drought in CMIP6 projections despite uncertainty in precipitation. Geophys. Res. Lett. 2020, 47, e2020GL087820. [Google Scholar] [CrossRef]
- Ma, F.; Yuan, X.; Jiao, Y.; Ji, P. Unprecedented Europe heat in June–July 2019: Risk in the historical and future context. Geophys. Res. Lett. 2020, 47, e2020GL087809. [Google Scholar] [CrossRef]
- Bracegirdle, T.J.; Krinner, G.; Tonelli, M.; Haumann, F.A.; Naughten, K.A.; Rackow, T.; Roach, L.A.; Wainer, I. Twenty first century changes in Antarctic and Southern Ocean surface climate in CMIP6. Atmos. Sci. Lett. 2020, 21, e984. [Google Scholar] [CrossRef]
- Akinsanola, A.A.; Kooperman, G.J.; Pendergrass, A.G.; Hannah, W.M.; Reed, K.A. Seasonal representation of extreme precipitation indices over the United States in CMIP6 present-day simulations. Environ. Res. Lett. 2020, 15, 094003. [Google Scholar] [CrossRef]
- Chen, H.; Sun, J.; Lin, W.; Xu, H. Comparison of CMIP6 and CMIP5 models in simulating climate extremes. Sci. Bull. 2020, 65, 1415–1418. [Google Scholar] [CrossRef]
- Palmer, T.N.; Doblas-Reyes, F.J.; Hagedorn, R.; Weisheimer, A. Probabilistic prediction of climate using multi-model ensembles: From basics to applications. Trans. R. Soc. B Biol. Sci. 2005, 360, 1991–1998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomson, M.C.; Doblas-Reyes, F.J.; Mason, S.J.; Hagedorn, R.; Connor, S.J.; Phindela, T.; Morse, A.P.; Palmer, T.N. Malaria early warnings based on seasonal climate forecasts from multi-model ensembles. Nature 2006, 439, 576–579. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Cai, Y.; Wang, S.; Lan, F.; Wu, X. Small and medium-scale river flood controls in highly urbanized areas: A whole region perspective. Water 2020, 12, 182. [Google Scholar] [CrossRef] [Green Version]
- Linham, M.M.; Green, C.H.; Nicholls, R.J. Costs of Adaptation to the Effects of Climate in the World’s Largest Port Cities; A VOID: London, UK, 2010; p. 225. [Google Scholar]
- Lasage, R.; Veldkamp, T.I.E.; de Moel, H.; Van, T.C.; Phi, H.L.; Vellinga, P.; Aerts, J.C.J.H. Assessment of the effectiveness of flood adaptation strategies for HCMC. Nat. Hazards Earth Syst. Sci. 2014, 14, 1441–1457. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Guo, F.; Mao, K.; Chen, F. Response strategy for drought and flood in sponge city construction risk under the background of climate change. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019; Volume 252, p. 042015. [Google Scholar] [CrossRef] [Green Version]
- Shenzhen Climate Bulletin. 2008. Available online: http://weather.sz.gov.cn/ (accessed on 20 April 2021).
- Wu, W.; Mu, H.; Liang, Z.; Liu, X. Projected changes in extreme temperature and precipitation events in Shanghai based on CMIP5 simulations. Clim. Environ. Res. 2016, 21, 269–281. [Google Scholar] [CrossRef]
- Holling, C.S. Resilience and Stability of Ecological Systems. Annu. Rev. Ecol. Syst. 1973, 4, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Alberti, M.; Marzluff, J.M.; Shulenberger, E.; Bradley, G.; Ryan, C.; Zumbrunnen, C. Integrating humans into ecology: Opportunities and challenges for studying urban ecosystems. BioScience 2003, 53, 1169–1179. [Google Scholar] [CrossRef] [Green Version]
- Alliance, R. Urban Resilience Research Prospectus. Australia; CSIRO: Canberra, Australia, 2007; Volume 2, Available online: http://81.47.175.201/ET2050_library/docs/scenarios/urban_resilence.pdf (accessed on 20 April 2021).
- Berkes, F.; Colding, J.; Folke, C. (Eds.) Navigating Social-Ecological Systems: Building Resilience for Complexity and Change; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Jabareen, Y. Planning the resilient city: Concepts and strategies for coping with climate change and environmental risk. Cities 2013, 31, 220–229. [Google Scholar] [CrossRef]
- Wardekker, J.A.; de Jong, A.; Knoop, J.M.; van der Sluijs, J.P. Operationalising a resilience approach to adapting an urban delta to uncertain climate changes. Technol. Forecast. Soc. Chang. 2010, 77, 987–998. [Google Scholar] [CrossRef] [Green Version]
- Meyer, V.; Priest, S.; Kuhlicke, C. Economic evaluation of structural and non-structural flood risk management measures: Examples from the Mulde River. Nat. Hazards 2011, 62, 301–324. [Google Scholar] [CrossRef]
- Wang, H.; Mei, C.; Liu, J.; Shao, W. A new strategy for integrated urban water management in China: Sponge city. Sci. China Ser. E Technol. Sci. 2018, 61, 317–329. [Google Scholar] [CrossRef]
- Liang, X. Integrated Economic and Financial Analysis of China’s Sponge City Program for Water-resilient Urban Development. Sustainability 2018, 10, 669. [Google Scholar] [CrossRef] [Green Version]
- Xia, J.; Zhang, Y.; Xiong, L.; He, S.; Wang, L.; Yu, Z. Opportunities and challenges of the Sponge City construction related to urban water issues in China. Sci. China Earth Sci. 2017, 60, 652–658. [Google Scholar] [CrossRef]
- Yuanyuan, W.; Ping, L.; Wenze, S.; Xinchun, Y. A New Framework on Regional Smart Water. Procedia Comput. Sci. 2017, 107, 122–128. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, W.; Yu, F. Construction of Chinese Smart Water Conservancy Platform Based on the Blockchain: Technology Integration and Innovation Application. Sustainability 2020, 12, 8306. [Google Scholar] [CrossRef]
- Li, T. Study on the application of smart water affairs based on the concept of sponge city. Water Supply Drain 2017, 53, 129–135. [Google Scholar] [CrossRef]
- Jiang, Y.; Luo, Y.; Xu, X. Flood insurance in China: Recommendations based on a comparative analysis of flood insurance in developed countries. Environ. Earth Sci. 2019, 78, 1–11. [Google Scholar] [CrossRef]
- Taolue, F. Emergency Management of Foreign Cities from the Perspective of Flood Fighting. Available online: https://3g.163.com/news/article/FIQ74UR70519D828.html (accessed on 18 April 2021).
- Cheng, X. Strengthening Flood and Drought Disaster Management. The Common Trend of Global Water Control Strategy Adjustment. China Water Conservancy Technology Information Center. Summary of Urban and Rural Drinking Water Source Safety and Development; China Water Conservancy Technology Information Center: Beijing, China, 2009; pp. 58–61. [Google Scholar]
- Zhou, A. The difficulties and countermeasures of flood insurance in my country. Prod. Res. 2010, 03, 171–172. [Google Scholar] [CrossRef]
- Xu, D.; Ouyang, Z.; Wu, T.; Han, B. Dynamic Trends of Urban Flooding Mitigation Services in Shenzhen, China. Sustainability 2020, 12, 4799. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, X.; Xin, X. Overview and review of CMIP6 Scenario Model Comparison Program (ScenarioMIP). Clim. Chang. Res. 2019, 15, 519–525. [Google Scholar] [CrossRef]
- Yin, H.; Sun, Y. Characteristics of extreme temperature and precipitation in China in 2017 based on ETCCDI indices. Adv. Clim. Chang. Res. 2018, 9, 218–226. [Google Scholar] [CrossRef]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Tebaldi, C.; Hayhoe, K.; Arblaster, J.M.; Meehl, G.A. Going to the extremes: An intercomparison of model-simulated historical and future changes in extreme events. Clim. Chang. 2006, 79, 185–211. [Google Scholar] [CrossRef]
- Li, L. Spatial and Temporal Evolution Patterns of Extreme Temperature, Precipitation and Drought Events and Their Multi-Model Predictions; Northwest Agriculture and Forestry University: Shaanxi, China, 2019. [Google Scholar]
- Li, Y.; Yan, D.; Peng, H.; Xiao, S. Evaluation of precipitation in CMIP6 over the Yangtze River Basin. Atmos. Res. 2020, 253, 105406. [Google Scholar] [CrossRef]
- Chen, X. Comparison and analysis of the causes of rainstorms and waterlogging in Beijing “7.21” and Shenzhen “6.13”. Water Resour. Dev. Res. 2013, 13, 39–43. [Google Scholar] [CrossRef]
- Huang, J.; Cao, W.; Wang, H.; Wang, Z. Affect path to flood protective coping behaviors using SEM based on a survey in Shenzhen, China. Int. J. Environ. Res. Public Health 2020, 17, 940. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Li, H. Meteorological disasters and risk assessment in Shenzhen since 2000. Guangdong Meteorol. 2009, 31, 43–45. [Google Scholar] [CrossRef]
- Schuenemann, K.C.; Cassano, J.J. Changes in synoptic weather patterns and Greenland precipitation in the 20th and 21st centuries: Evaluation of late 20th century simulations from IPCC models. J. Geophys. Res. 2009, 114, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Rao, X.; Dong, W. Model evaluation and uncertainties in projected changes of drought over northern China based on CMIP5 models. Int. J. Climatol. 2021, 41, E3085–E3100. [Google Scholar] [CrossRef]
- Seo, K.H.; Ok, J. Assessing future changes in the East Asian summer monsoon using CMIP3 models: Results from the best model ensemble. J. Clim. 2013, 26, 1807–1817. [Google Scholar] [CrossRef]
- Zhao, T.; Chen, L.; Ma, Z. Simulation of historical and projected climate change in arid and semiarid areas by CMIP5 models. Chin. Sci. Bull. 2014, 59, 412–429. [Google Scholar] [CrossRef]
- Schuetze, T.; Chelleri, L. Integrating decentralized rainwater management in urban planning and design: Flood resilient and sustainable water management using the example of coastal cities in the Netherlands and Taiwan. Water 2013, 5, 593–616. [Google Scholar] [CrossRef] [Green Version]
- Liao, G. Research on the Construction of a New Type of Smart City in Shenzhen; Shenzhen University: Shenzhen, China, 2018. [Google Scholar]
- Tian, Y.; Yang, M.; Jiang, Y. Research on Urban Smart Water Resources Emergency Management. Appl. Mech. Mater. 2013, 409, 75–78. [Google Scholar] [CrossRef]
- Antzoulatos, G.; Mourtzios, C.; Stournara, P.; Kouloglou, I.-O.; Papadimitriou, N.; Spyrou, D.; Mentes, A.; Nikolaidis, E.; Karakostas, A.; Kourtesis, D.; et al. Making urban water smart: The SMART-WATER solution. Water Sci. Technol. 2020, 82, 2691–2710. [Google Scholar] [CrossRef]
- Shahanas, K.M.; Sivakumar, P.B. Framework for a smart water management system in the context of smart city initiatives in India. Procedia Comput. Sci. 2016, 92, 142–147. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Yin, Z.; Liu, Y.; Feng, B.; Wang, Y. Study on Framework Design of Smart Water Management System in Shenzhen. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019; Volume 330, p. 032008. [Google Scholar] [CrossRef]
- Chan, F.K.S.; Griffiths, J.A.; Higgitt, D.; Xu, S.; Zhu, F.; Tang, Y.T.; Xu, Y.; Thorne, C.R. “Sponge City” in China—A breakthrough of planning and flood risk management in the urban context. Land Use Policy 2018, 76, 772–778. [Google Scholar] [CrossRef]
- Shao, W.; Liu, J.; Yang, Z.; Yang, Z.; Yu, Y.; Li, W. Carbon reduction effects of Sponge City construction: A case study of the city of Xiamen. Energy Procedia 2018, 152, 1145–1151. [Google Scholar] [CrossRef]
- Li, Y.J.; Zhang, C.; Leng, X.Y. Exploration and expectation of smart sponge city. South North Water Transf. Water Sci. Technol. 2016, 14, 161–164. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Gong, X.; Ren, X.; Liu, C.; Wu, L.; Wu, Y. Sponge city construction and innovation in Shenzhen. J. Shenzhen Univ. Sci. Eng. 2020, 37, 334–346. [Google Scholar] [CrossRef]
- Zhang, W.; Che, W. Connotation and multi-angle analysis of sponge city construction. Water Resour. Prot. 2016, 32, 19–26. [Google Scholar]
- Cheng, X.; Wu, H. Flood Risk Scenario Analysis Method and Practice—Taking Taihu Lake Basin as an Example; China Water Resources and Hydropower Press: Beijing, China, 2019. [Google Scholar]
- Ma, R.-Y.; Du, Y.; Li, K. Study on flood control risk of flood control engineering system based on the clustering of measured data. Clust. Comput. 2019, 22, S6541–S6549. [Google Scholar] [CrossRef]
- Ge, Y.; Liu, J.; Li, F. Research on assessment method for vulnerability transfer of insured enterprise: A case study of Changsha Region. J. Nat. Disasters 2008, 17, 81–85. [Google Scholar]
- Scott, I.N. The National Flood Insurance Program: Background, Issues and Reauthorization; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2021. [Google Scholar]
- Surminski, S. The role of insurance in reducing direct risk: The case of flood insurance. Int. Rev. Environ. Resour. Econ. 2014, 7, 241–278. [Google Scholar] [CrossRef] [Green Version]
- Landry, C.; Turner, D. Risk Perceptions and Flood Insurance: Insights from Homeowners on the Georgia Coast. Sustainability 2020, 12, 10372. [Google Scholar] [CrossRef]
- Atreya, A.; Czajkowski, J. Graduated flood risks and property prices in Galveston County. Real Estate Econ. 2019, 47, 807–844. [Google Scholar] [CrossRef]
Serial Number | Model Name | Country | Institution | Resolution |
---|---|---|---|---|
1 | BCC-CSM2-MR | China | Beijing Climate Center (BCC) | 1.125° × 1.125° |
2 | CanESM5 | Canada | Canadian Centre for Climate modelling and analysis (CCCma) | 2.81° × 2.81° |
3 | CMCC-CM2-SR5 | Italy | Euro-Mediterranean Center on Climate Change (CMCC) Foundation | 1° × 1° |
4 | FGOALS-g3 | China | Chinese Academy of Sciences (CAS) | 2.3° × 2° |
5 | IPSL-CM6A-LR | France | Institut Pierre Simon Laplace (IPSL) | 1.26° × 2.5° |
6 | MPI-ESM1-2-LR | Germany | Max Planck Institute for Meteorology (MPI-M) | 1.5° × 1.5° |
Type | Index Code | Index Name | Definition | Unit |
---|---|---|---|---|
Intensity Index | R95p | Very wet days | Annual total PRCP when RR > 95th percentile | Mm |
R99p | Extremely wet days | Annual total PRCP when RR > 99th percentile | mm | |
RX1day | Max 1-day precipitation amount | Monthly maximum 1-day precipitation | Mm | |
Rx5day | Max 5-day precipitation amount | Monthly maximum consecutive 5-day precipitation | Mm | |
PRCPTOT | Annual total wet-day precipitation | Annual total PRCP in wet days (RR ≥ 1 mm) | mm | |
SDII | Simple daily intensity index | Annual total precipitation divided by the number of wet days (defined as PRCP ≥ 1.0 mm) in the year | Mm/day | |
Duration Index | CDD | Consecutive dry days | Maximum number of consecutive days with RR < 1 mm | Days |
CWD | Consecutive wet days | Maximum number of consecutive days with RR ≥ 1 mm | Days | |
Frequency Index | R10 | Number of heavy precipitation days | Annual count of days when PRCP ≥ 10 mm | Days |
R20 | Number of very heavy precipitation days | Annual count of days when PRCP ≥ 20 mm | Days | |
R25 | Number of days above 25 mm | Annual count of days when PRCP ≥ 25 mm, 25 is user defined threshold | Days |
Disasters Caused by Floods | 2001 | 2008 |
---|---|---|
Affected population/million people | 0.050 | 37.873 |
Number of dead (missing) | 1 | 21 |
Collapsed house/room | 0 | 88 |
Direct economic loss/billion yuan | 0.3050 | 12 |
R95p | R99p | Rx1day | Rx5day | PRCPTOT | SDII | CDD | CWD | R10 | R20 | R25 | |
---|---|---|---|---|---|---|---|---|---|---|---|
Correlation coefficient | 0.15 | −0.04 | 0.20 * | 0.26 * | 0.30 * | 0.26 * | 0.05 | 0.16 | 0.30 * | 0.31 * | 0.33 |
Standard deviation | 0.44 | 0.47 | 0.44 | 0.38 | 0.43 | 0.31 | 0.46 | 0.89 | 0.74 | 0.62 | 0.60 |
Standard root mean square error | 1.02 | 1.12 | 1.01 | 0.97 | 0.96 | 0.96 | 1.07 | 1.23 | 1.05 | 0.99 | 0.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, W.; Su, X.; Lu, J.; Liu, J.; Yang, Z.; Mei, C.; Liu, C.; Lu, J. Urban Resilience of Shenzhen City under Climate Change. Atmosphere 2021, 12, 537. https://doi.org/10.3390/atmos12050537
Shao W, Su X, Lu J, Liu J, Yang Z, Mei C, Liu C, Lu J. Urban Resilience of Shenzhen City under Climate Change. Atmosphere. 2021; 12(5):537. https://doi.org/10.3390/atmos12050537
Chicago/Turabian StyleShao, Weiwei, Xin Su, Jie Lu, Jiahong Liu, Zhiyong Yang, Chao Mei, Chuang Liu, and Jiahui Lu. 2021. "Urban Resilience of Shenzhen City under Climate Change" Atmosphere 12, no. 5: 537. https://doi.org/10.3390/atmos12050537
APA StyleShao, W., Su, X., Lu, J., Liu, J., Yang, Z., Mei, C., Liu, C., & Lu, J. (2021). Urban Resilience of Shenzhen City under Climate Change. Atmosphere, 12(5), 537. https://doi.org/10.3390/atmos12050537