The Environmental Effects of the April 2020 Wildfires and the Cs-137 Re-Suspension in the Chernobyl Exclusion Zone: A Multi-Hazard Threat
Abstract
:1. Introduction
2. Experiments
2.1. WRF-Chem Wildfires Simulation
2.1.1. Set-Up of the WRF-Chem Simulation
2.1.2. Wildfire Emissions
- ems_PM_FRP_m_17: particulate matter with nominal diameter of 0.17 µm
- ems_PM_FRP_m1_1: particulate matter with nominal diameter of 1.1 µm
- ems_PM_FRP_m3_1: particulate matter with nominal diameter of 3 µm
2.1.3. Qualitative Satellite Analysis
2.2. Cs-137 Source Term Estimation and FLEXPART Simulation
2.2.1. Source Term Estimation of Re-Suspended Cs-137
Cs-137 Air Samples from Ukraine
Set-Up of the Lagrangian Particle Dispersion Model FLEXPART
Source Term Inversion Applying Different Methods
3. Results
3.1. Results from WRF-Chem Simulation
Health
3.2. Results for Cs-137 Source Term Inversion
4. Discussion
4.1. Discussion of the WRF-Chem Smoke Plume Simulation
4.2. Discussion of Source Term Estimation Using Inverse Modelling and Radiological Exposures
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Y.; Stanturf, J.; Goodrick, S. Trends in global wildfire potential in a changing climate. For. Ecol. Manag. 2010, 259, 685–697. [Google Scholar] [CrossRef]
- Jolly, W.M.; Cochrane, M.A.; Freeborn, P.H.; Holden, Z.A.; Brown, T.J.; Williamson, G.J.; Bowman, D.M.J.S. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 2015, 6, 7537. [Google Scholar] [CrossRef]
- Lin, N.-H.; Sayer, A.M.; Wang, S.-H.; Loftus, A.M.; Hsiao, T.-C.; Sheu, G.-R.; Hsu, N.C.; Tsay, S.-C.; Chantara, S. Interactions between biomass-burning aerosols and clouds over Southeast Asia: Current status, challenges, and perspectives. Environ. Pollut. 2014, 195, 292–307. [Google Scholar] [CrossRef]
- UNSCEAR: UNSCEAR 2000 Report, Vol. II, ANNEX J: Exposures and Effects of the Chernobyl Accident. p. 460. Available online: http://www.unscear.org/docs/reports/annexj.pdf (accessed on 27 August 2020).
- Dusha-Gudym, S.I. Transport of radioactive materials by wildland fires in the Chernobyl accident zone: How to address the problem. Int. For. Fire News 2005, 32, 119–125. [Google Scholar]
- Kashparov, V.; Lundin, S.; Khomutinin, Y.; Kaminsky, S.; Levchuk, S.; Protsak, V.; Kadygrib, A.; Zvarich, S.; Yoschenko, V.; Tschiersch, J. Soil contamination with 90Sr in the near zone of the Chernobyl accident. J. Environ. Radioact. 2001, 56, 285–298. [Google Scholar] [CrossRef]
- Evangeliou, N.; Zibtsev, S.; Myroniuk, V.; Zhurba, M.; Hamburger, T.; Stohl, A.; Balkanski, Y.; Paugam, R.; Mousseau, T.A.; Møller, A.P.; et al. Resuspension and atmospheric transport of radionuclides due to wildfires near the Chernobyl Nuclear Power Plant in 2015: An impact assessment. Sci. Rep. 2016, 6, 26062. [Google Scholar] [CrossRef] [PubMed]
- Pazukhin, E.M.; Borovoi, A.A.; Ogorodnikov, B.I. Forest Fire as a Factor of Environmental Redistribution of Radionuclides Originating from Chernobyl Accident. Radiochemistry 2004, 46, 102–106. [Google Scholar] [CrossRef]
- Wotawa, G.; De Geer, L.-E.; Becker, A.; D’Amours, R.; Jean, M.; Servranckx, R.; Ungar, K. Inter- and intra-continental transport of radioactive cesium released by boreal forest fires. Geophys. Res. Lett. 2006, 33, 12806. [Google Scholar] [CrossRef]
- Evangeliou, N.; Balkanski, Y.; Cozic, A.; Hao, W.M.; Mouillot, F.; Thonicke, K.; Paugam, R.; Zibtsev, S.; Mousseau, T.A.; Wang, R.; et al. Fire evolution in the radioactive forests of Ukraine and Belarus: Future risks for the population and the environment. Ecol. Monogr. 2015, 85, 49–72. [Google Scholar] [CrossRef]
- Yoschenko, V.; Kashparov, V.; Protsak, V.; Lundin, S.; Levchuk, S.; Kadygrib, A.; Zvarich, S.; Khomutinin, Y.; Maloshtan, I.; Lanshin, V.; et al. Resuspension and redistribution of radionuclides during grassland and forest fires in the Chernobyl exclusion zone: Part I. Fire experiments. J. Environ. Radioact. 2006, 86, 143–163. [Google Scholar] [CrossRef] [PubMed]
- Kashparov, V.; Lundin, S.; Kadygrib, A.; Protsak, V.; Levtchuk, S.; Yoschenko, V.; Kashpur, V.; Talerko, N. Forest fires in the territory contaminated as a result of the Chernobyl accident: Radioactive aerosol resuspension and exposure of fire-fighters. J. Environ. Radioact. 2000, 51, 281–298. [Google Scholar] [CrossRef]
- Evangeliou, N.; Eckhardt, S. Uncovering transport, deposition and impact of radionuclides released after the early spring 2020 wildfires in the Chernobyl Exclusion Zone. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Talerko, M.; Kovalets, I.; Lev, T.; Igarashi, Y.; Romanenko, O. Simulation study of radionuclide atmospheric transport after wildland fires in the Chernobyl Exclusion Zone in April 2020. Atmos. Pollut. Res. 2021, 12, 193–204. [Google Scholar] [CrossRef]
- Kuzmenkova, N.; Rozhkova, A.; Vorobyova, T. Aerosol activity measurements associated with the burning of peat materials (evacuation zone of the Bryansk Region). J. Environ. Radioact. 2020, 216, 106184. [Google Scholar] [CrossRef]
- IRSN Information Note of 17 April 2020 “Fires in Ukraine in the Exclusion Zone Around the Chernobyl Power Station: Situation Report”. Information Note NO. 3. Available online: https://www.irsn.fr/EN/newsroom/News/Documents/IRSN_Information-Report_Fires-in-Ukraine-in-the-Exclusion-Zone-around-chernobyl-NPP_17042020.pdf (accessed on 17 November 2020).
- NASAb Sees Fires Near Chernobyl Break Out Again. Available online: https://www.nasa.gov/image-feature/goddard/2020/nasa-sees-fires-near-chernobyl-break-out-again (accessed on 1 December 2020).
- Grell, G.A.; Peckham, S.E.; Schmitz, R.; McKeen, S.A.; Frost, G.; Skamarock, W.C.; Eder, B. Fully coupled “online” chemistry within the WRF model. Atmos. Environ. 2005, 39, 6957–6975. [Google Scholar] [CrossRef]
- TOP Platform. Available online: http://top-platform.eu/ (accessed on 17 March 2021).
- Pisso, I.; Sollum, E.; Grythe, H.; Kristiansen, N.I.; Cassiani, M.; Eckhardt, S.; Arnold, D.; Morton, D.; Thompson, R.L.; Zwaaftink, C.D.G.; et al. The Lagrangian particle dispersion model FLEXPART version 10.4. Geosci. Model Dev. 2019, 12, 4955–4997. [Google Scholar] [CrossRef] [Green Version]
- Morrison, H.; Thompson, G.; Tatarskii, V. Impact of Cloud Microphysics on the Development of Trailing Stratiform Precipitation in a Simulated Squall Line: Comparison of One- and Two-Moment Schemes. Mon. Weather. Rev. 2009, 137, 991–1007. [Google Scholar] [CrossRef] [Green Version]
- Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W.D. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. Space Phys. 2008, 113, D13103. [Google Scholar] [CrossRef]
- Grell, G.A.; Freitas, S.R. A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos. Chem. Phys. Discuss. 2014, 14, 5233–5250. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Dudhia, J. Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Weather. Rev. 2001, 129, 569–585. [Google Scholar] [CrossRef] [Green Version]
- Nakanishi, M.; Niino, H. An Improved Mellor–Yamada Level-3 Model with Condensation Physics: Its Design and Verification. Bound. Layer Meteorol. 2004, 112, 1–31. [Google Scholar] [CrossRef]
- European Centre for Medium-Range Weather Forecasts. Available online: http://www.ecmwf.int/ (accessed on 27 October 2012).
- Sofiev, M.; Vankevich, R.; Lotjonen, M.; Prank, M.; Petukhov, V.; Ermakova, T.; Koskinen, J.; Kukkonen, J. An operational system for the assimilation of the satellite information on wild-land fires for the needs of air quality modelling and forecasting. Atmos. Chem. Phys. Discuss. 2009, 9, 6833–6847. [Google Scholar] [CrossRef] [Green Version]
- Andreae, M.O.; Merlet, P. Emission of trace gases and aerosols from biomass burning. Glob. Biogeochem. Cycles 2001, 15, 955–966. [Google Scholar] [CrossRef] [Green Version]
- Peckham, S.E. WRF-Chem v3.9.1.1 Emissions Guide. Available online: https://ruc.noaa.gov/wrf/wrf-chem/Emission_guide.pdf (accessed on 26 March 2021).
- Grell, G.A.; Freitas, S.R.; Stuefer, M.; Fast, J. Inclusion of biomass burning in WRF-Chem: Impact of wild fires on weather forecasts. Atmos. Chem. Phys. 2011, 11, 5289–5303. [Google Scholar] [CrossRef] [Green Version]
- European Space Agency, Sentinel 5P Description. Available online: https://sentinel.esa.int/web/sentinel/missions/sentinel-5p/ (accessed on 18 December 2020).
- Tichý, O.; Šmídl, V.; Hofman, R.; Stohl, A. LS-APC v1.0: A tuning-free method for the linear inverse problem and its application to source-term determination. Geosci. Model Dev. 2016, 9, 4297–4311. [Google Scholar] [CrossRef] [Green Version]
- Brioude, J.; Kim, S.-W.; Angevine, W.M.; Frost, G.J.; Lee, S.-H.; McKeen, S.A.; Trainer, M.; Fehsenfeld, F.C.; Holloway, J.S.; Ryerson, T.B.; et al. Top-down estimate of anthropogenic emission inventories and their interannual variability in Houston using a mesoscale inverse modeling technique. J. Geophys. Res. Space Phys. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Angevine, W.M.; Brioude, J.; McKeen, S.; Holloway, J.S. Uncertainty in Lagrangian pollutant transport simulations due to meteorological uncertainty from a mesoscale WRF ensemble. Geosci. Model Dev. 2014, 7, 2817–2829. [Google Scholar] [CrossRef] [Green Version]
- Tarantola, A. Inverse Problem Theory and Methods for Model Parameter Estimation; Society for Industrial & Applied Mathematics (SIAM): Philadelphia, PA, USA, 2005; p. 342. [Google Scholar]
- Karion, A.; Lauvaux, T.; Coto, I.L.; Sweeney, C.; Mueller, K.; Gourdji, S.; Angevine, W.; Barkley, Z.; Deng, A.; Andrews, A.; et al. Intercomparison of atmospheric trace gas dispersion models: Barnett Shale case study. Atmos. Chem. Phys. Discuss. 2019, 19, 2561–2576. [Google Scholar] [CrossRef] [Green Version]
- Brioude, J.; Cooper, O.R.; Feingold, G.; Trainer, M.; Freitas, S.R.; Kowal, D.; Ayers, J.; Prins, E.; Minnis, P.; McKeen, S.A.; et al. Effect of biomass burning on marine stratocumulus clouds off the California coast. Atmos. Chem. Phys. Discuss. 2009, 9, 8841–8856. [Google Scholar] [CrossRef] [Green Version]
- Martin, M.V.; Logan, J.A.; Kahn, R.A.; Leung, F.-Y.; Nelson, D.L.; Diner, D.J. Smoke injection heights from fires in North America: Analysis of 5 years of satellite observations. Atmos. Chem. Phys. Discuss. 2010, 10, 1491–1510. [Google Scholar] [CrossRef] [Green Version]
- ECMWF: ECMWF CAMS Near-Real-Time. Available online: https://apps.ecmwf.int/datasets/data/cams-nrealtime/levtype=sfc/ (accessed on 27 August 2020).
- NASAa: MODIS—Moderate Resolution Imaging Spectrometer. Available online: https://modis.gsfc.nasa.gov/ (accessed on 27 August 2020).
- ECMWF: ECMWF CAMS Global Fire Assimilation System. Available online: https://apps.ecmwf.int/datasets/data/cams-gfas/ (accessed on 27 August 2020).
- UNIAN. Kyiv Tops Air Quality Ranking as most Polluted City on April 16; Ukrainian Independent News Agency of News. Available online: https://www.unian.info/kyiv/10962650-kyiv-tops-air-quality-ranking-as-most-polluted-city-on-april-16.html (accessed on 12 October 2020).
- BBC News. Wildfires Blanket Kyiv in Thick Smog; BBC: London, UK, 17 April 2020. [Google Scholar]
- GardaWorld. Ukraine: High. Air Quality Pollution Levels in Kyiv April 16–17; GardaWorld: Montreal, QC, Canada, 18 April 2020. [Google Scholar]
- U.S. EPA.: Revised Air Quality Standards for Particle Pollution and Updates to the Air Quality Index (AQI); Office of Air Quality Planning and Standards. Available online: https://www.epa.gov/sites/production/files/2016-04/documents/2012_aqi_factsheet.pdf (accessed on 20 March 2021).
- State Statistics Service of Ukraine, Air Emissions of Some Pollutants. Available online: http://www.ukrstat.gov.ua/ (accessed on 8 January 2021).
- Directive 2008/50/EC of 21 May 2008 on Ambient Air Quality and Cleaner Air for Europe. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32008L0050&from=en (accessed on 8 February 2021).
- Protsak, V.; Voitsekhovich, O.; Laptev, G. Estimation of Radioactive Source Term Dynamics for Atmospheric Transport during Wildfires in Chernobyl Zone in Spring 2020. Ukrainian Hydrometeorological Institute (in Ukrainian). Available online: https://uhmi.org.ua/msg/fire2020/analytical.pdf (accessed on 28 April 2020).
- Health Canada. Recommendations on dose coefficients for assessing doses from accidental radionuclide releases to the environment. In Prepared by a Joint Working Group of Radiation Protection Bureau, Health Canada, Atomic Energy Control Board, Atomic Energy of Canada Limited; MIC-99-03738/XAB; Health Canada: Ottawa, ON, Canada, 1999. [Google Scholar]
Site | Sampling Begin [UTC] | Sampling End [UTC] | Measured Activity Concentration [µBq/m3] | Modelled Activity Concentration [µBq/m3]—LS-APC Ref. | Modelled Activity Concentration [µBq/m3]—Lognormal Ref. |
---|---|---|---|---|---|
RNPP (51.34° N, 25.86° E) | 20200405 05:10 * | 20200406 03:21 * | 13.5 | 0.0 | 0.0 |
20200406 03:21 | 20200407 03:05 | 61.1 | 5.7 | 5.8 | |
20200407 03:05 * | 20200408 03:05 * | 15.8 | 5.0 | 5.1 | |
20200408 03:05 * | 20200409 03:11 * | 12.7 | 0.2 | 1.4 | |
20200409 03:11 | 20200410 03:09 | 4.7 | 0.4 | 2.5 | |
KhNPP (50.34° N, 26.64° E) | 20200405 07:10 * | 20200406 05:40 * | 14.5 | 0.0 | 0.0 |
20200406 05:40 * | 20200407 07:00 * | 42.5 | 37.8 | 49.7 | |
20200407 07:00 | 20200408 07:00 | <3.2 | 10.3 | 9.5 | |
20200408 07:00 * | 20200409 07:00 * | <1.7 | 0.2 | 0.8 | |
20200409 07:00 * | 20200410 07:00 * | <1.7 | 0.5 | 3.2 | |
20200410 07:00 * | 20200411 07:00 * | <2.7 | 0.0 | 0.0 | |
20200411 07:00 | 20200412 07:00 | 13.5 | 0.0 | 0.0 | |
SUNPP (47.81° N, 31.22° E) | 20200406 04:00 * | 20200410 04:00 * | 14.5 | 41.4 | 12.0 |
20200407 04:00 | 20200413 04:00 | 49.5 | 26.3 | 32.7 | |
ZNPP (47.51° N, 34.58° E) | 20204007 03:20 * | 20200410 08:11 * | <6.1 | 1.4 | 1.2 |
20200409 07:40 | 20200410 07:41 | <16 | 6.0 | 2.4 | |
20200406 05:31 * | 20200413 06:00 * | 8.5 | 3.2 | 3.8 | |
Kiev (50.39° N, 30.53° E) | 20200406 04:00 * | 20200408 04:00 * | 65 | 52 | 46 |
20200408 04:00 | 20200409 04:00 | 220 | 118 | 52 | |
20200409 04:00 * | 20200410 04:00 * | 470 | 556 | 408 |
Total Emission Estimate (GBq) | 1 Grid Cell, 1000–3000 m, 13 Samples | 9 Grid Cells, 1000–3000 m, 13 Samples | 9 Grid Cells, 1000–3000 m, All Samples | 9 Grid Cells, 0–3000 m, All Samples | 1 Grid Cell, 1000–3000 m, All Samples | 1 Grid Cell, 0–3000 m, All Samples | Average |
---|---|---|---|---|---|---|---|
LS-APC | 576 ± 139 | 472 ± 192 | 635 ± 198 | 959 ± 310 | 548 ± 188 | 713 ± 273 | 651 ± 217 |
lognormal | 531 ± 169 | 519 ± 165 | 527 ± 117 | 763 ± 171 | 550 ± 141 | 742 ± 198 | 605 ± 160 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baró, R.; Maurer, C.; Brioude, J.; Arnold, D.; Hirtl, M. The Environmental Effects of the April 2020 Wildfires and the Cs-137 Re-Suspension in the Chernobyl Exclusion Zone: A Multi-Hazard Threat. Atmosphere 2021, 12, 467. https://doi.org/10.3390/atmos12040467
Baró R, Maurer C, Brioude J, Arnold D, Hirtl M. The Environmental Effects of the April 2020 Wildfires and the Cs-137 Re-Suspension in the Chernobyl Exclusion Zone: A Multi-Hazard Threat. Atmosphere. 2021; 12(4):467. https://doi.org/10.3390/atmos12040467
Chicago/Turabian StyleBaró, Rocío, Christian Maurer, Jerome Brioude, Delia Arnold, and Marcus Hirtl. 2021. "The Environmental Effects of the April 2020 Wildfires and the Cs-137 Re-Suspension in the Chernobyl Exclusion Zone: A Multi-Hazard Threat" Atmosphere 12, no. 4: 467. https://doi.org/10.3390/atmos12040467
APA StyleBaró, R., Maurer, C., Brioude, J., Arnold, D., & Hirtl, M. (2021). The Environmental Effects of the April 2020 Wildfires and the Cs-137 Re-Suspension in the Chernobyl Exclusion Zone: A Multi-Hazard Threat. Atmosphere, 12(4), 467. https://doi.org/10.3390/atmos12040467