Drought in South Asia: A Review of Drought Assessment and Prediction in South Asian Countries
Abstract
:1. Introduction
2. Definitions, Types, and Indices
2.1. Definitions of Drought
2.2. Types of Drought
2.3. Drought Indices
3. Overview of Drought in South Asian Countries
3.1. Drought Occurrence and Frequency in the Region
3.2. Drought Impacts and Vulnerability of the Region
4. Drought Assessment in South Asia
4.1. Sub-Himalayan Region (Nepal and Bhutan)
4.2. Northwestern Region (Afghanistan and Pakistan)
4.3. Indian Continent (India and Bangladesh)
4.4. Southern Region (Sri Lanka and the Maldives)
5. Drought Prediction, Teleconnection, and Projection under Climate Change
6. Current Status and Future Perspectives
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Davy, J.X. On an Unusual Drought in the Lake District in 1859. Trans. R. Soc. Edinb. 1861, 22, 313–318. [Google Scholar] [CrossRef] [Green Version]
- Mirza, M.M.Q. A review on current status of flood and drought forecasting in South Asia. In Global Environmental Changes in South Asia; Mitra, A.P., Sharma, C., Eds.; Springer: Dordrecht, The Netherlands, 2010. [Google Scholar]
- Naveendrakumar, G.; Vithanage, M.; Kwon, H.H.; Chandrasekara, S.S.K.; Iqbal, M.C.M.; Pathmarajah, S.; Fernando, W.C.D.K.; Obeysekara, J. South Asian perspective on temperature and rainfall extremes: A review. Atmos. Res. 2019, 225, 110–120. [Google Scholar] [CrossRef]
- Palmer, W.C. Research Paper No. 45, Meteorological Drought; Superintendent of Documents, U.S. Government Printing Office: Washington, DC, USA, 1965.
- Hoyt, J.C. Drought by 1936 with Discussion of the Significance of Drought in Relation to Climate; U.S. Geological Survey Water Supply Paper; Government Printing Office: Chicago, IL, USA, 1938; Volume 820, p. 1.
- Blumenstock, G. Drought in the United States analyzed by means of the theory of probability. Tech. Bull. U. S. Dep. Agric. 1942, 89, 5. [Google Scholar]
- Condra, G.E. Drought its affects and measures of control in Nebraska. In Nebraska Conservation Bulletin; University of Nebraska, Conservation and Survey Division: Lincoln, Nebraska, 1944; Volume 25, p. 1. [Google Scholar]
- Great Britain Meteorological Office. The Meteorological Glossary; Authority of the Meteorological Committee, Chemical Publishing Co.: New York, NY, USA, 1951; p. 253. [Google Scholar]
- White, R.C.L. Drought and effective rainfall frequency in pastoral New South Wales, west of the wheat belt. In A Meteorological Study No: 5; Bureau of Meteorology: Melbourne, Australia, 1955; p. 2. [Google Scholar]
- Van Bavel, C.H.M.; Verlinder, F.J. Agricultural drought in North Carolina. In Technical Bulletin; North Carolina Agricultural Experiment Station: Raleigh, NC, USA, 1956; Volume 122, p. 60. [Google Scholar]
- McGuire, J.K.; Palmer, W.C. The 1957 drought in the Eastern United States. Mon. Weather Rev. 1957, 85, 305–314. [Google Scholar] [CrossRef]
- Wilhite, D.A.; Glantz, M.H. Understanding the drought phenomenon: The role of definitions. Water Int. 1985, 10, 111–120. [Google Scholar] [CrossRef] [Green Version]
- United Nations International Strategy for Disaster Reduction. Drought Risk Reduction Framework and Practice: Contributing to the Implementation of the Hyogo Framework for Action; United Nation: New York, NY, USA, 2009. [Google Scholar]
- Wilhite, D.A. Chapter 1 drought as a natural hazard: Concepts and definitions. In Drought: A Global Assessment; Wilhite, D.A., Ed.; Routledge: Abingdon, London, UK, 2000; Volume I, p. 69. [Google Scholar]
- Sigdel, M.; Ikeda, M. Spatial and Temporal Analysis of Drought in Nepal using Standardized Precipitation Index and its Relationship with Climate Indices. J. Hydrol. Meteorol. 2010, 7, 59–74. [Google Scholar] [CrossRef]
- Schubert, S.D.; Suarez, M.J.; Pegion, P.J.; Koster, R.; Bacmeister, J.T. Potential Predictability of Long-Term Drought and Pluvial Conditions in the U.S. Great Plains. J. Clim. 2008, 21, 802–816. [Google Scholar] [CrossRef]
- Smakhtin, V.U.; Schipper, E.L.F. Drought: The impact of semantics and perceptions. Water Policy 2008, 10, 131–143. [Google Scholar] [CrossRef]
- Crausbay, S.D.; Ramirez, A.R.; Carter, S.L.; Cross, M.S.; Hall, K.R.; Bathke, D.J.; Betancourt, J.L.; Colt, S.; Cravens, A.E.; Dalton, M.S.; et al. Defining ecological drought for the twenty-first century. Am. Meteorol. Soc. 2017, 98, 2543–2550. [Google Scholar] [CrossRef]
- Otkin, J.A.; Svoboda, M.; Hunt, E.D.; Ford, T.W.; Anderson, M.C.; Hain, C.; Basara, J.B. Flash droughts: A review and assessment of the challenges imposed by rapid onset droughts in the United States. Bull. Am. Meteorol. Soc. 2018, 99, 911–919. [Google Scholar] [CrossRef]
- World Meteorological Organization and Global Water Partnership. Handbook of Drought Indicators and Indices; Integrated Drought Management Tools and Guidelines Series 2; Svoboda, M., Fuchs, B.A., Eds.; Integrated Drought Management Programme (IDMP): Geneva, Switzerland, 2016. [Google Scholar]
- Woldeyohannes, Y.Y.; Vaheddoost, B.; Al-Weshah, R.A. Drought indices and indicators revisited. Arab. J. Geosci. 2019, 12, 69. [Google Scholar]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; American Meteorological Society: Boston, MA, USA, 1993; pp. 179–184. [Google Scholar]
- Gibbs, W.J.; Maher, J.V. Rainfall deciles as drought indicators. In Bulletin No 48; Bureau of Meteorology: Melbourne, Australia, 1967. [Google Scholar]
- Vicente-Serrano, S.M.; Begueria, S.; Lopez-Moreno, J.I. A multi-scalar drought index sensitive to global warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- Hore, S.K.; Werner, M.; Maskey, S. Effectiveness of drought indicators in characterizing past droughts in the northwestern part of bangladesh. In Proceedings of the International Conference on Water & Environmental Engineering (iCWEE2019), Dhaka, Bangladesh, 19–22 January 2019. [Google Scholar]
- Gajbhiye, S.; Gautam, R.; Kahya, E. Drought analysis in the Tons river basin, India during 1969–2008. Theor. Appl. Climatol. 2017, 132, 939–951. [Google Scholar]
- Royal Government of Bhutan. State of Climate Change Report for the RNR Sector; RNR Climate Change Adaptation Program, Ministry of Agriculture & Forests, Royal Government of Bhutan: Thimphu, Bhutan, 2016; p. 18. [Google Scholar]
- Miyan, M.A. Droughts in Asian least developed countries: Vulnerability and sustainability. Weather Clim. Extrem. 2015, 7, 8–23. [Google Scholar] [CrossRef] [Green Version]
- Regmi, H.R. Drought risk management in Nepal. In Proceedings of the SAARC Workshop on Drought Risk Management in South Asia, Kabul, Afghanistan, 8–9 August 2010; SAARC Disaster Management Centre: New Delhi, India, 2010; pp. 111–119. [Google Scholar]
- Imbulana, L. Drought management in Sri Lanka. In Proceedings of the SAARC Workshop on Drought Risk Management in South Asia, Kabul, Afghanistan, 8–9 August 2010; SAARC Disaster Management Centre: New Delhi, India, 2010; pp. 164–175. [Google Scholar]
- National Environment Commission Secretariat. Bhutan National Adaptation Programme of Action (NAPA 2006); National Environment Commission Secretariat, Royal Government of Bhutan: Thimphu, Bhutan, 2006.
- Raghib, A.B.; Rahman, M.M. Drought management scenarios in Bangladesh. In Proceedings of the SAARC Workshop on Drought Risk Management in South Asia, Kabul, Afghanistan, 8–9 August 2010; SAARC Disaster Management Centre: New Delhi, India, 2010; pp. 50–62. [Google Scholar]
- Muhammad, A.; Jha, S.K.; Rasmussen, P. Drought Characterization for a Snow-Dominated Region of Afghanistan. J. Hydrol. Eng. 2017, 22, 05017014. [Google Scholar] [CrossRef]
- Privara, A.; Privarova, M. Nexus between climate change, displacement and conflict: Afghanistan case. Sustainability 2019, 11, 5586. [Google Scholar] [CrossRef] [Green Version]
- WFP (World Food Programme). Afghanistan Countrywide Food Needs Assessment of Rural and Settled Populations; World Food Programme: Kabul, Afghanistan, 2003. [Google Scholar]
- Bhattacharyya, K.; Azizi, P.M.; Shobair, S.S.; Mohsini, M.Y. Drought Impacts and Potential for Their Mitigation in Southern and Western Afghanistan; Working Paper 91; International Water Management Institute: Colombo, Sri Lanka, 2004. [Google Scholar]
- Zimmermann, M.; Glombitza, K.F.; Rothenberger, B. Disaster Risk Reduction Programme for Bangladesh; The Swiss Agency for Development and Cooperation (SDC), Directorate of Humanitarian Aid and SHA: Bern, Switzerland, 2010. [Google Scholar]
- Dey, N.C.; Alam, M.S.; Sajjan, A.K.; Bhuiyan, M.A.; Ghose, L.; Ibaraki, Y.; Karim, F. Assessing Environmental and Health Impact of Drought in the Northwest Bangladesh. J. Environ. Sci. Nat. Resour. 2011, 4, 89–97. [Google Scholar] [CrossRef]
- Adnan, S. Living without Floods: Lessons from the Drought of 1992; Research & Advisory Services: Dhaka, Bangladesh, 1993; Volume 2. [Google Scholar]
- Hossain, M. Natural calamities, instability in production and food policy in Bangladesh. Bangladesh Dev. Stud. 1990, 18, 33–54. [Google Scholar]
- Erickson, N.J.; Ahmed, Q.K.; Chowdhury, A.R. Chapter 5: Socio-economic implications of climate change for Bangladesh. In The Implications of Climate and Sea–Level Change for Bangladesh; Warrick, R.A., Ahmad, Q.K., Eds.; Springer: Dordrecht, The Netherlands, 1993; pp. 205–287. [Google Scholar]
- Abedin, M.A.; Habiba, U.; Shaw, R. Chapter 10 health: Impacts of salinity, arsenic and drought in south-western bangladesh. In Environment Disaster Linkages (Community, Environment and Disaster Risk Management), 1st ed.; Shaw, R., Tran, P., Eds.; Emerald Group Publishing Limited: Bingley, UK, 2012; Volume 9, pp. 165–193. [Google Scholar]
- Venkateswarly, B. Agricultural drought management in India. In Proceedings of the SAARC Workshop on Drought Risk Management in South Asia, Kabul, Afghanistan, 8–9 August 2010; SAARC Disaster Management Centre: New Delhi, India, 2010; pp. 88–104. [Google Scholar]
- Shewale, M.P.; Kumar, S. Climatological Features of Drought Incidences in India; National Climate Centre Office of the Additional Director General of Meteorology (Research), India Meteorological Department: Pune, India, 2005; p. 22. [Google Scholar]
- Joshi, N.; Gupta, D.; Suryawanshi, S.; Adamowski, J.; Madramootoo, C.A. Analysis of trends and dominant periodicities in drought variables in India: A wavelet transform based approach. Atmos. Res. 2016, 182, 200–220. [Google Scholar] [CrossRef]
- Ashraf, M.; Routray, J.K. Spatio-temporal characteristics of precipitation and drought in Balochistan Province, Pakistan. Nat. Hazards 2015, 77, 229–254. [Google Scholar] [CrossRef]
- United Nations. Drought Risk Reduction Framework and Practices: Contribution to the Implementation of the Hyogo Framework for Action; United Nations Secretariat of the International Strategy for Disaster Reduction: Geneva, Switzerland, 2009. [Google Scholar]
- Wang, S.Y.; Yoon, J.H.; Gillies, R.R.; Cho, C. What caused the winter drought in western Nepal during recent years? J. Clim. 2013, 26, 8241–8256. [Google Scholar] [CrossRef]
- Adhikari, S. Drought impact and adaptation strategies in the mid-hill farming system of Western Nepal. Environments 2018, 5, 101. [Google Scholar] [CrossRef] [Green Version]
- Joshi, G.R. Agricultural Economy of Nepal: Development Challenges and Opportunities; Sustainable Research and Development Centre: Kathmandu, Nepal, 2018. [Google Scholar]
- Disaster Management Center. Impacts of Disasters in Sri Lanka: 2016; The Consortium of Humanitarian Agencies (CHA): Colombo, Sri Lanka, 2016. [Google Scholar]
- Disaster Management Center. Sri Lanka National Report on Disaster Risk, Poverty and Human Development Relationship; Disaster Management Center: Colombo, Sri Lanka, 2009. [Google Scholar]
- Climate Risk Profile for the Maldives. Available online: http://ndmc.gov.mv/assets/Uploads/Climate-Risk-Profile-for-the-Maldives-Final-Report-2006.pdf (accessed on 9 March 2021).
- Maletta, H.; Favre, R. Agricultural and Food Production in Post-War Afghanistan: A Report on the Winter Agricultural Survey 2001–2003; Food and Agriculture Organization of the United Nations: Kabul, Afghanistan, 2003. [Google Scholar]
- Ramamasy, S.; Baas, S. Climate Variability and Change: Adaptation to Drought in Bangladesh, a Resource Book and Training Guide; Institutions for Rural Development, FAO: Rome, Italy, 2007. [Google Scholar]
- Chhogyel, N.; Kumar, L.; Bajgai, Y. Consequences of climate change impacts and incidences of extreme weather events in relation to crop production in Bhutan. Sustainability 2020, 12, 4319. [Google Scholar] [CrossRef]
- Gadgil, S.; Vinayachandran, P.N.; Francis, P.A. Droughts of the Indian summer monsoon: Role of clouds over the Indian Ocean. Curr. Sci. 2003, 85, 1713–1719. [Google Scholar]
- Ahmed, S.; Hussain, Z.; Qureshi, A.S.; Majeed, R.; Saleem, M. Drought mitigation in Pakistan: Current status and options for future strategies. In Proceedings of the SAARC Workshop on Drought Risk Management in South Asia, Kabul, Afghanistan, 8–9 August 2010; SAARC Disaster Management Centre: New Delhi, India, 2010; pp. 120–163. [Google Scholar]
- Sarkar, J. Monitoring and early warning of drought in India. In Proceedings of the SAARC Workshop on Drought Risk Management in South Asia, Kabul, Afghanistan, 8–9 August 2010; SAARC Disaster Management Centre: New Delhi, India, 2010; pp. 78–87. [Google Scholar]
- Kulshreshtha, S.M. Drought Management in India and Potential Contribution of Climate Prediction, South Joint COLA/CARE Technical Report No.1; Institute of Global Environment and Society: Calverton, NY, USA, 1997; p. 105. [Google Scholar]
- Mishra, V.; Tiwari, A.D.; Aadhar, S.; Shah, R.; Xiao, M.; Pai, D.S.; Lettenmaier, D. Drought and famine in India, 1870–2016. Geophys. Res. Lett. 2019, 46, 2075–2083. [Google Scholar] [CrossRef]
- Alami, M.M.; Hayat, E.; Tayfur, G. Proposing a Popular Method for Meteorological Drought Monitoring in the Kabul River Basin, Afghanistan. Int. J. Adv. Eng. Res. Sci. 2017, 4, 103–110. [Google Scholar] [CrossRef]
- Jayasiri, H.B.; Dahanayaka, D.D.G.L. Saltwater intrusion and its impact on Koggala lagoon and associated waters, Southern coast of Sri Lanka. Asian J. Water Environ. Pollut. 2012, 9, 73–84. [Google Scholar]
- Mondol, M.A.H. Application of Standardized Precipitation Index to assess meteorological drought in Bangladesh. Jamba J. Disaster Risk Stud. 2016, 8, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Comprehensive Disaster Management Programme. Vulnerability to Climate Induced Drought: Scenario and Impacts; Saha, S.K., Ali, M.S., Shahid, S., Eds.; Comprehensive Disaster Management Programme, Ministry of Disaster Management and Relief: Dhaka, Bangladesh, 2013. [Google Scholar]
- Rasheed, A. Rainfall characteristics and its distribution in Maldives. In Proceedings of the SAARC Workshop on Drought Risk Management in South Asia, Kabul, Afghanistan, 8–9 August 2010; SAARC Disaster Management Centre: New Delhi, India, 2010; pp. 105–110. [Google Scholar]
- Purkayastha, A.; Soundararajan, P.J. Current status on drought risk management in India. In Proceedings of the SAARC Workshop on Drought Risk Management in South Asia, Kabul, Afghanistan, 8–9 August 2010; SAARC Disaster Management Centre: New Delhi, India, 2010; pp. 63–77. [Google Scholar]
- Werner, W.L. Canopy dieback in the upper montane rain forests of Sri Lanka. Geo J. 1988, 17, 245–248. [Google Scholar] [CrossRef]
- SAARC Disaster Management Centre. Proceedings of the SAARC Workshop on Drought Risk Management in South Asia, Kabul, Afghanistan, 8–9 August 2010; SAARC Disaster Management Centre: New Delhi, India, 2010. [Google Scholar]
- Afghanistan: Integrated Drought Response, December 2018. Available online: https://www.humanitarianresponse.info/en/operations/afghanistan/infographic/afghanistan-integrated-drought-response-dashboard-jan-dec-2018 (accessed on 15 December 2020).
- Iqbal, M.W.; Donjadee, S.; Kwanyuen, B.; Liu, S.Y. Farmers’ perceptions of and adaptations to drought in Herat Province, Afghanistan. J. Mt. Sci. 2018, 15, 1741–1756. [Google Scholar] [CrossRef]
- Abeysingha, N.S.; Rajapaksha, U.R.L.N. SPI-Based Spatiotemporal Drought over Sri Lanka. Adv. Meteorol. 2020, 9753279. [Google Scholar] [CrossRef] [Green Version]
- Zubair, L.; Ralapanawe, V.; Tennakoon, U.; Yahiya, Z.; Perera, R. Chapter 4: Natural disaster risks in Sri Lanka: Mapping hazards and risk hotspots. In Natural Disaster Hotspots: Case Studies; World Bank: Washington, DC, USA, 2006; p. 109. [Google Scholar]
- Chithranayana, R.D.; Punyawardena, B.V.R. Identification of drought prone agro-ecological regions in Sri Lanka. J. Natl. Sci. Found. Sri Lanka 2008, 36, 117–123. [Google Scholar] [CrossRef] [Green Version]
- Sri Lanka: Initial Rapid Assessment on Drought 2016/17. Government of Sri Lanka. Available online: https://reliefweb.int/sites/reliefweb.int/files/resources/SLA_Drought_20170119_updated.pdf (accessed on 15 December 2020).
- World Food Program. Sri Lanka: Joint Assessment of Drought Impact on Food Security and Livelihoods; Ministry of Disaster Management Center: Colombo, Sri Lanka, 2017. [Google Scholar]
- Dahal, P.; Shrestha, N.S. Analysis of meteorological drought in Gandaki river basin Nepal by Standardized Precipitation Index. In Proceedings of the American Geophysical Union, Fall Meeting, San Francisco, CA, USA, 15–19 December 2014. [Google Scholar]
- Dahal, P.; Shrestha, N.S.; Shrestha, M.L.; Krakauer, N.Y.; Panthi, J.; Pradhanang, S.M.; Jha, A.; Lakhankar, T. Drought risk assessment in central Nepal: Temporal and spatial analysis. Nat. Hazards 2016, 80, 1913–1932. [Google Scholar] [CrossRef] [Green Version]
- Baniya, B.; Tang, Q.; Xu, X.; Haile, G.G.; Chhipi-Shrestha, G.K. Spatial and Temporal Variation of Drought Based on Satellite Derived Vegetation Condition Index in Nepal from 1982–2015. Sensors 2019, 19, 430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khatiwada, K.R.; Pandey, V.P. Characterization of hydro-meteorological drought in Nepal Himalaya: A case of Karnali river basin. Weather Clim. Extrem. 2019, 26. [Google Scholar] [CrossRef]
- De Beurs, K.; Henebry, G.M. War, Drought, and Phenology: Changes in the Land Surface Phenology of Afghanistan since 1982. J. Land Use Sci. 2008, 3, 95–111. [Google Scholar] [CrossRef]
- Alami, M.M.; Din, S.W.; Tayfur, G. Meteorological Drought Analysis by Different Methods in Helmand River Basin, Afghanistan. Int. J. Sci. Eng. Res. 2018, 9, 738–745. [Google Scholar] [CrossRef]
- Aich, V.; Akhundzadah, N.A.; Knuerr, A.; Khoshbeen, A.J.; Hattermann, F.; Paeth, H.; Scanlon, A.; Paton, E.N. Climate Change in Afghanistan Deduced from Reanalysis and Coordinated Regional Climate Downscaling Experiment (CORDEX)—South Asia Simulations. Climate 2017, 5, 38. [Google Scholar] [CrossRef] [Green Version]
- Qutbudin, S.; Shiru, M.S.; Sharafati, A.; Ahmed, K.; Al-Ansari, N.; Yaseen, Z.M.; Shahid, S.; Wang, X. Seasonal drought pattern changes due to climate variability: Case study in Afghanistan. Water 2019, 11, 1096. [Google Scholar] [CrossRef] [Green Version]
- Xie, H.; Ringler, C.; Zhu, T.; Waqas, A. Droughts in Pakistan: A spatiotemporal variability analysis using the Standardized Precipitation Index. Water Int. 2013, 38, 620–631. [Google Scholar] [CrossRef]
- Khan, M.A.; Gadiwala, M.S. A Study of Drought over Sindh (Pakistan) Using Standardized Precipitation Index (SPI) 1951 to 2010. Pak. J. Meteorol. 2013, 9, 15–22. [Google Scholar]
- Adnan, S.; Ullah, K.; Gao, S. Characterization of drought and its assessment over Sindh, Pakistan during 1951–2010. J. Meteorol. Res. 2015, 29, 837–857. [Google Scholar] [CrossRef]
- Adnan, S.; Ullah, K.; Gao, S. Investigations into precipitation and drought climatologies in South Central Asia with special focus on Pakistan over the period 1951–2010. J. Clim. 2016, 29, 6019–6035. [Google Scholar] [CrossRef]
- Adnan, S.; Ullah, K.; Gao, S.; Khosa, A.H.; Wang, Z. Shifting of agro-climatic zones their drought vulnerability, and precipitation and temperature trends in Pakistan. Int. J. Climatol. 2017, 37, 529–543. [Google Scholar] [CrossRef]
- Bilal, M.; Liaqat, M.U.; Cheema, M.J.M.; Mahmood, T.; Khan, Q. Spatial drought monitoring in Thar Desert using satellite based drought indices and geo-informatics techniques. Proceedings 2017, 2, 179. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, K.; Shahid, S.; Chung, E.S.; Wang, X.J.; Harun, S.B. Climate change uncertainties in seasonal drought severity-area-frequency curves: Case of arid region of Pakistan. J. Hydrol. 2019, 570, 473–485. [Google Scholar] [CrossRef]
- Amin, M.; Khan, A.H.; Perveen, A.; Rauf, Z.; Hassan, S.S.; Goheer, M.A.; Ijaz, M. Drought Risk Assessment: A Case Study in Punjab, Pakistan. Sarhad J. Agric. 2019, 35, 234–243. [Google Scholar] [CrossRef]
- Kumar, M.N.; Murthy, C.S.; Sesha, M.V.R.; Sai, S.; Roy, P.S. Spatiotemporal analysis of meteorological drought variability in the Indian region using standardized precipitation index. Meteorol. Appl. 2012, 19, 256–264. [Google Scholar] [CrossRef] [Green Version]
- Patel, N.R.; Parida, B.R.; Venus, V.; Saha, S.K.; Dadhwal, V.K. Analysis of agricultural drought using vegetation temperature condition index (VTCI) from Terra/MODIS satellite data. Environ. Monit. Assess. 2012, 184, 7153–7163. [Google Scholar] [CrossRef] [PubMed]
- Palchaudhuri, M.; Biswas, S. Analysis of meteorological drought using standardized Precipitation Index—A case study of Puruliya District, West Bengal, India. World Academy of Science, Engineering and Technology. Int. J. Environ. Ecol. Eng. 2013, 7, 167–174. [Google Scholar]
- Mundetia, N.; Sharma, D. Analysis of rainfall and drought in Rajastan state, India. Glob. Nest J. 2015, 17, 12–21. [Google Scholar]
- Pai, D.S.; Guhathakurta, P.; Kulkarni, A.; Rajeevan, M.N. Variability of meteorological droughts over India. In Observed Climate Variability and Change over the Indian Region; Rajeevan, M., Nayak, S., Eds.; Springer Geology, Springer: Singapore, 2017; pp. 73–87. [Google Scholar]
- Guhathakurta, P.; Menon, P.; Inkane, P.M. Trends and variability of meteorological drought over the districts of India using standardized precipitation index. J. Earth Syst. Sci. 2017, 126, 120. [Google Scholar] [CrossRef] [Green Version]
- Thakur, A.; Liansangpuii, F.; Choudhary, S. Temporal analysis of drought using standardized precipitation index for Wainganga sub-basin, India. J. Pharmacogn. Phytochem. 2019, 8, 268–272. [Google Scholar]
- Bhuiyan, C.; Singha, R.P.; Koganc, F.N. Monitoring drought dynamics in the Aravalli region (India) using different indices based on ground and remote sensing data. Int. J. Appl. Earth Obs. Geoinf. 2006, 8, 289–302. [Google Scholar] [CrossRef]
- Mahajan, D.R.; Dodamani, B.M.; Mannina, G. Spatial and temporal drought analysis in the Krishna river basin of Maharashtra, India. Cogent Eng. 2016, 3, 15. [Google Scholar] [CrossRef]
- Surendran, U.; Anagha, B.; Raja, P. Analysis of Drought from Humid, Semi-Arid and Arid Regions of India Using DrinC Model with Different Drought Indices. Water Resour. Manag. 2019, 33, 1521–1540. [Google Scholar] [CrossRef]
- Wable, P.S.; Jha, M.K.; Shekhar, A. Comparison of Drought Indices in a Semi-Arid River Basin of India. Water Resour. Manag. 2019, 33, 75–102. [Google Scholar] [CrossRef]
- Pandey, R.P.; Mishra, S.K.; Singh, R.; Ramasastri, K.S. Streamflow drought severity analysis of Betwa river system (India). Water Resour. Manag. 2008, 22, 1127–1141. [Google Scholar] [CrossRef]
- Alamgir, M.; Shahid, S.; Hazarika, M.K.; Nashrrullah, S.; Haruns, B.; Shamsudin, S. Analysis of meteorological drought pattern during different climatic and cropping seasons in Bangladesh. J. Am. Water Resour. Assoc. 2015, 51, 794–806. [Google Scholar] [CrossRef]
- Rahman, M.R.; Lateh, H. Meteorological Drought in Bangladesh: Assessing, Analysing and Hazard Mapping Using SPI, GIS and Monthly Rainfall Data. Environ. Earth Sci. 2016, 75, 1026. [Google Scholar] [CrossRef]
- Mondol, M.A.H.; Ara, I.; Das, S.C. Meteorological Drought Index Mapping in Bangladesh by Using Standardized Precipitation Index (SPI) over 1981–2010. Adv. Meteorol. 2017, 2017, 4642060. [Google Scholar] [CrossRef] [Green Version]
- Shahid, S. Spatial and temporal characteristics of droughts in the western parts of Bangladesh. Hydrol. Process. 2008, 22, 2247–2265. [Google Scholar] [CrossRef]
- Shahid, S.; Behrawan, H. Drought risk assessment in the western part of Bangladesh. Nat. Hazards 2008, 46, 391–413. [Google Scholar] [CrossRef]
- Azam, M.N.; Rahman, M.A.; Kamal, S.M.M. Environmental concerns: Assessment of meteorological drought. Int. J. Environ. Sustain. Dev. 2017, 16, 156. [Google Scholar] [CrossRef]
- Alamgir, M.; Mohsenipour, M.; Homsi, R.; Wang, X.; Shahid, S.; Shiru, M.S.; Alias, E.; Yuzir, A. Parametric Assessment of Seasonal Drought Risk to Crop Production in Bangladesh. Sustainability 2019, 11, 1442. [Google Scholar] [CrossRef] [Green Version]
- Shahid, S.; Hazarika, M.K. Groundwater drought in the Northwestern districts of Bangladesh. Water Resour. Manag. 2010, 24, 1989–2006. [Google Scholar] [CrossRef]
- Disaster Management Center and United Nations Development Program. Chapter 3: Drought. In Hazard profiles of Sri Lanka; Disaster Management Center: Colombo, Sri Lanka, 2012. [Google Scholar]
- Lyon, B.; Zubair, L.; Ralapanawe, V.; Yahiya, Z. Fine Scale Evaluation of Drought in a Tropical Setting: Case Study in Sri Lanka. J. Appl. Meteorol. Climatol. 2009, 48, 77–88. [Google Scholar] [CrossRef]
- Ekanayake, E.M.R.S.B.; Perera, K. Analysis of drought severity and duration using copulas in Anuradhapura, Sri Lanka. Br. J. Environ. Clim. Chang. 2014, 4, 312–327. [Google Scholar] [CrossRef]
- Herath, H.M.R.C.; Premalal, K.H.M.S.; Kaumudie, A.L.I.; Sanjeewani, D.M.N. Analysis of Standard Precipitation Indices to Identify for Drought Condition in 2015. Sri Lanka J. Meteorol. 2015, 1, 20–31. [Google Scholar]
- Manesha, S.; Vimukthini, S.; Premalal, K.H.M.S. Develop drought monitoring in Sri Lanka using Standard Precipitation Index (SPI). Sri Lanka J. Meteorol. 2015, 1, 64–71. [Google Scholar]
- Gunda, T.; Hornbergera, G.M.; Gilliganb, J.M. Spatiotemporal patterns of agricultural drought in Sri Lanka: 1881–2010. Int. J. Climatol. 2016, 36, 563–575. [Google Scholar] [CrossRef]
- Jayawardana, J.M.D.R.; Yapa, R.D.; Kumarathunge, D. Modeling extreme drought events in major coconut growing agro-ecological regions in Sri Lanka. Int. J. Sci. Res. 2016, 5, 1249–1253. [Google Scholar]
- World Meteorological Organization. Drought Monitoring and Early Warning: Concepts, Progress and Future Challenges; World Meteorological Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Wilhite, D.A.; Buchanan-Smith, M. Drought as hazard: Understanding the natural and social context. In Drought and Water Crises: Science, Technology, and Management Issues; Wilhite, D.A., Ed.; Taylor and Francis: Boca Raton, FL, USA, 2005; pp. 3–29. [Google Scholar]
- Heim, R.R. A review of twentieth-century drought indices used in the United States. Bull. Am. Meteorol. Soc. 2002, 83, 1149–1165. [Google Scholar] [CrossRef] [Green Version]
- Steinemann, A.; Hayes, M.; Cavalcanti, L. Drought indicators and triggers. In Drought and Water Crises: Science, Technology, and Management Issues; Wilhite, D.A., Ed.; Taylor and Francis: Boca Raton, FL, USA, 2005; pp. 71–92. [Google Scholar]
- Sharma, T.C.; Panu, U.S. Prediction of hydrological drought durations based on Markov chains: Case of the Canadian prairies. Hydrol. Sci. J. 2012, 57, 705–722. [Google Scholar] [CrossRef] [Green Version]
- Wetterhall, F.; Winsemius, H.; Dutra, E.; Werner, M.; Pappenberger, E. Seasonal predictions of agro-meteorological drought indicators for the Limpopo basin. Hydrol. Earth Syst. Sci. 2015, 19, 2577–2586. [Google Scholar] [CrossRef] [Green Version]
- Quan, X.-W.; Hoerling, M.P.; Lyon, B.; Kumar, A.; Bell, M.A.; Tippett, M.K.; Wang, H. Prospects for dynamical prediction of meteorological drought. J. Appl. Meteorol. Climatol. 2012, 51, 1238–1252. [Google Scholar] [CrossRef]
- Yoon, J.H.; Mo, K.; Wood, E.F. Dynamic model-based seasonal prediction of meteorological drought over the contiguous United States. J. Hydrometeorol. 2012, 13, 463–482. [Google Scholar] [CrossRef]
- Yuan, X.; Wood, E.F. Multi model seasonal forecasting of global drought onset. Geophys. Res. Lett. 2013, 40, 4900–4905. [Google Scholar] [CrossRef]
- Schubert, S.; Koster, R.; Hoerling, M.; Seager, R.; Lettenmaier, D.; Kumar, A.; Gutzler, D. Predicting drought on seasonal-to-decadal time scales. Bull. Am. Meteorol. Soc. 2007, 88, 1625–1630. [Google Scholar] [CrossRef] [Green Version]
- Shah, R.; Mishra, V. Short-term drought prediction in India. In Proceedings of the American Geophysical Union, Fall Meeting, San Francisco, CA, USA, 15–19 December 2014. [Google Scholar]
- Mishra, A.K.; Desai, V.R. Drought forecasting using feed-forward recursive neural network. Ecol. Modeling 2006, 198, 127–138. [Google Scholar] [CrossRef]
- Rahaman, A.Z.; Al Hossain, B.M.T.; Ahmed, T. Assessment of drought characteristics in Bangladesh. In Proceedings of the 6th International Conference on Water and Flood Management, Dhaka, Bangladesh, 4–6 March 2017. [Google Scholar]
- Illeperuma, G.D.; Sonnadara, U. Forecasting droughts using artificial neural networks. In National Symposium on Disaster Risk Reduction & Climate Change Adaptation; Ministry Of Disaster Management: Colombo, Sri Lanka, 2009. [Google Scholar]
- Drought Monitoring System. Available online: http://dms.iwmi.org/ (accessed on 9 January 2021).
- Shah, R.D.; Mishra, V. Development of an Experimental Near-Real-Time Drought Monitor for India. J. Hydrometeorol. 2015, 16, 327–345. [Google Scholar] [CrossRef]
- Drought Monitoring and Prediction in South Asia. Available online: https://hepex.irstea.fr/drought-monitoring-and-prediction-in-south-asia/ (accessed on 5 April 2019).
- Aadhar, S.; Mishra, V. High-resolution near real-time drought monitoring in South Asia. Sci. Data 2017, 4, 170145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tyalagadi, M.S.; Gadgil, A.; Krishnakumar, G. Monsoonal droughts in India—A recent assessment. Pap. Glob. Chang. IGBP 2015, 22, 19–35. [Google Scholar] [CrossRef] [Green Version]
- Rahman, A.T.M.S.; Jahan, C.S.; Mazumder, Q.H.; Kamruzzaman, M.D.; Hosono, T. Drought analysis and its implication in sustainable water resources management in Barind Area, Bangladesh. J. Geol. Soc. India 2017, 89, 47–56. [Google Scholar] [CrossRef]
- Zhou, T.J.; Hong, T. Projected changes of Palmer Drought Severity Index under an RCP 8.5 scenario. Atmos. Ocean. Sci. Lett. 2013, 6, 273–278. [Google Scholar]
- Barlow, M.; Zaitchik, B.; Paz, S.; Black, E.; Evans, J.; Hoell, J. A review of drought in the Middle East and Southwest Asia. J. Clim. 2016, 29, 8547–8574. [Google Scholar] [CrossRef]
- Huang, J.S.M.; Wood, A.; Schubert, S.; Peters-Lidard, C.; Wood, E.; Pulwarty, R.; Mariotti, A.; Barrie, D. Research to Advance National Drought Monitoring and Prediction Capabilities; NOAA Interagency Drought Task Force; NOAA/Modeling Analysis Predictions and Projections: Washington, DC, USA, 2016; p. 29.
Index Name | Input Parameters | Calculation | Strength | Weakness | Applied Area |
---|---|---|---|---|---|
Palmer Drought Severity Index (PDSI) [4] | Rainfall, temperature, and available soil water content | Measures difference in moisture content from an average condition based on a 2-layer, bucket-type water balance model. | Assess both water supply and demand and provides the best estimation of availability of soil moisture (i.e., surplus or deficit). Globally used with widely available codes. | Needs serially complete data. Difficult to identify rapidly emerging drought conditions. Cannot be applied for frozen precipitation or frozen soil. | For agricultural drought identification. |
Standardized Precipitation Index (SPI) [22] | Rainfall | The probability of precipitation for 1 to 48 months or longer duration is computed using historical rainfall data. | Uses only rainfall data. Easy calculation. Ability to use for a 3-month timescale is beneficial for stations with intermittent missing rainfall. | Incompetent in assessing the events that have similar SPI but different temperature scenarios because the temperature is not a parameter in this index. | For basic drought monitoring, meteorological drought identification, and agricultural drought identification. |
Normalized Difference Vegetation Index (NDVI) [20] | NOAA AVHRR satellite data | The radiance values measured in both the visible and near-infrared channels, and global vegetation index data are used for the calculation. | Very high resolution and spatially covered. | Data processing is extremely important. Historical assessment is limited due to the unavailability of historical satellite data. | Identifying and monitoring droughts affecting agriculture. |
Percent of Normal Precipitation (PNPI) [20] | Rainfall | The percentage of the value obtained from actual rainfall is divided by normal rainfall for the required duration is considered. | Only requires basic mathematic skills and less time consuming. | Some users could confuse mean or average rainfall. | Identifying and monitoring various impacts of droughts. |
Deciles (DI) [23] | Rainfall | The entire rainfall data for a location are ranked based on frequency and distribution. | Simple and flexible for many situations including wet and dry conditions. | Absence of temperature parameters causes underestimation of drought severity. | Identifying meteorological, agricultural, and hydrological droughts. |
Standardized Precipitation Evapotranspiration Index (SPEI) [24] | Precipitation and potential evapotranspiration (PET) | Monthly climatic water balance (difference between rainfall and PET) is adjusted using a three-parameter log-logistic distribution. | Inclusion of temperature and standardizing the index increase the applicability of the index to all climate regimes. | Data requirement is high. Monthly index does not identify rapidly developing drought scenarios. | Identify and monitor conditions associated with a variety of drought impacts. |
China Z Index (CZI) developed by the National Climate Centre of China in 1995 [20] | Monthly rainfall | Rainfall is used to identify wetness, assuming that rainfall behaves as a Pearson type III distribution. | Uses monthly time steps from 1 to 72 months and can identify droughts of various durations. | The Z-score data do not represent shorter timescales. | The wetness of the events can be monitored over different timescales. |
Country | Drought Impact on Crop Production | Source |
---|---|---|
Afghanistan | Twelve million farmers in Afghanistan were affected by the drought during 1990–2009. In the suburbs of Ghor, Badghis, and Hirat, the cultivation area has declined by nearly 70% due to prolonged droughts. Drought lowered the crop diversity The yields of peas, cotton, wheat, and barley were reduced significantly by 88%, 17%, and 50–70%, respectively. 80% of forests and pastures were destroyed in the Nimroz, Helmand, and Farah provinces of Afghanistan due to drought. | [54] |
Bangladesh | Annually, 2.32 million ha and 1.2 million ha of rice fields are destroyed due to drought in Kharif and Rabi seasons, respectively. The severe drought in Bogra in 1866 and 1951 hit hard on rice production, and rice prices increased massively. Drought during 1994–1996 caused heavy damage to rice, jute, and bamboo clumps. | [55] |
Bhutan | The combined effect from the change in the onset of rainfall, drought, and windstorms causes crop damage of 1–19%. | [56] |
India | The lowest crop production recorded for the last 50 years was observed in 2002 during the Kharif (March to June) season, and crop loss caused a 1% reduction in the GDP of India. Consecutive drought during 2000–2012 caused a severe loss in crop production. | [57] |
Nepal | Drought during 2008/09 winter season affected 70% of the agricultural areas, and the production of winter crops decreased by 17% at the national level. Drought during 2009/10 affected rice fields, with production decreasing by up to 11% at the national level. | [29] |
Pakistan | Production of main crops decreased by 10%, and simultaneously, minor crops had a similar dropdown | [58] |
Sri Lanka | Intermittent drought from 1974 to 2008 decreased crop production by 56%. The loss of seed paddy for the upcoming season was caused during the droughts in 2012/13 and 2016/17. Failure of two consecutive cultivating seasons during the drought in 2016/17 and an enormous increase in rice prices. | [51] |
Country | Description | ||||
---|---|---|---|---|---|
The Most Severe Drought Events during Recent 30 Years (1990–2020) | Vulnerable Sectors to the Drought | Drought Assessment Method | Drought Monitoring Methods | Drought Prediction Methods | |
Afghanistan | 1998–2006, 2007, 2008, 2018 [33,34] | Agriculture [54], Water resource [62], Social and economic; Mass migration [34,69,70,71] | SPI [62], NDVI [81], PDSI [81], PNPI [62], DI [62], CZI [62] | SPI, DI [62], PDSI, PHDI, Z-index [82], SPEI [83,84] | SADMPS [135,136] |
Bangladesh | 1994, 2000 [32] | Agriculture [55], Water resources [25,112] | SPI [25,105,106,107,108,109,110,111], SPEI [25], SGWI [25], NDVI [25] | SADMS [134] | sc-PDSI [132], VCI [79], SADMPS [135,136] |
India | 2000, 2002, 2009, 2012 [44] | Agriculture [57], Social and economic [38,59,60,61] Water resources [98,104] | SPI [93,95,98,99,100,103], SPEI [97,103], VTCI [94], SWI [100], VCI [100], TCI [100], VHI [100], NDVI [100], PDN [103], EDI [103], RDI [103], DSI [104] | SPI [101], SPEI [103], SADMS [134], SADMPS [135,136] | SPI [102], RDI [102], GEFS [130], RMSNN [131], DMSNN [131], ARIMA [131], SADMPS [135,136] |
Nepal | 1992, 2008–2009, 2012–2013, 2015 [49,50] | Agriculture [29], Water resources [15,80] | SPI [15,77,80], VCI [79], SPEI [80], RDI [80], sc-PDSI [80], SFI [80], PHDI [80] | SADMS [134] | SADMPS [135,136] |
Pakistan | 1998–2004 [47] | Agriculture [58], Water resources [86], Social and economic [60] | SPI [85,86,87,90,91,92], DI [88], NDVI [90] | SADMS [134] | SADMPS [135,136] |
Sri Lanka | 2001, 2004, 2012, 2014, 2016–2017 [51,52] | Agriculture and livestock production [51,76], Social and economic [61], Water resources [38,43,55,63,64,65,66,67,75], Hydropower [75], Flora and Fauna [68] | SPI [114,115,116,117,118,119], PDSI [118], Novel index [113] | SADMS [134] | SPI [133], SADMPS [135,136] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chandrasekara, S.S.K.; Kwon, H.-H.; Vithanage, M.; Obeysekera, J.; Kim, T.-W. Drought in South Asia: A Review of Drought Assessment and Prediction in South Asian Countries. Atmosphere 2021, 12, 369. https://doi.org/10.3390/atmos12030369
Chandrasekara SSK, Kwon H-H, Vithanage M, Obeysekera J, Kim T-W. Drought in South Asia: A Review of Drought Assessment and Prediction in South Asian Countries. Atmosphere. 2021; 12(3):369. https://doi.org/10.3390/atmos12030369
Chicago/Turabian StyleChandrasekara, Sewwandhi S.K., Hyun-Han Kwon, Meththika Vithanage, Jayantha Obeysekera, and Tae-Woong Kim. 2021. "Drought in South Asia: A Review of Drought Assessment and Prediction in South Asian Countries" Atmosphere 12, no. 3: 369. https://doi.org/10.3390/atmos12030369