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Abstract: Air pollution causes premature mortality and morbidity globally, but these adverse health
effects occur over proportionately in low- and middle-income countries. Lack of both air pollution
data and knowledge of its spatial distribution in African countries have been suggested to lead to
an underestimation of health effects from air pollution. This study aims to measure nitrogen oxides
(NOx), as well as nitrogen dioxide (NO2), to develop Land Use Regression (LUR) models in the city
of Adama, Ethiopia. NOx and NO2 was measured at over 40 sites during six days in both the wet
and dry seasons. Throughout the city, measured mean levels of NOx and NO2 were 29.0 µg/m3

and 13.1 µg/m3, respectively. The developed LUR models explained 68% of the NOx variances and
75% of the NO2. Both models included similar geographical predictor variables (related to roads,
industries, and transportation administration areas) as those included in prior LUR models. The
models were validated by using leave-one-out cross-validation and tested for spatial autocorrelation
and multicollinearity. The performance of the models was good, and they are feasible to use to
predict variance in annual average NOx and NO2 concentrations. The models developed will be
used in future epidemiological and health impact assessment studies. Such studies may potentially
support mitigation action and improve public health.

Keywords: urban health; global health; Adama; Africa; air pollution; LUR

1. Introduction

Epidemiological studies have shown that ambient air pollution is the single-largest
environmental health risk worldwide [1]. Globally, outdoor air pollution exposure is
responsible for 3.3 million premature deaths [2], with some estimates putting this number
as high as 8.9 million deaths per year [3].

Nitrogen oxides (NOx) and nitrogen dioxide (NO2), in particular, are anthropogeni-
cally generated components of air pollution [4]. Even though NOx is primarily emitted
in the form of NO during combustion, which is then oxidized to NO2, NO2 has often
been used as marker of air pollution exposure in epidemiological studies to determine
the adverse health effects such as birth outcomes in epidemiological studies [5,6]. For
example, exposure to NOx is associated with cause-specific mortality and myocardial
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infraction [7], as well as adverse birth outcomes, including impaired childhood lung func-
tion [8] spontaneous abortion [9], preterm birth [10], low birth weight [11], fetal growth
restriction [12], gestational hypertension, and preeclampsia [13,14]. The economic cost of
these air pollution-derived health effects is also expected to decrease the global domestic
product (GDP) by one percent by 2060 [15].

Establishing urban air pollution monitoring systems and setting air quality standards
are crucial in alleviating the public health challenges related to air pollution. Unfortunately,
air pollution monitoring is vastly lacking in Africa [16]. There are only a few epidemiolog-
ical studies on the links between ambient air pollution and long- and short-term health
effects in African settings. The lack of long-term ambient air pollution monitoring has been
emphasized as a reason [17]. Few studies in Africa reported urban air pollution variability
and explored the link between ambient air pollution and respiratory morbidity [18,19].
Without data on the extent of air pollution exposure, health impacts remain underesti-
mated or even unknown; this prevents the implementation of key public health strategies,
especially those needed to protect vulnerable populations such as pregnant women and
children [20].

In East Africa, in particular, common challenges to air pollution mitigation include
growing vehicle fleets, a lack of alternative cleaner energy sources for industries, rapid ur-
banization, poor urban infrastructure, uncontrolled open burning, limited air quality data,
weak enforcement of policies, and limited technical capacity and financial resources [21,22].
Typical sources of ambient air pollution are road traffic, industries, domestic fires for
cooking or heating, and waste burning [23]. For instance, the prevalence of old, polluting
vehicles coupled with poor maintenance practices has led to vehicle emission being the
region’s main source of air pollution [24,25]. Household waste burning is also a major
contributor to ambient air pollution [26]. More effort is urgently needed from African gov-
ernments to develop and enforce air quality standards; however, this cannot be achieved
without access to reliable air pollution and health data [25].

Air pollution measurements are needed for the utilization of Land Use Regression
(LUR), which has, consequently been lacking in African settings [27]. The LUR model is
a tool commonly used in epidemiological studies to assess ambient air pollution expo-
sure, especially at locations with limited air pollution data [28]. This is accomplished by
using measured pollution values as a response variable with local geographical predictor
variables, which are potential proxies for emission sources, such as land use, population,
household density, or traffic intensity [28,29]. LUR models have been widely applied in
European [28,30] and North American [31,32] cities. The European Study of Cohort for Air
Pollution Effects (ESCAPE) is a large-scale, EU-multicenter study encompassing several
cities that has established comprehensive, well-designed LUR protocols [28]. Its methodol-
ogy has even been applied in some parts of Asia [33]. To the best of our knowledge, only a
few applications of the LUR model have been performed within the African continent to
estimate NOx or NO2, as well as to assess the association between long-term ambient air
pollution and health effects [18,19,34].

This study aims to generate reliable evidence on the ambient air pollution levels
through measurements and use these to develop LUR models to estimate the NOx and
NO2 exposure in Adama, Ethiopia. Over 13,000 premature deaths are attributed to ambient
air pollution exposure annually in Ethiopia, which is the highest among East African
countries [35]. The LUR exposure estimate will be used in future projects to further
assess the health impacts of air pollution. As an example, it will be used to investigate
the association between maternal exposure during pregnancy and the subsequent health
outcomes of neonates in the Adama mother and child health cohort (ClinicalTrials.gov
Identifier NCT03305991).
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2. Materials and Methods
2.1. Study Site

Spanning 200 square kilometers, Adama is the fourth largest city in Ethiopia, with
an estimated 214,000 inhabitants [36]. It is located 99 km southeast of Addis Ababa in the
East African Rift Valley area (see Figure 1). The weather is mostly dry throughout the year,
with a mean annual rainfall of 890 mm and mean annual temperature of 21.6 ◦C, with
highest precipitation in June, July, and August [37]. Adama is located along the Pan-African
Highway, connecting Djibouti with Addis Ababa. There is also a large bus station in the
center of the city connecting the eastern and southeastern parts of the country.
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Figure 1. The location of Adama on the East African continent, and the air sampling measurement
sites and land use classes included in the LUR models.

Adama city has industrial and investment centers, clustered mainly in its western and
eastern outskirts. A total of 144 large- and small-scale industrial operations, including paper
printing, cement manufacturing, brick manufacturing, tomato-canning plants, cottage
industries, textiles, food, and beverage factories, as well as metal, plastic, and wood
engineering facilities, are located in the southwest [38]. The Adama public transportation
service is operated by many small vehicles like the Bajaj (a compact, three wheeled car),
which accounts for 70% of the total vehicle fleet, and a few public buses [38]. In 2015,
the daily traffic volume at four main intersections in Adama was between 16,000 and
32,000 vehicles [39]. According to the Adama municipality, the total road length of the
asphalt is 95 km, with gravel roads stretching 56 km, cobblestone 170 km, red ash 36 km,
and earth roads 740 km [38].
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2.2. NOx and NO2 Sampling

Measurement sites were selected in accordance with the ESCAPE protocol to capture
the anticipated variability of air pollution [40]. In this study, 41 individual sites were
investigated in August 2018 and 42 sites in February 2019. One site from the August 2018
campaign was lost due to an analytical error for NO2, but the values for NOx remained
viable. Between the two campaigns, 39 sites had measurements from both periods for NOx
and 38 sites for NO2. One site included in the August 2018 campaign could not be used
in the February 2019 campaign, as the landowner declined participation. Additionally,
we added two sites to the February 2019 campaign that were unavailable in the August
2018 campaign. In total, 43 sites were included in the development of the LUR models,
irrespective of whether they were utilized in one or both measurement campaigns. In the
case of two measurements, we included the mean of both.

All field samplings were performed from 9–14 August (5 days) 2018 (wet season) and
from 18–23 February (5 days) 2019 (dry season). The sampling sites were classified into
three types: traffic (10 sites), urban background (27 sites), and regional background (6 sites).
A traffic site is identified as an area where the air pollution level is mainly influenced
by vehicle emissions from road traffic (in this study, the sites were located within 100 m
from a motorway or primary or secondary road). An urban background site, however, is
an urban area that is not heavily influenced by nearby traffic or industrial air pollution
sources (sites in the city not located within 100 m from a motorway or primary or secondary
road). Finally, a regional background site is defined as an area in which air pollution is
not dominantly produced by any nearby sources but, rather, transported into the area by
wind (sites located in the outskirts of the city not located close to a large industrial source
or road construction site). This classification and distribution allowed us to choose the
measurement sites representative for the air pollution levels throughout the city and its
outskirts. Each measurement site’s location was geocoded and the altitude measured using
a GARMIN GPSMAP64 (Garmin, Olathe, KS, USA) during each site visit.

According to the ESCAPE protocol [40], Ogawa badge passive samplers (Ogawa &
Company, Pompano Beach, FL, USA) were used to sample NO2 and NOx. The Ogawa
badge contains separate filters onto which NOx and NO2 are absorbed with high efficiency.
In short, the Ogawa badge has a cylindrical body with two ends, which enables the
simultaneous monitoring of NO2 and NOx. Each end holds a cellulose collection filter, one
coated with triethanoleamine for sampling NO2 and the other coated with triethanoleamine
plus an oxidizing agent for sampling NOx [41,42]. The badges were deployed at a height
of 1.9–3.8 m under an opaque shelter for protection against rain (see Figure 2). Care was
taken so that air could circulate freely around the unit. After sampling was completed, the
badges were collected, stored in a cold box, and transported to Sweden together with four
blanks. The samplers were delivered within 72 h to the lab.

All badges were analyzed at the Division of Occupational and Environmental Medicine,
Umeå University, Umeå, Sweden. The analysis method was described in detail by Hagenbjork-
Gustafsson et al. [41]. Briefly, each filter is desorbed in ultra-pure water; after, the filtered
extract is injected into an ion chromatography system and analyzed for nitrite. The nitrite
concentrations in the field blanks were subtracted from the concentrations in the samples.
The obtained nitrite concentration was then used in an adapted version of Fick’s law [41]
to calculate the NO2 and NOx concentrations.

2.3. Comparison to Active Measurments

In addition to the measurements taken with passive samplers, we were granted access
to time-resolved NO2 and NOx data collected with a Thermo Scientific NO-NO2-NOx
analyzer (model 42i) at the Ethiopian Meteorological Institute site in Adama.
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Figure 2. Photo of Ogawa badge in its rain protection from one of the NOx and NO2 sampling sites.

One hundred and ninety-seven Microsoft® Excel® 2016 (Microsoft, Redmond, WA,
USA) files containing minute-by-minute measurements of NO2 and NOx concentrations
from the beginning of January 2017 through December 2018, as well as the month of January
2019, were accessed. First, duplicate files and those with cells expressing “NoData” were
removed. Files corresponding to a 7-month period (August 2017–March 2018) were missing
data on NO2 and NOx completely, and the vast majority of measurements throughout
August 2018–January 2019 were missing. Moreover, a significant number of hours and
days were comprised of very few data points (Figure S1).

When the data for a particular hour or day began with 0′s or negative values, those
values were excluded for the calculations of hourly and daily averages. However, these 0′s
and negative values also arose sporadically and could hence not be easily omitted from
the averaging process. This combined with a lack of data for some hours, and days, even,
resulted in a number of final NO2 and NOx averages being negative in value, averages all
of which were not included in further evaluations.

Further, the quality of this data is uncertain, as there is no avilable information
regarding calibaration of the instrument.

2.3.1. Diurnal Trends

As described above, the original measurement data, recorded minute-by-minute, was
aggregated into hourly averages. This was later used to investigate diurnal trends of NO2
and NOx using Microsoft® Excel® 2016 (Microsoft, Redmond, WA, USA).

Only 18 days throughout this time period had complete data, i.e., included measure-
ments for each of the 60 min for each of the 24 h in the day. From these, days falling on the
weekend (n = 5) were excluded due to the expected differences in the traffic patterns. The
NO2 and NOx concentrations from the remaining days (n = 13) were then averaged and
graphed.

2.3.2. Yearly Concentrations

Original data from the time-resolved measurement instrument were also aggregated
into daily averages, which were used to graph the annual trends of NO2 and NOx concen-
trations from January 2017 to January 2019. Further, the annual averages for both pollutants
were calculated for the years 2017 and 2018, excluding measurements for the month of
January 2019. Instead of using only days with complete data, as described above for the
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diurnal trends, here, all hours with ≥30 min of the measurements were included (1592
values out of 1702). Similarly, all days with ≥5 h of the measurements (the equivalent of
1140 min or more) were included, which totalled 103 out of 142 days.

2.4. Geographic Predictor Variables

A total of 59 geographical predictor variables were collected. For a full list of potential
variables, see Table 1. In addition to these, 2 outer ring buffer variables were added for
NO2 and 8 for NOx [40]. A full description of the outer ring buffers can be found in the
ESCAPE protocols [40]. These variables were univariately regressed against NO2 and NOx
concentration at measurement sites. Previously published studies have demonstrated that
the road variables, population density, land use, and elevation were significant predictor
variables for the NOx and NO2 concentrations [28]. We defined the expected direction of
the geographical predictor variables prior to the statistical analysis.

Table 1. All the available geographic predictor variables, their expected direction of effects, and their descriptions.

Variables Measurement
Unit

Expected Direction
of Effects

Less than 100 m to motor, primary, or secondary road m +
Inside the city center yes/no +

Measured altitude in meters above sea level m -
Road distance in meters within a 50, 100, 300 or 500 m radius m +

Primary road 1 distance in meters within a 50, 100, 300 or 500 m radius m +
Motorway in meters within a 500 m radius m +

Secondary road 2 distance within a 50, 100, 300 or 500 m radius m +
Tertiary road 3 distance within a 50, 100, 300 or 500 m radius m +

Residential road 4 distance within a 50, 100, 300 or 500 m radius m +
Service road 5 distance within a 50, 100, 300 or 500 m radius m +
Other road 6 in meters within a 50, 100, 300 or 500 m radius m +

Area of residential use within 100, 300, 1000 or 3000 m radius m2 +
Area of industrial use within 100, 300, 1000 or 3000 m radius m2 +

Area of transportation administration 7 use within 100, 300, 1000 or 3000 m radius m2 +
Area of informal settlement within 100, 300, 1000 or 3000 m radius m2 +

Distance to nearest primary road m -
Distance to nearest motorway m -

Distance to nearest secondary road m -
Distance to nearest tertiary road m -

Distance to nearest residential road m -
Distance to nearest service road m -
Distance to nearest other road m +

Distance to nearest road m -
Distance to nearest waterbody or creek/river m -

Distance to nearest industry m -
Distance to nearest transportation administration area m -

Primary road between 100 m and 300 m and 100 m and 500 m, respectively
(only NOx) m +

Primary road between 300 m and 500 m (only NO2) m +
Road between 50 m and 100 m, 50 and 300 m, and 50 m and 500 m, respectively

(only NOx) m +

Residential road between 100 and 300 m and 100 m and 500 m respectively (only
NOx) m +

Residential area between 1000 m and 3000 m(both NO2 and NOx) m +
1 The next most important roads in a country’s system (often link larger towns.). 2 The next most important roads in a country’s system
(often link towns.). 3 The next most important roads in a country’s system (often link smaller towns and villages). 4 Roads that serve as an
access to housing, without function of connecting settlements. 5 Access roads to or within an industrial estate, camp site, business park, car
park, alleys, etc. 6 Rural roads. 7 Bus stations and large parking lots.
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2.4.1. Land Use

The Adama city urban land development and management office masterplan from
2019 [43] was used to generate land use data. Four classes of land, including industrial
areas, residential areas, water, and transportation facilities (see Figure 1), were identified
as significant in relation to the NOx and NO2 emissions and were deemed manageable
to adjust to the land use. This masterplan also contained areas with future land use
plans. To replicate the conditions when our measurement campaigns were conducted,
the areas mapped with future land use were manually adjusted using satellite images
covering different parts of the city between 2016 and 2018. These included Worldview
2 (resolution 0.5 m) and Worldview 4 (resolution 0.31 m) [44], which were retrieved via
World imagery in ArcMap. Corrections to the four land use classes, therefore, were mainly
implemented in the outskirts of the city where the masterplan and the satellite images did
not correspond. In addition to the land use information obtained from the masterplan, data
on the informal settlement areas was collected and geocoded. For all land use variables,
the total area covered in m2 was calculated for 100-, 300-, 1000-, and 3000-m buffers around
the measurement stations and added to the final model.

Industrial Areas

Industrial areas were considered potential sources of NO2 and NOx emissions within
the study area. Since the masterplan´s data did not contain information about the type of
industry, all industrial areas were assumed to contribute with equal emissions relative to
their area. The average distance from a measurement site to the closest industrial area was
490 m, ranging from 35 to 1487 m.

Residential Areas

Residential areas describe places in Adama where human activity, such as waste
burning and cooking, is likely to contribute to elevated levels of NOx and NO2. In the
Adama city masterplan, different types of residential areas were included: housing, mixed
residences (those intertwined with commercial land use), and residences. Since these
three classes were not distinguishable in the satellite images, they were combined into one
residential class for this study. Again, adjustments were made mainly along the outskirts
of Adama, as new residential zones were being planned for these areas.

Water Bodies

The water bodies included in this study are seasonal pathways where water flows
during the rainy season. During the dry season, however, these areas are used for solid
waste burning and dumping. Waste burning can also occur in close vicinity to these areas
during the rainy season. Data on water bodies were obtained from the masterplan and
needed no adjustment in relation to the satellite images.

Transport Administration Areas

This class contains bus stations and major parking lots, which are most likely asso-
ciated with higher NOx and NO2 levels due to traffic intensity. A total of 16 transport
administration areas were included in our study, which were derived from the masterplan.

Informal Settlements

A high population density, old houses, and frequent small-scale waste burning are
features associated with informal settlements that could contribute to higher levels of NO2
and NOx. This data was collected in the second half of 2019 by a local student with prior
experience of collecting data with a GPS.

2.4.2. Road Traffic

Previous studies have often found traffic density and the road network distribution to
be relevant variables to predict the NOx and NO2 levels [45]. The geographical distribution
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of Adama’s road network was accessed from OpenStreetMap [46] using a QGIS (QGIS
Development Team (2020). QGIS Geographic Information System. Open Source Geospatial
Foundation Project. http://qgis.osgeo.org (accessed on 15 April 2021)) plugin for the
desktop geographic information systems (GIS) application QGIS and included information
about the type of road, which was used as a proxy for the traffic intensity. A total of 16
different classes of roads were available. These were further categorized into seven classes,
including Motorway, Primary, Secondary, Tertiary, Residential, Service, and Other roads.
This reclassification process is described in detail in a recently published paper [47].

The GIS analysis was performed in ArcGIS version 10.5.1 (Redlands, CA, USA). All
available geographic predictor variables are shown in Table 1.

2.5. Land Use Regression Modeling

The development of the LUR models followed the ESCAPE protocol [40]. A total of
59 predictor variables were univariately tested, followed by a manual forward selection
procedure for the multivariate model. Statistically significant variables during the uni-
variate testing were added to the multivariate model. A model that aimed to maximize
the percentage of explained variability (R2) and minimize the error (RMSE—Root Mean
Square Error) was selected. The variables with highest R2 were added first, followed by
the second, and so on. Only variables with a coefficient matching the expected direction of
effects were entered into the multivariate model.

Furthermore, a new variable should keep the expected direction to be included. The
addition of each new variable should also increase the model´s R2 by at least 1%; otherwise,
the variable should not be retained. After adding all variables to the multivariate models,
only those with a p-value above 0.1 were kept in the final model. Several diagnostic tests
were then performed to validate the final model. Cook’s Distance was calculated to assess
for influential observation among predictor variables. A value greater than 1 indicated
an influential observation [48]. The variance inflation factors (VIF) were calculated to test
for multicollinearity in which a VIF greater than 3 was considered to indicate collinear-
ity [48,49]. Spatial autocorrelation was tested with Moran’s I among residuals in the final
model [50]. Leave-one-out cross-validation was used to internally validate the performance
of the model [40,49]. Models with new parameter estimates were developed for n-1 of
the measurement sites, where one measurement station was dropped at the time and the
included variables fixed. For these models, an average adjusted R2 value and RMSE value
were calculated to test the internal validity. Statistical analyses were conducted using IBM
SPSS Statistics version 25 (IBM, Chicago, IL, USA) to develop LUR models.

After finalizing the models, respective prediction maps for NOx and NO2 covering
the whole study area were developed for grids with 10-m resolutions.

3. Results
3.1. NOx and NO2 Measurements

A summary of the annual averaged concentrations (that is averaged concentrations
from the two campaigns) of NOx and NO2 is shown in Table 2. The traffic measurement
sites had the highest NOx and NO2 annual averages, 45.0 µg/m3 and 17.5 µg/m3, respec-
tively. The lowest values were found for the regional background measurement sites with
11.0 µg/m3 of NOx and 5.0 µg/m3 of NO2. The median values for all sites of NOx and
NO2 were 24.2 µg/m3 and 12.4 µg/m3, respectively.

There was a statistically significant difference between the mean NOx concentration at
traffic sites compared to both urban background and regional background measurement
sites, as determined by one-way ANOVA (p = 0.001). The difference between urban
background and regional background mean levels of NOx concentrations, however, were
not statistically significant (p = 0.287). Regarding the mean level of NO2, a statistically
significant difference was found between the mean NO2 concentration between traffic
and regional background, as well as between urban background and regional background

http://qgis.osgeo.org
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measurement sites (p = 0.002), but the difference was borderline between the traffic and
urban background measurement sites (p = 0.081).

Table 2. Annual mean, standard deviation (SD), median, minimum, and maximum NOx and NO2

concentrations for each class of measurement sites.

Air Pollutant Site Mean SD Median Minimum Maximum

NOx (µg/m3)

Traffic 45.0 27.3 37.9 14.6 86.5
Urban 26.0 9.4 24.9 12.6 58.7

Regional 15.6 3.5 15.6 10.9 20.4
All 28.9 17.5 24.2 10.9 86.5

NO2 (µg/m3)

Traffic 17.5 8.9 15.6 5.5 28.8
Urban 12.9 4.5 12.7 3.6 24.5

Regional 6.5 1.9 6.0 5.0 10.1
All 13.1 6.4 12.4 3.6 28.8

NOx = nitrogen oxides. NO2 = nitrogen dioxide.

3.2. Comparison to Active Measurements
3.2.1. Diurnal Trends

Figure 3 demonstrates the typical variation of air pollution concentrations throughout
a 24-h period in Adama. Here, a significant increase in the NO2 and NOx concentrations
between 5:00 a.m. and 8:00 a.m. is shown. A less pronounced peak is seen in the evening.
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Figure 3. Diurnal trend of NO2 and NOx in Adama City, averaged from 13 days with complete data.

3.2.2. Yearly Concentrations

The daily averages of NO2 and NOx, spanning January 2017–January 2019, are illus-
trated in Figure 4. Overall, the air pollution concentrations do not appear to fluctuate
considerably between the two years. Indeed, the average NO2 and NOx concentrations for
2017 were 8.31 µg/cm3 and 11.20 µg/cm3, respectively, and 8.01 µg/cm3 and 11.97 µg/cm3,
respectively, for 2018.
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3.3. Land Use Regression Models
3.3.1. LUR for NO2

In accordance with the ESCAPE protocol [40], univariate testing of all 59 geographical
predictor variables was performed; of these, 19 were statistically significant (p-value > 0.05).
Some of the statistically significant variables contained another variable. An example
is primary roads with all buffer distances of 50, 100, 300, and 500 m being statistically
significant. In such cases, the variables that had the highest correlation with the pollution
concentration were selected to be tested in the multivariate model. For these variables, outer
ring buffers were also calculated, univariately tested, and, if found statistically significant,
included in the multivariate model. In total, 12 variables were added to the multivariate
model, including two outer ring buffers (Prim_500_minus_300 and Res_3000_minus_1000),
starting with the variable with the highest adjusted R2. For variables to be kept in the
model, the increase in adjusted R2 needed to add more than 1%. The new variable should
also conform to the prespecified direction and not change the direction of the effect for the
already included predictor variables. After all the variables were tested, only four variables
remained. Based on these, the variables’ residuals between the actual and predicted NO2
levels were calculated for all measurement stations. The four remaining variables were
then added to an intermediary model predicting the residuals. All variables had a statistical
significance below 0.2, when predicting the residuals, and were therefore maintained.
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Figure 4. Yearly concentrations of NO2 and NOx in Adama City.

This preliminary model was tested for influential observations and multicollinearity.
The test showed no influential observations with the highest Cook’s D value being 0.255,
but the VIF values were above 3 for two of the included variables, indicating the presence
of multicollinearity. The variable with the highest VIF value (Distance to nearest trans-
portation administration), was therefore excluded. This new model containing the three
remaining variables was, again, tested for influential observations and multicollinearity.
Here, neither the influential observations, with the highest Cook’s D value being 0.223, nor
multicollinearity were observed. The final model was 4.044 + (0.00983*Primary road 300 m)
+ (2.99*10−6*Industrial area within 3000 m) + (0.0159*Road distance in meters within 50 m)
(Table 3). This model could explain 75.2% of the variance in NO2 and had a RMSE of
3.03. No spatial autocorrelation was found when tested by Moran’s I with a nonsignificant
Z-score of 0.208 (p-value 0.835).
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Table 3. Variables and their coefficients (Beta) included in the final LUR model for NO2.

Model Variable Beta SE p-Value VIF

Intercept 4.044 1.467 0.009
Primary road distance in meters within 300 m 0.00983 0.00141 2.62 × 10−8 1.123

Industrial area in m2 within 3000 m 2.99 × 10−6 5.23 × 10−7 1 × 10−6 1.095
Road distance in meters within 50 m 0.0159 0.00631 0.16 1.029

LUR = Land Use Regression. NO2 = nitrogen dioxide. SE = Standard error. VIF = variance inflation factors.

When testing the internal validation of the model using a leave-one-out cross-validation,
the average adjusted R2 of these models was 0.75, and the RMSE was 2.99. With these
adjusted R2 values being very similar to that of our final model (0.75), a strong internal va-
lidity was indicated. A prediction map of NO2 concentrations in the study area is presented
in Figure 5.
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3.3.2. LUR for NOx

The NOx model followed the same procedure as the NO2 model. Univariate testing
of the variables showed 22 statistically significant variables, of which three were outer
ring buffers. In total, 12 variables were added to the multivariate model. Using the same
criteria as described above, four variables were also included in the intermediary model,
used to predict the residuals. After adding these in order of statistical significance, one
variable (Residential area in m2 within 1000 m) had a statistical significance above p = 0.2,
the significance level set by the ESCAPE protocol [40]. This variable was excluded. The
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preliminary model was thereafter tested for influential observations and multicollinearity.
The highest Cook’s D value was 0.38, which was well below the set limit of 1. The VIF value
was also well below its established threshold of 3, indicating no multicollinearity. Thus,
the preliminary model could be accepted. The final model was denoted as the following:
24.579 + (0.106 × Primary road distance in meters within 100 m) + (−0.00502 × Distance
to closest transportation administration area) + (0.0468*Road distance in meters within
50 m) (Table 4). This model could explain 68.1% of the variance in the NOx levels and had
a RMSE of 9.43. No residual spatial autocorrelation was found when tested by Moran’s I
with a nonsignificant Z-score of −0.699 (p-value 0. 484 > 0.05).

Table 4. Variables and their coefficients included in the final LUR model for NOx.

Model Variable Beta SE p-value VIF

Intercept 24.579 4.614 0.000004
Primary road distance in meters within 100 m 0.106 0,0163 9.950 × 10−8 1.135

Distance to closest administration area −0.00502 0.00135 0.000639 1.070
Road distance in meters within 50 m 0.0468 0.0200 0.0244 1.070

LUR = Land Use Regression. NOx = nitrogen oxides. SE = Standard error. VIF = variance inflation factors.

Again, the internal validity was tested with a leave-one-out cross-validation. The
average adjusted R2 of these validation models was 0.56 and the RMSE was 11.45. The
difference between the cross-validation adjusted R2 values and our final model´s R2

indicate a somewhat weaker internal validity than that of the NO2 model. Even so, this
difference is still within the same magnitude as some of the models produced in the
ESCAPE project [28]. A prediction map of the NOx concentrations in the study area is
presented in Figure 6.
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The partial R2 values, which is the variance explained given the other variables
in the model, for each variable included in the two final models are presented in the
Supplementary Materials (Tables S2 and S3).

4. Discussion

In this study, the measurements of NOx and NO2 were conducted at 43 locations over
6 days during two seasons. Based on these measurements, the LUR models were success-
fully developed for NOx and NO2. These models will be used in future epidemiological
studies and health impact assessments in the Ethiopian city of Adama.

4.1. LUR Models

The LUR models developed in this study were able to explain 75.2% of the variance in
NO2 levels and 68.1% of the variance in NOx levels, which can be considered as a good
explanatory degree. With this, the models are suitable for use in local epidemiological
studies. These levels of explanatory degree are also in the same magnitude as earlier
models conducted in South Africa and Mauritania [18,19,34]. In Durban, South Africa, for
instance, a LUR model could explain 73% of the variance of the NOx levels (30). This model
included similar geographical predictor variables as ours (major roads within 300 m, minor
roads within 1000 m, and open space within 1000 m). However, the differences remain:
the LUR model in Durban was developed in an area with numerous industrial sources,
and Durban is a larger city than Adama. Another South African study from Western Cape
Province developed a LUR model based on NO2 measurements that were able to describe
76% of the annual variation [19]. In that study, separate models were also developed for
the warm season (explaining 62% of the variance) and cold season (explaining 77% of
the variance). In addition to variables related to roads and major roads, similar to those
in our LUR model predicting NO2 in Adama, the model also included the distance to
bus stations and train stations, as well as grill places, within 1000 m. In Mauritania, a
LUR model, studying NO2 levels, was able to predict 68% of the variance (39). Similar to
our Adama model, it included road variables, but in contrast, it also included variables
related to population density. The Mauritanian model was based on 48 h of measurements,
increasing the uncertainty of the results.

To relate the results to a European setting, our LUR models for NOx and NO2 can
be compared with the 36 models developed by ESCAPE [28], which were able to explain
55% to 92% of the measured NO2 and 49–91% of the measured NOx. In our final NOx and
NO2 models, we included predictor variables similar to those included in many of the
models in ESCAPE, such as the distance to primary road, distance to the closest transport
administration area, and distance to closest road and industrial area. These variables have
also been used in other European studies to explain the spatial variability of urban air
pollution [29,51].

Additionally, the LUR models created in Perth, Australia demonstrated stronger
predictions for NOx than NO2 [52], but the opposite was seen for our final models in
Adama. A LUR model developed for Taipei LUR showed similar results as in the Perth
study, with a better performance for NOx (81%) compared to NO2 (74%) [53]. Similar to
those used in our Adama model, these two studies also reported using predictor variables
related to traffic intensity, industrial areas, and road length. Still, these study settings
are quite different, making it difficult to know why our NO2 model performed slightly
better compared to the Perth and Taipei models. Possibly, the higher proportion of primary
emissions in NOx compared to NO2 resulted in more spatial heterogeneity for NOx. A
greater spatial heterogeneity would require a higher level of monitoring data support for
model predictions than with more homogeneous pollutants such as NO2.

Our model showed that traffic, represented by the primary road and distance to the
roads, correlates well with the estimated NOx and NO2 exposure. This is not surprising,
considering the prevalent old and polluting vehicle fleet in the region.
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When using LUR models to predict concentrations of NOx or NO2, it is important
to consider the limitations for the model in predicting concentrations further away from
places where the measurements were conducted. Predictions should only be made within
the area that is covered by the measurement points. It is also important that the data for
the prediction variables are complete at places where the concentrations are predicted,
including buffer areas.

4.2. NOx and NO2 Measurement

In comparison to the few measurements conducted in similar African settings, our
mean levels of NO2 (13.1 µg/m3) were higher than those measured at Kaédi, a medium-
sized town in Mauritania with a mean level of NO2 of 5.3 µg/m3 [34]. Although, lower
compared to a study from Western Cape Province, South Africa were mean NO2 concen-
trations of 22 µg/m3 [19]. Our mean levels of NOx (29.0 µg/m3) were somewhat lower
compared to the mean NOx levels of 36.4 µg/m3 in Durban [18]. Even so, worth mention-
ing is that the measurement site with the highest level of NOx in Adama (86.5 µg/m3) was
almost twice as high as that of Durban (50.9 µg/m3) [18], suggesting high local emissions
at that site. It should also be noted that Adama is a relatively small city with NOx levels
that are higher than those recorded in a much larger city in a high-income country, such
as Perth, with a mean level of NOx of 18.7 µg/m3 [52]. This is likely due to the so-called
super-emitters [54], as Ethiopia has become a dumping ground for the world’s old cars.
Even so, the measured levels of NO2 and NOx in Adama remain in the lower spectrum of
those reported in the ESCAPE project´s European cities, in which NO2 ranged between 9.0
to 58.0 µg/m3 and NOx from 19.0 to 101.0 µg/m3 [28].

In our study, traffic sites had the highest mean levels of NOx (45.0 µg/m3) and NO2
(17.5 µg/m3), whereas regional background sites had the lowest mean levels of both NOx
(15.6 µg/m3) and NO2 (6.5 µg/m3). In comparison to the street background NO2 levels
measured in Kaédi, 7.0 µg/m3 of NO2, our levels were more than six times higher [34].
However, the Kaédi measurements were conducted during the dry season only, which
could influence their results. While we saw minimal differences between the dry and wet
season, this might not be the case in Kaédi. Another difference between these studies
is that the traffic intensity was described as low in Kaédi, which is not true for Adama.
Furthermore, there is a higher uncertainty in the Kaédi measurements, as they were only
conducted during a 48-h period, whereas ours were collected over 5 days. Regional
background levels of NO2 were also considerably higher in Adama compared to Kaédi
(2.1 µg/m3). This could possibly be due to the extensive, episodic waste burning in
Adama´s rural areas observed during the measurement campaigns. The fact that the
ratios of NO2/NOx for the traffic sites were 0.39, 0.5 at the urban, and 0.46 at the regional
background sites, confirmed that there likely were other NO sources, like episodic waste
burning, near the regional sites.

4.3. Comparison to Active Measurements
4.3.1. Diurnal Trends

The spike of NO2 and NOx concentrations demonstrated in Figure 3 exemplifies the
contribution of traffic exhaust to the overall air pollution levels, as this is typically when
residents undergo their morning commutes to work or school. The early increases between
4 a.m. to 6 a.m. is probably related to traffic passing through Adama, as local traffic is not
likely to contribute so strongly that early. Although an increase was present later in the
day, a similar peak was not seen. It is possible that residents commute home at varying
hours of the afternoon and evening. Additionally, the boundary layer is generally lower in
the morning compared to the evening, which traps more pollutants close to the ground,
increasing the measured concentrations.
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4.3.2. Yearly Concentrations

While some variation existed between the years 2017 and 2018, the concentrations
of NO2 and NOx appeared to be similar throughout the measurement period (Figure 4).
Indeed, no substantial increase or decrease of the NO2 and NOx levels were seen. Due
to a lack of continuous data points, however, we cannot draw conclusions relating to the
seasonal trends (corresponding to the wet and dry seasons) based on this data.

4.3.3. Methodological Considerations

Comparisons of our measurements with the time-resolved data from the Ethiopian
Meteorological Institute in Adama, featured in Figures 3 and 4, warrant discussion. The
reliability of the original data from this measuring station was likely affected by calibration
issues, abrupt power outages, and irregular maintenance of the samplers. Daily averages in
particular should be interpreted carefully, as the hours available for a specific day (i.e., hours
occurring in the middle of the night vs. hours with a high traffic volume) will influence
how high/low the daily averages are. Additionally, a large spike was seen on 10 August
2018 (Figure 4). This date corresponded to the timing of our 2018 measurement campaign,
and we were not aware of any larger events that could explain this peak. Instead, it was
likely caused by an isolated, unusually high local source, perhaps waste burning, near the
active sampler. For these reasons, we emphasize that the NO2 and NOx data obtained from
the Ethiopian Meteorological Institute in Adama only provided an indication of the NO2
and NOx concentrations in the area and should be interpreted with caution. Despite these
concerns, it is important to compare our measurements from passive samplers to these
available time-resolved measurements to understand the temporal trends in an otherwise
data-sparse area.

4.4. Strengths and Limitations

Our study is the first air pollution model developed in Ethiopia and only among a
few in Africa that can capture the spatial variability of NOx and NO2. It will be used to
assess the air pollution exposure and will serve as an example for similar models in other
areas such as Addis Ababa.

Regarding the land use variables, we were able to collect data on several of the
most important variables. Reliable data on informal settlements was difficult to obtain;
therefore, a degree of uncertainty, which is difficult to quantify, is expected for this variable.
Additionally, marketplaces were discussed at the beginning of the project as an activity that
could potentially contribute to increased levels of NOx through combustion for cooking;
however, this class was not included due to lack of reliable data. A specific class to assess
solid waste burning was not able to be incorporated due to lack of data and its intermittent
nature. Still, water bodies were included as a proxy to capture the larger, more frequently
used waste burning sites. The solid burning was, however, more of an issue in our attempt
to conduct a LUR model for particulate matter with a diameter less than 2.5 mm (PM2.5) [47].
Data on the traffic intensity, which is considered to be important, was unfortunately not
available. An attempt to gather this information was made using a local geotagger who
collected data on the traffic intensity of several of roads in Adama, but the results were not
considered representative enough for the different types of roads included in our study.
The inclusion of variables that accurately reflect the additional land use practices, such
as marketplaces, outdoor cooking, solid waste burning, and traffic intensity, will likely
improve the development of LUR models in future studies.

The models were validated using leave-one-out cross-validation, a common validation
tool for LUR models and standardized in the ESCAPE study [28]. The leave-one-out cross-
validation method has been criticized for overestimating the predictive ability of LUR
models, especially for models developed from a small number of measurements (less
than 20) [55]. The RMSE error for both the NOx (9.41 µg/m3) and NO2 models were
relatively low compared to the ranges of the measured concentrations (11.0 to 85.1 µg/m3

for NOx and 5.0 to 28.8 µg/m3 for NO2), indicating the usefulness of the models [28].
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Another possible concern is whether our measurement sites were distributed well enough
throughout the city, as some security issues arose in accessing certain areas. With a total
of 41 measurement sites for the campaign in August 2018 and 42 sites in February 2019,
however, we believe that we were able to capture the variance within most of the study area
in relation to the identified emission sources (see Figure 1). Regarding the classification into
the different types of stations, a cruder classification compared to the ESCAPE protocol had
to be used, based on missing information about the traffic intensity and what was practically
possible. The samplers needed to be guarded during the measurement campaign, and the
samplers could thereby not be placed far away from the city center.

We originally performed three measurement campaigns, but only two were long
enough to meet the requirements of the Ogawa protocol. When the first measurement
campaign was launched in February 2018, Ethiopia declared a state of emergency. This
delayed the campaign´s start and development of that measurement campaign, resulting
in a measurement period of only 24 h; hence, it was not included in the LUR models. Still,
the lessons learned at this time contributed to the success of the following measurement
campaigns.

4.5. Implications

The annual mean level of NO2 in Adama (13.1 µg/m3) was less than the WHO
annual guideline of 40 µg/m3 [56], even though there is no national guideline for NO2
and NOx exposure in Ethiopia. Still, residents could likely be subjected to harmful levels
of air pollution, depending on their proximity to certain roads, industries, or solid waste
burning sites. Moreover, our LUR was shown to be a promising method to assess the spatial
variation of NOx and NO2 in Adama. To date, only a few LUR models have been developed
throughout the African continent; thus, our study adds to the application of LUR models for
air pollution assessments. As LUR has recently started being used in low-income countries,
this study is foundational to environmental epidemiology in such regions. Our models
will, additionally, make a significant contribution to the evaluation of the effect of ambient
air pollution on a variety of health outcomes in Adama through both epidemiological
studies and health impact assessments. Specifically, our LUR models will be used to assess
the outdoor NOx and NO2 exposures of women and children in an ongoing Adama birth
cohort, which will investigate the health effects of air pollution exposure during gestation.
Such epidemiological and health impact studies play an important role in motivating and
supporting the development of air pollution policies and guidelines that, subsequently,
contribute to improved public health.

5. Conclusions

Land Use Regression models for NOx and NO2 have been essential for the execution
of epidemiological studies and health impact assessments in Europe and North America.
The associations between exposure and health effects derived from such studies are simply
not transferable to an African setting, since the air pollution sources and population
characteristics are vastly different. Thus, it is crucial to conduct similar studies in African
countries. Hindering this is the fact that air pollution data is often lacking, despite the
health burden of air pollution falling disproportionately in this region. To address this gap,
our study successfully developed LUR models for NOx and NO2 in Adama, Ethiopia. This
will allow future epidemiological studies to be conducted, which will help raise awareness
of air pollution exposure adverse health effects. Such findings can even inspire the creation
of policies to improve the air quality and safeguard public health.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/atmos12040519/s1. Figure S1: Number of datapoints (minutes of available data) from the
Thermo 42i analyzer at the Ethiopian Meteorological Institute site after applying the inclusion and
exclusion criteria, Figure S2: The partial R2 values, which is the variance explained given the other
variables in the model, for each variable included in the final NO2 model, Figure S3: The partial
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R2 values, which is the variance explained given the other variables in the model, for each variable
included in the final NOx model.
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