Introduction to the Special Issue “Radiative Transfer in the Earth Atmosphere”
Funding
Acknowledgments
Conflicts of Interest
References
- Lu, Z.; Sokolik, I.N. The impacts of smoke emitted from boreal forest wildfires on the high latitude radiative energy budget—A case study of the 2002 Yakutsk Wildfires. Atmosphere 2018, 9, 410. [Google Scholar] [CrossRef] [Green Version]
- Alston, E.J.; Sokolik, I.N. Assessment of aerosol radiative forcing with 1-d radiative transfer modeling in the US South-East. Atmosphere 2018, 9, 271. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Sokolik, I.N. Analysis of dust aerosol retrievals using satellite data in central Asia. Atmosphere 2018, 9, 288. [Google Scholar] [CrossRef] [Green Version]
- Madronich, S.; Tilmes, S.; Kravitz, B.; MacMartin, D.G.; Richter, J.H. Response of surface ultraviolet and visible radiation to stratospheric SO2 injections. Atmosphere 2018, 9, 432. [Google Scholar] [CrossRef] [Green Version]
- Tegen, I.; Heinold, B. Large-scale modeling of absorbing aerosols and their semi-direct effects. Atmosphere 2018, 9, 380. [Google Scholar] [CrossRef] [Green Version]
- Panchenko, M.V.; Terpugova, S.A.; Pol’kin, V.V.; Kozlov, V.S.; Chernov, D.G. Modeling of aerosol radiation-relevant parameters in the troposphere of siberia on the basis of empirical data. Atmosphere 2018, 9, 414. [Google Scholar] [CrossRef] [Green Version]
- Yang, P.; Hioki, S.; Saito, M.; Kuo, C.-P.; Baum, B.A.; Liou, K.-N. A review of ice cloud optical property models for passive satellite remote sensing. Atmosphere 2018, 9, 499. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.M.; Zhang, W.; Arshad, A. Regional distribution of net radiation over different ecohydrological land surfaces. Atmosphere 2020, 11, 1229. [Google Scholar] [CrossRef]
- Quijano, A.L.; Sokolik, I.N.; Toon, O.B. Radiative heating rates and direct radiative forcing by mineral dust in cloudy atmospheric conditions. J. Geophys. Res. 2000, 105, 12207–12219. [Google Scholar] [CrossRef] [Green Version]
- Jeong, G.-R.; Sokolik, I.N. Effect of mineral dust aerosols on the photolysis rates in the clean and polluted marine environments. J. Geophys. 2007, 112, D21308. [Google Scholar] [CrossRef]
- Xi, X.; Sokolik, I.N. Impact of Asian dust aerosol and surface albedo on photosynthetically active radiation and surface radiative balance in dryland ecosystems. Adv. Meteorol. 2012, 2012. [Google Scholar] [CrossRef] [Green Version]
- Jeong, G.-R. Weather effects of aerosols in the global forecast model. Atmosphere 2020, 11, 850. [Google Scholar] [CrossRef]
- Hall, E.S. Comparison of five modeling approaches to quantify and estimate the effect of clouds on the Radiation Amplification Factor (RAF) for solar ultraviolet radiation. Atmosphere 2017, 8, 153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Várnai, T.; Marshak, A. Satellite observations of cloud-related variations in aerosol properties. Atmosphere 2018, 9, 430. [Google Scholar] [CrossRef] [Green Version]
- Castellanos, P.; Da Silva, A.M.; Darmenov, A.S.; Buchard, V.; Govindaraju, R.C.; Ciren, P.; Kondragunta, S. A geostationary instrument simulator for aerosol observing system simulation experiments. Atmosphere 2019, 10, 2. [Google Scholar] [CrossRef] [Green Version]
- Wei, S.-W.; Lu, C.-H.; Liu, Q.; Collard, A.; Zhu, T.; Grogan, D.; Li, X.; Wang, J.; Grumbine, R.; Bhattacharjee, P.S. The impact of aerosols on satellite radiance data assimilation using NCEP Global Data Assimilation System. Atmosphere 2021, 12, 432. [Google Scholar] [CrossRef]
Quantity | Importance | Study Examples |
---|---|---|
Net radiation at the surface | Affects surface processes | Rahman, et al. [8] |
Surface radiative budget | Affects surface processes | Lu and Sokolik [1] |
Radiative forcing | Affects the earth energy balance | Alston and Sokolik [2] |
Heating rates | Affects the temperature profile | Quijano, et al. [9] Tegen and Heinold [5] |
Actinic flux | Controls atmospheric gaseous chemistry | Jeong and Sokolik [10] |
PAR (photosynthetic active radiation) | Affects photosynthesis processes | Xi and Sokolik [11] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sokolik, I. Introduction to the Special Issue “Radiative Transfer in the Earth Atmosphere”. Atmosphere 2021, 12, 479. https://doi.org/10.3390/atmos12040479
Sokolik I. Introduction to the Special Issue “Radiative Transfer in the Earth Atmosphere”. Atmosphere. 2021; 12(4):479. https://doi.org/10.3390/atmos12040479
Chicago/Turabian StyleSokolik, Irina. 2021. "Introduction to the Special Issue “Radiative Transfer in the Earth Atmosphere”" Atmosphere 12, no. 4: 479. https://doi.org/10.3390/atmos12040479
APA StyleSokolik, I. (2021). Introduction to the Special Issue “Radiative Transfer in the Earth Atmosphere”. Atmosphere, 12(4), 479. https://doi.org/10.3390/atmos12040479