Measurements of NOx and Development of Land Use Regression Models in an East-African City
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. NOx and NO2 Sampling
2.3. Comparison to Active Measurments
2.3.1. Diurnal Trends
2.3.2. Yearly Concentrations
2.4. Geographic Predictor Variables
2.4.1. Land Use
Industrial Areas
Residential Areas
Water Bodies
Transport Administration Areas
Informal Settlements
2.4.2. Road Traffic
2.5. Land Use Regression Modeling
3. Results
3.1. NOx and NO2 Measurements
3.2. Comparison to Active Measurements
3.2.1. Diurnal Trends
3.2.2. Yearly Concentrations
3.3. Land Use Regression Models
3.3.1. LUR for NO2
3.3.2. LUR for NOx
4. Discussion
4.1. LUR Models
4.2. NOx and NO2 Measurement
4.3. Comparison to Active Measurements
4.3.1. Diurnal Trends
4.3.2. Yearly Concentrations
4.3.3. Methodological Considerations
4.4. Strengths and Limitations
4.5. Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. The Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef] [Green Version]
- Lelieveld, J.; Pozzer, A.; Giannadaki, D.; Evans, J.S.; Fnais, M. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 2015, 525, 367–371. [Google Scholar] [CrossRef]
- Burnett, R.; Chen, H.; Szyszkowicz, M.; Fann, N.; Hubbell, B.; Pope, C.A.; Apte, J.S.; Brauer, M.; Cohen, A.; Weichenthal, S.; et al. Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. Proc. Natl. Acad. Sci. 2018, 115, 9592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- United States Environmental Protection Agency. Nitrogen Oxides (NOx) Why and How They Are Controlled; 456-F-99-006K; EPA: Durham, NC, USA, 1999. [Google Scholar]
- Hänninen, O.; Knol, A.B.; Jantunen, M.; Lim, T.-A.; Conrad, A.; Rappolder, M.; Carrer, P.; Fanetti, A.-C.; Kim, R.; Buekers, J.; et al. Environmental burden of disease in Europe: Assessing nine risk factors in six countries. Environ. Health Perspect. 2014, 122, 439–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klepac, P.; Kukec, A.; Locatelli, I.; Korošec, S.; Künzli, N. Ambient air pollution and pregnancy outcomes: A comprehensive review and identification of environmental public health challenges. Environ. Res. 2018, 167, 144–159. [Google Scholar] [CrossRef] [PubMed]
- Stockfelt, L.; Andersson, E.M.; Molnár, P.; Rosengren, A.; Wilhelmsen, L.; Sällsten, G.; Barregård, L. Long term effects of residential NOx exposure on total and cause-specific mortality and incidence of myocardial infarction in a Swedish cohort. Environ. Res. 2015, 142, 197–206. [Google Scholar] [CrossRef] [Green Version]
- Urman, R.; McConnell, R.; Islam, T.; Avol, E.L.; Vora, H.; Linn, W.S.; Rappaport, E.B.; Gilliland, F.D.; Gauderman, W.J.; Lurmann, F.W. Associations of children’s lung function with ambient air pollution: Joint effects of regional and near-roadway pollutants. Thorax 2014, 69, 540–547. [Google Scholar] [CrossRef] [Green Version]
- Enkhmaa, D.; Warburton, N.; Javzandulam, B.; Uyanga, J.; Khishigsuren, Y.; Lodoysamba, S.; Enkhtur, S.; Warburton, D. Seasonal ambient air pollution correlates strongly with spontaneous abortion in Mongolia. BMC Pregnancy Childbirth 2014, 14, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Lavigne, E.; Yasseen, I.I.I.A.S.; Stieb, D.M.; Hystad, P.; van Donkelaar, A.; Martin, R.V.; Brook, J.R.; Crouse, D.L.; Burnett, R.T.; Chen, H.; et al. Ambient air pollution and adverse birth outcomes: Differences by maternal comorbidities. Environ. Res. 2016, 148, 457–466. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Laurent, O.; Wu, J. Spatial variability of the effect of air pollution on term birth weight: Evaluating influential factors using Bayesian hierarchical models. Environ. Health 2016, 15, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Malmqvist, E.; Liew, Z.; Källén, K.; Rignell-Hydbom, A.; Rittner, R.; Rylander, L.; Ritz, B. Fetal growth and air pollution - A study on ultrasound and birth measures. Environ. Res. 2017, 152, 73–80. [Google Scholar] [CrossRef] [Green Version]
- Nobles, C.J.; Williams, A.; Ouidir, M.; Sherman, S.; Mendola, P. Differential effect of ambient air pollution exposure on risk of gestational hypertension and preeclampsia. Hypertens. (Dallas, Tex: 1979) 2019, 74, 384–390. [Google Scholar] [CrossRef]
- Pedersen, M.; Stayner, L.; Slama, R.; Sørensen, M.; Figueras, F.; Nieuwenhuijsen, M.J.; Raaschou-Nielsen, O.; Dadvand, P. Ambient air pollution and pregnancy-induced hypertensive disorders: A systematic review and meta-analysis. Hypertension (0194911X) 2014, 64, 494–500. [Google Scholar] [CrossRef] [Green Version]
- Lanzi, E.; Dellink, R.; Chateau, J. The sectoral and regional economic consequences of outdoor air pollution to 2060. Energy Econ. 2018, 71, 89–113. [Google Scholar] [CrossRef]
- Schwela, D. Review of Urban Air Quality in Sub-Saharan Africa Region—Air Quality Profile of Ssa Countries; World Bank: Washington, DC, USA, 2012. [Google Scholar]
- Martins, J.J.; Dhammapala, R.S.; Lachmann, G.; Galy-Lacaux, C.; Pienaar, J.J. Long-term measurements of sulphur dioxide, nitrogen dioxide, ammonia, nitric acid and ozone in southern Africa using passive samplers. S. Afr. J. Sci. 2007, 103, 336–342. [Google Scholar]
- Muttoo, S.; Ramsay, L.; Brunekreef, B.; Beelen, R.; Meliefste, K.; Naidoo, R.N. Land use regression modelling estimating nitrogen oxides exposure in industrial south Durban, South Africa. Sci. Total. Environ. 2018, 610–611, 1439–1447. [Google Scholar] [CrossRef]
- Toyib, O.; Mohamed, J.; Martin, R.; Rajen, N.; Roslynn, B.; Nino, K.; Ming, T.; Mark, D.; Kees de, H.; Dilys, B.; et al. A prospective cohort study on ambient air pollution and respiratory morbidities including childhood asthma in adolescents from the western Cape Province: Study protocol. BMC Public Health 2017, 17, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Mannucci, P.M.; Franchini, M. Health effects of ambient air pollution in developing countries. Int. J. Environ. Res. Public Health 2017, 14, 1048. [Google Scholar] [CrossRef]
- African Development Bank. African Economic Outlook 2020. Available online: https://www.afdb.org/en/documents/african-economic-outlook-2020 (accessed on 1 November 2020).
- United Nations Environment Programme. Addis Ababa City Air Quality Policy and Regulatory Situational Analysis. United Nations Environment Programme in collaboration with Envrionmental Compliance Insitute; 2018; Available online: https://www.eci-africa.org/wp-content/uploads/2019/05/Addis-Air-Quality-Policy-and-Regulatory-Situational-Analysis_Final_ECI_31.12.2018rev.pdf (accessed on 1 November 2020).
- Bahino, J.; Yoboué, V.; Galy-Lacaux, C.; Adon, M.; Akpo, A.; Keita, S.; Liousse, C.; Gardrat, E.; Chiron, C.; Ossohou, M.; et al. A pilot study of gaseous pollutants’ measurement (NO2, SO2, NH3, HNO3 and O3) in Abidjan, Côte d’Ivoire: Contribution to an overview of gaseous pollution in African cities. Atmos. Chem. Phys. 2018, 18, 5173–5198. [Google Scholar] [CrossRef] [Green Version]
- Hitchcook, G.; Conlan, B.; Kay, D.; Brannigan, C.; Newman, D. Air Quality and Road Transport—Impacts and Solutions; The Royal Automobile Clud Foundation for Motoring Ltd.: London, UK, 2014. [Google Scholar]
- Amegah, A.K.; Agyei-Mensah, S. Urban air pollution in Sub-Saharan Africa: Time for action. Environ. Pollut. 2017, 220, 738–743. [Google Scholar] [CrossRef] [PubMed]
- Solomon, A.O. The Role of Households in Solid Waste Management in East Africa Capital Cities. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2011. [Google Scholar]
- Eric, C.; Samuel, K. A narrative review on the human health effects of ambient air pollution in Sub-Saharan Africa: An urgent need for health effects studies. Int. J. Environ. Res. Public Health 2018, 15, 427. [Google Scholar] [CrossRef] [Green Version]
- Beelen, R.; Hoek, G.; Vienneau, D.; Eeftens, M.; Dimakopoulou, K.; Pedeli, X.; Tsai, M.-Y.; Künzli, N.; Schikowski, T.; Marcon, A.; et al. Development of NO2 and NOx land use regression models for estimating air pollution exposure in 36 study areas in Europe–The ESCAPE project. Atmos. Environ. 2013, 72, 10–23. [Google Scholar] [CrossRef]
- Ryan, P.H.; LeMasters, G.K. A review of land-use regression models for characterizing intraurban air pollution exposure. Inhal. Toxicol. 2007, 19, 127–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madsen, C.; Håberg, S.E.; Nafstad, P.; Nystad, W.; Gehring, U.; Meliefste, K.; Brunekreef, B.; Lødrup Carlsen, K.C. Comparison of land-use regression models for predicting spatial NOx contrasts over a three year period in Oslo, Norway. Atmos. Environ. 2011, 45, 3576–3583. [Google Scholar] [CrossRef]
- Wang, R.; Henderson, S.B.; Sbihi, H.; Allen, R.W.; Brauer, M. Temporal stability of land use regression models for traffic-related air pollution. Atmos. Environ. 2013, 64, 312–319. [Google Scholar] [CrossRef]
- Jerrett, M.; Arain, M.A.; Kanaroglou, P.; Beckerman, B.; Crouse, D.; Finkelstein, N.; Gilbert, N.L.; Brook, J.R.; Finkelstein, M.M. Modeling the intraurban variability of ambient traffic pollution in Toronto, Canada. J. Toxicol. Environ. Health Part A: Current Issues 2007, 70, 200–212. [Google Scholar] [CrossRef]
- Choi, G.; Bell, M.L.; Lee, J.T. A study on modeling nitrogen dioxide concentrations using land-use regression and conventionally used exposure assessment methods. Environ. Res. Lett. 2017, 12, 044003. [Google Scholar] [CrossRef] [Green Version]
- Sirak Zenebe, G.; Danielle, V.; Christian, F.; Hâmpaté, B.; Guéladio, C.; Ming-Yi, T. Spatial air pollution modelling for a West-African town. Geospat. Health 2015, 10. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Ambient Air Pollution: A Global Assessment of Exposure and Burden of Disease; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Ethiopia Demographics. Available online: https://www.worldometers.info/demographics/ethiopia-demographics/ (accessed on 11 October 2020).
- Messay, M.; Degefa, T.; Gezahegn, A. Description of long-term climate data in Eastern and Southeastern Ethiopia. Data in Brief 2017, 12, 26–36. [Google Scholar] [CrossRef]
- Adama City Administrative Office. Adama City Administrative Office Report; Adama City Administrative Office: Adama, Ethiopia, 2019; Unpublished. [Google Scholar]
- Ayehu, F.M. Evaluation of Traffic Congestion and Level of Service at Major Intersections in Adama City. Master’s Thesis, Addis Ababa University, Addis Ababa, Ethiopia, 2015. [Google Scholar]
- Brunekreef, B. ESCAPE Exposure Assessment Manual. Available online: http://www.escapeproject.eu/manuals/ESCAPE-Study-manual_x007E_final.pdf (accessed on 1 January 2017).
- Hagenbjörk-Gustafsson, A.; Tornevi, A.; Forsberg, B.; Eriksson, K. Field validation of the Ogawa diffusive sampler for NO2 and NOx in a cold climate. J. Environ. Monit. 2010, 12, 1315–1324. [Google Scholar] [CrossRef] [PubMed]
- Malmqvist, E.; Olsson, D.; Hagenbjörk-Gustafsson, A.; Forsberg, B.; Mattisson, K.; Stroh, E.; Strömgren, M.; Swietlicki, E.; Rylander, L.; Hoek, G.; et al. Assessing ozone exposure for epidemiological studies in Malmö and Umeå, Sweden. Atmos. Environ. 2014, 94, 241–248. [Google Scholar] [CrossRef] [Green Version]
- Tseganesh, M. Adama City Final Structure; Adama City Urban Land Development and Management Office: Adama, Ethiopia, 2019. [Google Scholar]
- Corporation Satellite Imaging. Sensors Used in Satellite Imaging. Available online: https://www.satimagingcorp.com/satellite-sensors/ (accessed on 1 January 2020).
- Hoek, G.; Beelen, R.; de Hoogh, K.; Vienneau, D.; Gulliver, J.; Fischer, P.; Briggs, D. A review of land-use regression models to assess spatial variation of outdoor air pollution. Atmos. Environ. 2008, 42, 7561–7578. [Google Scholar] [CrossRef]
- Open Street Map. Available online: www.openstreetmap.org/ (accessed on 1 January 2020).
- Asmamaw, A.; Kristoffer, M.; Axel, E.; Erik, A.; Geremew, S.; Bezatu, M.; Abebe Genetu, B.; Abraham, A.; Ebba, M.; Christina, I. Air pollution measurements and land-use regression in urban Sub-Saharan Africa using low-cost sensors—possibilities and pitfalls. Atmosphere 2020, 11, 1357. [Google Scholar] [CrossRef]
- Chang, T.-Y.; Liang, C.-H.; Wu, C.-F.; Chang, L.-T. Application of land-use regression models to estimate sound pressure levels and frequency components of road traffic noise in Taichung, Taiwan. Environ. Int. 2019, 131. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Brauer, M.; Wong, P.; Tang, R.; Tsui, T.H.; Choi, C.; Cheng, W.; Lai, P.-C.; Tian, L.; Thach, T.-Q.; et al. Land use regression modelling of air pollution in high density high rise cities: A case study in Hong Kong. Sci. Total. Environ. 2017, 592, 306–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Wang, J.; Hart, J.E.; Laden, F.; Zhao, C.; Li, T.; Zheng, P.; Li, D.; Ye, Z.; Chen, K. National scale spatiotemporal land-use regression model for PM2.5, PM10 and NO2 concentration in China. Atmos. Environ. 2018, 192, 48–54. [Google Scholar] [CrossRef]
- Dons, E.; Van Poppel, M.; Int Panis, L.; De Prins, S.; Berghmans, P.; Koppen, G.; Matheeussen, C. Land use regression models as a tool for short, medium and long term exposure to traffic related air pollution. Sci. Total. Environ. 2014, 476–477, 378–386. [Google Scholar] [CrossRef] [PubMed]
- Dirgawati, M.; Barnes, R.; Wheeler, A.J.; Arnold, A.-L.; McCaul, K.A.; Stuart, A.L.; Blake, D.; Hinwood, A.; Yeap, B.B.; Heyworth, J.S. Development of land use regression models for predicting exposure to NO2 and NOx in Metropolitan Perth, Western Australia. Environ. Model. Softw. 2015, 74, 258–267. [Google Scholar] [CrossRef]
- Lee, J.-H.; Wu, C.-F.; Hoek, G.; de Hoogh, K.; Beelen, R.; Brunekreef, B.; Chan, C.-C. Land use regression models for estimating individual NOx and NO2 exposures in a metropolis with a high density of traffic roads and population. Sci. Total. Environ. 2014, 472, 1163–1171. [Google Scholar] [CrossRef]
- Abera, A.; Friberg, J.; Isaxon, C.; Jerrett, M.; Malmqvist, E.; Sjöström, C.; Taj, T.; Vargas, A.M. Air quality in Africa: Public health implications. Annu. Rev. Public Health 2021, 42, null. [Google Scholar] [CrossRef]
- Wang, M.; Beelen, R.; Basagana, X.; Becker, T.; Cesaroni, G.; de Hoogh, K.; Dedele, A.; Declercq, C.; Dimakopoulou, K.; Eeftens, M.; et al. Evaluation of land use regression models for NO2 and particulate matter in 20 European study areas: The ESCAPE project. Environ. Sci. Technol. 2013, 47, 4357–4364. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide: Global Update 2005: Summary of Risk Assessment; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
Variables | Measurement Unit | Expected Direction of Effects |
---|---|---|
Less than 100 m to motor, primary, or secondary road | m | + |
Inside the city center | yes/no | + |
Measured altitude in meters above sea level | m | - |
Road distance in meters within a 50, 100, 300 or 500 m radius | m | + |
Primary road 1 distance in meters within a 50, 100, 300 or 500 m radius | m | + |
Motorway in meters within a 500 m radius | m | + |
Secondary road 2 distance within a 50, 100, 300 or 500 m radius | m | + |
Tertiary road 3 distance within a 50, 100, 300 or 500 m radius | m | + |
Residential road 4 distance within a 50, 100, 300 or 500 m radius | m | + |
Service road 5 distance within a 50, 100, 300 or 500 m radius | m | + |
Other road 6 in meters within a 50, 100, 300 or 500 m radius | m | + |
Area of residential use within 100, 300, 1000 or 3000 m radius | m2 | + |
Area of industrial use within 100, 300, 1000 or 3000 m radius | m2 | + |
Area of transportation administration 7 use within 100, 300, 1000 or 3000 m radius | m2 | + |
Area of informal settlement within 100, 300, 1000 or 3000 m radius | m2 | + |
Distance to nearest primary road | m | - |
Distance to nearest motorway | m | - |
Distance to nearest secondary road | m | - |
Distance to nearest tertiary road | m | - |
Distance to nearest residential road | m | - |
Distance to nearest service road | m | - |
Distance to nearest other road | m | + |
Distance to nearest road | m | - |
Distance to nearest waterbody or creek/river | m | - |
Distance to nearest industry | m | - |
Distance to nearest transportation administration area | m | - |
Primary road between 100 m and 300 m and 100 m and 500 m, respectively (only NOx) | m | + |
Primary road between 300 m and 500 m (only NO2) | m | + |
Road between 50 m and 100 m, 50 and 300 m, and 50 m and 500 m, respectively (only NOx) | m | + |
Residential road between 100 and 300 m and 100 m and 500 m respectively (only NOx) | m | + |
Residential area between 1000 m and 3000 m(both NO2 and NOx) | m | + |
Air Pollutant | Site | Mean | SD | Median | Minimum | Maximum |
---|---|---|---|---|---|---|
NOx (µg/m3) | Traffic | 45.0 | 27.3 | 37.9 | 14.6 | 86.5 |
Urban | 26.0 | 9.4 | 24.9 | 12.6 | 58.7 | |
Regional | 15.6 | 3.5 | 15.6 | 10.9 | 20.4 | |
All | 28.9 | 17.5 | 24.2 | 10.9 | 86.5 | |
NO2 (µg/m3) | Traffic | 17.5 | 8.9 | 15.6 | 5.5 | 28.8 |
Urban | 12.9 | 4.5 | 12.7 | 3.6 | 24.5 | |
Regional | 6.5 | 1.9 | 6.0 | 5.0 | 10.1 | |
All | 13.1 | 6.4 | 12.4 | 3.6 | 28.8 |
Model Variable | Beta | SE | p-Value | VIF |
---|---|---|---|---|
Intercept | 4.044 | 1.467 | 0.009 | |
Primary road distance in meters within 300 m | 0.00983 | 0.00141 | 2.62 × 10−8 | 1.123 |
Industrial area in m2 within 3000 m | 2.99 × 10−6 | 5.23 × 10−7 | 1 × 10−6 | 1.095 |
Road distance in meters within 50 m | 0.0159 | 0.00631 | 0.16 | 1.029 |
Model Variable | Beta | SE | p-value | VIF |
---|---|---|---|---|
Intercept | 24.579 | 4.614 | 0.000004 | |
Primary road distance in meters within 100 m | 0.106 | 0,0163 | 9.950 × 10−8 | 1.135 |
Distance to closest administration area | −0.00502 | 0.00135 | 0.000639 | 1.070 |
Road distance in meters within 50 m | 0.0468 | 0.0200 | 0.0244 | 1.070 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abera, A.; Malmqvist, E.; Mandakh, Y.; Flanagan, E.; Jerrett, M.; Gebrie, G.S.; Bayih, A.G.; Aseffa, A.; Isaxon, C.; Mattisson, K. Measurements of NOx and Development of Land Use Regression Models in an East-African City. Atmosphere 2021, 12, 519. https://doi.org/10.3390/atmos12040519
Abera A, Malmqvist E, Mandakh Y, Flanagan E, Jerrett M, Gebrie GS, Bayih AG, Aseffa A, Isaxon C, Mattisson K. Measurements of NOx and Development of Land Use Regression Models in an East-African City. Atmosphere. 2021; 12(4):519. https://doi.org/10.3390/atmos12040519
Chicago/Turabian StyleAbera, Asmamaw, Ebba Malmqvist, Yumjirmaa Mandakh, Erin Flanagan, Michael Jerrett, Geremew Sahilu Gebrie, Abebe Genetu Bayih, Abraham Aseffa, Christina Isaxon, and Kristoffer Mattisson. 2021. "Measurements of NOx and Development of Land Use Regression Models in an East-African City" Atmosphere 12, no. 4: 519. https://doi.org/10.3390/atmos12040519
APA StyleAbera, A., Malmqvist, E., Mandakh, Y., Flanagan, E., Jerrett, M., Gebrie, G. S., Bayih, A. G., Aseffa, A., Isaxon, C., & Mattisson, K. (2021). Measurements of NOx and Development of Land Use Regression Models in an East-African City. Atmosphere, 12(4), 519. https://doi.org/10.3390/atmos12040519