Analysis of Extreme Meteorological Events in the Central Andes of Peru Using a Set of Specialized Instruments
Abstract
:1. Introduction
2. Site and Location
3. Methodology
3.1. Instrumentation
3.1.1. Radars and Sensors
3.1.2. Global Precipitation Measurement (GPM), Global Forecast System (GFS) and MODIS Data
3.2. Identification of Extreme Events
3.3. Estimation of Energy Balance Components
3.4. Ground Heat Flux at the Surface
4. Analysis of the Results
4.1. Intense Rainfall Events
4.1.1. Event on 17 January 2018
4.1.2. Event on 28 December 2019
4.2. Intense Frost Events
4.2.1. Event on 21 June 2019
4.2.2. Event on 5 April 2019
4.3. High Pollution Events
5. Discussions
5.1. Intense Rainfall Events
5.2. Intense Frosts Events
5.3. High Pollution Events
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AERONET | Aerosol Robotic Network |
BSRN | Baseline Surface Radiation Network |
HYO | Huancayo observatory |
LAMAR | Laboratory of Atmospheric Physics, Microphysics and Radiation |
MRB | Mantaro river basin |
MV | Mantaro valley |
GPM | Global Precipitation Measurement |
GFS | Global Forecast System |
GOES | Geostationary Operational Environmental Satellite |
MIRA-35C | METEK Meteorologische Messtechnik Radar |
CLAIRE | CLear Air and Rainfall Estimations |
BLTR | Boundary Layer and Tropospheric Radar |
ENSO | El Niño-Southern-Oscillation |
WCRP | World and Climate Research Programme |
SALLJ | South America Low Level Jet |
References
- Zhang, X.; Hegerl, G.; Seneviratne, S.; Steward, R.; Zwiers, F.; Alexander, L. WCRP Grand Challenge Science Underpinning the Prediction and Attribution of Extreme Events. 2014. Available online: www.clivar.org/sites/default/files/documents/wcrp/WCRPGrandChallengesExtremesrev.pdf (accessed on 19 March 2021).
- Alexander, L.; Zhang, X.; Hegerl, G.; Seneviratne, S. Implementation Plan for WCRP Grand Challenge On Understanding and Predicting Weather and Climate Extremes—The Extremes Grand Challenge. Available online: https://www.wcrp-climate.org/images/documents/grand_challenges/WCRP_Grand_Challenge_Extremes_Implementation_Plan_v20160708.pdf (accessed on 19 March 2021).
- Stocker, T.; Qin, D.; Plattner, G.K.; Tignor, M.; Allen, S.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.E. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 1st ed.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Sillmann, J.; Thorarinsdottir, T.; Keenlyside, N.; Schaller, N.; Alexander, L.V.; Hegerl, G.; Seneviratne, S.I.; Vautard, R.; Zhang, X.; Zwiers, F.W. Understanding, modeling and predicting weather and climate extremes: Challenges and opportunities. Weather Clim. Extrem. 2017, 18, 65–74. [Google Scholar] [CrossRef]
- Karoly, D. Science Underpinning the Prediction and Attribution of Extreme Events. 2016. Available online: https://www.wcrp-climate.org/documents/GC_Extremes.pdf (accessed on 19 March 2021).
- Garreaud, R. Multiscale analysis of the summertime precipitation over the central Andes. Mon. Weather Rev. 1999, 127, 901–921. [Google Scholar] [CrossRef]
- Junquas, C.; Takahashi, K.; Condom, T.; Espinoza, J.; Chavez, S.; Sicart, J.; Lebel, T. Understanding the influence of orography on the precipitation diurnal cycle and the associated atmospheric processes in the central Andes. Clim. Dyn. 2018, 50, 3995–4017. [Google Scholar] [CrossRef]
- Flores-Rojas, J.; Moya-Alvarez, A.; Kumar, S.; Martínez-Castro, D.; Villalobos-Puma, E.; Silva-Vidal, Y. Analysis of Possible Triggering Mechanisms of Severe Thunderstorms in the Tropical Central Andes of Peru, Mantaro Valley. Atmosphere 2019, 10, 301–331. [Google Scholar]
- Villalobos-Puma, E.; Martinez-Castro, D.; Flores Rojas, J.; Saavedra, M.; Silva Vidal, Y. Diurnal Cycle of Raindrops Size Distribution in a Valley of the Peruvian Central Andes. Atmosphere 2020, 11, 38. [Google Scholar] [CrossRef] [Green Version]
- Flores-Rojas, J.; Moya-Alvarez, A.S. Valdivia-Prado, J.; Piñas-Laura, M.; Kumar, S.; Karam, H.; Villalobos-Puma, E.; Martínez-Castro, D.; Silva, Y. On the dynamic mechanisms of intense rainfall events in the central Andes of Peru, Mantaro valley. Atmos. Res. 2020, 248. [Google Scholar] [CrossRef]
- Kumar, S.; Silva, Y.; Del-Castillo, C.; Flores-Rojas, J.; Moya-Alvarez, A.; Martinez-Castro, D. Precipitation structure during the life cycle of cloud systems over Peru using satellite based observations. Gisci. Remote Sens. 2020, 57, 1057–1082. [Google Scholar] [CrossRef]
- Saavedra, M.; Takahashi, K. Physical controls on frost events in the central Andes of Peru using in situ observations and energy flux models. Agric. For. Meteorol. 2017, 239, 58–70. [Google Scholar] [CrossRef]
- Flores-Rojas, J.; Cuxart, J.; Piñas-Laura, M.; Callañaupa, S.; Suárez-Salas, L.; Kumar, S.; Moya-Alvarez, A.; Silva, Y. Seasonal and Diurnal Cycles of Surface Boundary Layer and Energy Balance in the Central Andes of Perú, Mantaro Valley. Atmosphere 2019, 10, 779. [Google Scholar] [CrossRef] [Green Version]
- Espinoza, J.; Ronchail, J.; Lengaigne, M.; Quispe, N.; Silva, Y.; Bettolli, M.; Avalos, G.; Llacza, A. Revisiting wintertime cold air intrusions at the east of the Andes: Propagating features from subtropical Argentina to Peruvian Amazon and relationship with large-scale circulation patterns. Clim. Dyn. 2013, 41, 1983–2002. [Google Scholar] [CrossRef]
- Estevan, R.; Martínez-Castro, D.; Suarez-Sala, L.; Moya-Alvarez, A.; Silva, Y. First two and a half years of aerosol measurements with an AERONET sunphotometer at the Huancayo Observatory. Atmos. Environ. 2019, 3, 295–308. [Google Scholar] [CrossRef]
- Giráldez, L.; Silva, Y.; Zubieta, R.; Sulca, J. Change of the rainfall seasonality over Central Peruvian Andes: Onset, and, duration and its relationship with large-scale atmospheric circulation. Climate 2020, 8, 23. [Google Scholar] [CrossRef] [Green Version]
- Trasmonte, G.; Silva, Y.; Segura, B.; Latínez, K. Variabilidad de Las Temperaturas Máximas y Mínimas en el Valle del Mantaro. Memoria del Subproyecto “Pronóstico Estacional de Lluvias y Temperatura en La Cuenca del río Mantaro Para su Aplicación en la Agricultura", Primera ed.; Fondo Editorial CONAM-Instituto Geofísico del Perú; 2010; Available online: https://repositorio.igp.gob.pe/handle/20.500.12816/708 (accessed on 19 March 2021).
- Oscanoa, J.; Castillo, C.; Scipion, D. CLAIRE: An UHF wind profiler radar for turbulence and precipitation studies. Int. Congr. Electron. Electr. Eng. Comput. 2016. [Google Scholar] [CrossRef]
- Valdivia, J.; Scipion, D.; Milla, M.; Silva, Y. Multi-Instrument Rainfall-Rate Estimation in the Peruvian Central Andes. J. Atmos. Ocean. Technol. 2020, 37, 1811–1826. [Google Scholar] [CrossRef]
- Prakash, S.; Mitra, A.; Pai, D.; AghaKouchak, A. From TRMM to GPM: How well can heavy rainfall be detected from space? Adv. Water Resour. 2016, 88, 1–7. [Google Scholar] [CrossRef]
- Guo, H.; Chen, S.; Bao, A.; Behrangi, A.; Hong, Y.; Ndayisaba, F.; Hu, J.; Stepanian, P. Early assessment of integrated multi-satellite retrievals for global precipitation measurement over China. Atmos. Res. 2016, 176–177, 121–133. [Google Scholar] [CrossRef]
- Ma, Y.; Tang, G.; Long, D.; Yong, B.; Zhong, L.; Wan, W.; Hong, Y. Similarity and error intercomparison of the GPM and its predecessor-TRMM multisatellite precipitation analysis using the best available hourly gauge network over the Tibetan Plateau. Remote Sens. 2016, 8, 569. [Google Scholar] [CrossRef] [Green Version]
- Tang, G.; Zeng, Z.; Long, D.; Guo, X.; Yong, B.; Zhang, W.; Hong, Y. Statistical and hydrological comparisons between TRMM and GPM Level-3 products over a midlatitude basin: Is Day-1 IMERG a good successor for TMPA 3B42v7? J. Hydrometeor. 2016, 17, 121–137. [Google Scholar] [CrossRef]
- Chen, F.; Li, X. Evaluation of IMERG and TRMM 3B43 monthly precipitation products over mainland China. Remote Sens. 2016, 8, 472. [Google Scholar] [CrossRef] [Green Version]
- Sharifi, E.; Steinacker, R.; Saghafian, B. Assessment of GPM-IMERG and other precipitation products against gauge data under different topographic and climatic conditions in Iran: Preliminary results. Remote Sens. 2016, 8, 135. [Google Scholar] [CrossRef] [Green Version]
- Tan, J.; Petersen, W.; Tokay, A. A novel approach to identify sources of errors in IMERG for GPM ground validation. J. Hydrometeor. 2016, 17, 2477–2491. [Google Scholar] [CrossRef]
- Hobouchian, M.; Salio, P.; García Skabar, Y.; Vila, D.; Garreaud, R. Assessment of satellite precipitation estimates over the slopes of the subtropical Andes. Atmos. Res. 2017, 190, 43–54. [Google Scholar] [CrossRef]
- Manz, B.; Páez-Bimos, S.; Horna, N.; Buytaert, W.; Ochoa-Tocachi, B.; Lavado-Casimiro, W.; Willems, B. Comparative Ground Validation of IMERG and TMPA at Variable Spatiotemporal Scales in the Tropical Andes. J. Hydrometeorol. 2017, 18, 2469–2489. [Google Scholar] [CrossRef]
- Prueger, J.; Kustas, W. Aerodynamic Methods for Estimation Turbulent Fluxes, 1st ed.; USDA-ARS/UNL Faculty: Lincoln, NE, USA, 2005. [Google Scholar]
- Monin, A.; Obukhov, A. Basic laws of turbulent mixing in the ground layer of the atmosphere. Tr. Geofiz. Inst. Akab. Nauk 1954, 24, 163–187. [Google Scholar]
- Monteith, J. Dew. Q. J. R. Meteorol. Soc. 1957, 83, 322–341. [Google Scholar] [CrossRef]
- Oke, T. Boundary Layer Climates, 2nd ed.; Taylor and Francis Group: Oxfordshire, UK, 1987. [Google Scholar]
- Arya, S. Introduction to Micrometeorology, 2nd ed.; Academic Press: Cambridge, MA, USA, 1998. [Google Scholar]
- Foken, T.; Nappo, C. Micrometeorology, 1st ed.; Springer: Berlin/Heildelberg, Germany, 2008. [Google Scholar]
- Garay, O.; Ochoa, A. Primera Aproximación Para la Identificación de Los Diferentes Tipos de Suelo Agrícola en el Valle del Río Mantaro, 1st ed.; Instituto Geofísico del Perú: Lima, Peru, 2010. [Google Scholar]
- Martínez-Castro, D.; Kumar, S.; Flores-Rojas, J.L.; Moya-Álvarez, A.; Valdivia-Prado, J.; Villalobos-Puma, E.; Castillo-Velarde, C.; Silva-Vidal, Y. The Impact of Microphysics Parameterization in the Simulation of Two Convective Rainfall Events over the Central Andes of Peru Using WRF-ARW. Atmosphere 2019, 10, 442. [Google Scholar] [CrossRef] [Green Version]
- Garratt, J. The Atmospheric Boundary Layer, 2nd ed.; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Holben, B.; Eck, T.; Slutsker, I.; Tanre, D.; Buis, J.; Setzer, A.; Vermote, E.; Reagan, J.; Kaufman, Y.; Nakajima, T.; et al. AERONET – a federated instrument network and data archive for aerosol characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Draxler, R. HYSPLIT4 User’s Guide; ERL ARL-230, NOAA Air Resources Laboratory: Silver Spring, MD, USA, 1999; Volume 60, pp. 1–254. [Google Scholar]
- Draxler, R. An overview of the HYSPLIT-4 modeling system of trajectories, dispersion, and deposition. Aust. Meteorol. Mag. 1988, 47, 295–308. [Google Scholar]
- Stein, A.; Draxler, R.; Rolph, G.; Stunder, B.; Cohen, M.; Ngan, F. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
Characteristics | BLTR | CLAIRE | MIRA-35C |
---|---|---|---|
Transmission Power | Solid state 30 kW | Solid stated 5 kW | Magnetron 2.5 kW |
Operation frequency | 49.92 MHz | 445 MHz | 34.85 GHz |
Beamwidth | 19.79 | 9.46 | 0.6 |
Range | 0.22–10 km | 0.52–6 km | 0.15–13 km |
Range resolution | 75 m | 75 m | 31 m |
Temporal resolution | 32.8 s | 23 s | 5.6 s |
Temperature (C) | Relative Humidity (%) | Wind Speed (m s) | Wind Direction (degrees) | Soil Heat Flux (W m) | Soil Temperature (C) | Soil Moisture (%) | |
---|---|---|---|---|---|---|---|
Sensor | HMP60 | HMP60 | 03002 Wind Sentry Set | 03002 Wind Sentry Set | HFP01 soil heat flux plate | Decagon 5TM VWC | Decagon 5TM VWC |
Company | Campbell Scientific | Campbell Scientific | Campbell Scientific | Campbell Scientific | Campbell Scientific | ICT International | ICT International |
Range | −40 to 60 | 0–100 | 0–50 | 0–360 | ±2000 | −40 to 50 | 0–100 |
Accuracy | ±0.6 | 3% for 0–90 5% for 90–100 | ±0.5 | ±1.0 | −15% to +5% | ±1 | 0.08 for 0–50 0.1 for 50–100 |
CMP10 Pyranometer | CHP1 Pyrheliometer | CGR4 Pirgeometer | |
---|---|---|---|
Company | Kipp & Zonen | Kipp & Zonen | Kipp & Zonen |
Spectral range (50% points) | 285 to 2800 nm | 200 to 4000 nm | 4500 a 42000 nm |
Sensitivity | 7 to 14 V W m | 7 to 14 V W m | 5 a 15 V W m |
Response time | <5 s | <5 s | <18 s |
Directional response (up to 80 with 1000 W m beam) | <10 W m | - | - |
Temperature dependence of sensitivity (−20 C to +50 C) | <1% | <0.5% | - |
Operational temperature range | −40 C to +80 C | −40 to +80 C | −40 a +80 C |
Maximum solar irradianciance | 4000 W m | 4000 W m | - |
Limites de irradiancia neta | - | - | −250 a + 250 W m |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flores-Rojas, J.L.; Silva, Y.; Suárez-Salas, L.; Estevan, R.; Valdivia-Prado, J.; Saavedra, M.; Giraldez, L.; Piñas-Laura, M.; Scipión, D.; Milla, M.; et al. Analysis of Extreme Meteorological Events in the Central Andes of Peru Using a Set of Specialized Instruments. Atmosphere 2021, 12, 408. https://doi.org/10.3390/atmos12030408
Flores-Rojas JL, Silva Y, Suárez-Salas L, Estevan R, Valdivia-Prado J, Saavedra M, Giraldez L, Piñas-Laura M, Scipión D, Milla M, et al. Analysis of Extreme Meteorological Events in the Central Andes of Peru Using a Set of Specialized Instruments. Atmosphere. 2021; 12(3):408. https://doi.org/10.3390/atmos12030408
Chicago/Turabian StyleFlores-Rojas, José Luis, Yamina Silva, Luis Suárez-Salas, René Estevan, Jairo Valdivia-Prado, Miguel Saavedra, Lucy Giraldez, Manuel Piñas-Laura, Danny Scipión, Marco Milla, and et al. 2021. "Analysis of Extreme Meteorological Events in the Central Andes of Peru Using a Set of Specialized Instruments" Atmosphere 12, no. 3: 408. https://doi.org/10.3390/atmos12030408