Mechanisms for Severe Drought Occurrence in the Balsas River Basin (Mexico)
Abstract
:1. Introduction
2. Data and Methods
2.1. Drought Indices
2.2. E–P Backward Tracking
2.3. Climatic Fields Data
3. Results
3.1. Drought Characteristics during the Period of 1980–2017
3.2. Water Vapor Transport toward the Balsas River Basin
3.3. Climatic Fields Anomalies during the Droughts of 1982 and 2005
3.3.1. Drought Event in 1982
3.3.2. Drought Event in 2005
4. Summary and Conclusions
- The evolution of SPEI-6 and SPI-6 averaged over the BRB are quite similar during the studied period, suggesting a larger contribution of precipitation deficit than temperature excess to the drought occurrence.
- Two major drought events—one severe (2005) and another of extreme intensity (1982)—were found in the period 1980–2017. The differences between the spatial patterns obtained by both indices (SPEI-6 and SPI-6) were much reduced, confirming the important role of precipitation in these two events vs. atmospheric evaporative demand driven by temperature increase in the Mexican territory.
- The main moisture sources during the wet season (May–October) for the BRB were identified. The terrestrial evaporative source of BRB itself was shown to be by far the main moisture source during the entire wet season, followed by the southern BRB terrestrial region and the Caribbean Low-Level Jet (CLLJ) core region, which are more active from June to September.
- During the drought event of 2005, an anomalously warm SST emerged over the Caribbean Sea. A persistent elevated SST over the Atlantic warm pool favored hurricane activity during this year. As a response to this heating, lower-level negative pressure anomalies and upper tropospheric positive pressure anomalies developed to the northwest, consistent with Gill’s model. As a consequence of the lower level cyclonic circulation over the Gulf of Mexico, negative anomalies of the CLLJ winds arose, and the BRB itself, CLLJ and SOUTH provided a decreased water vapor contribution. Additionally, this drought event was associated with subsidence that also prevented convection over the BRB in four of the six months.
- The mechanisms associated with the the top drought event, which occurred in 1982, were also determined. An intense and southward-shifted Inter Tropical Convergence Zone (ITCZ) over the eastern tropical Pacific produced an intense regional Hadley circulation that generated anomalously strong subsidence over the BRB. This descent branch of the Hadley cell inhibited the development of deep convection, although this drought episode was concurrent with an increase in the moisture supply. A strong trade wind inversion (TWI) driven by this large-scale subsiding air from the upper troposphere confined the moisture content in the lower layers.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sheffield, J.; Wood, E.F. Drought: Past Problems and Future Scenarios; Earthscan Publications Ltd.: London, UK, 2011. [Google Scholar]
- Trigo, R.M.; Gouveia, C.M.; Barriopedro, D. The intense 2007–2009 drought in the Fertile Crescent: Impacts and associated atmospheric circulation. Agric. For. Meteorol. 2010, 150, 1245–1257. [Google Scholar] [CrossRef]
- Lewis, S.; Brando, P.; Phillips, O.; van der Heijden, G.; Nepstad, D. The 2010 Amazon Drought. Science 2011, 331, 554. [Google Scholar] [CrossRef]
- McGrath, G.S.; Sadler, R.; Fleming, K.; Tregoning, P.; Hinz, C.; Veneklaas, E.J. Tropical cyclones and the ecohydrology of Australia’s recent continental-scale drought. Geophys. Res. Lett. 2012, 39, L03404. [Google Scholar] [CrossRef] [Green Version]
- Hoerling, M.; Kumar, A.; Dole, R.; Nielsen-Gammon, J.W.; Eischeid, J.; Perlwitz, J.; Quan, X.-W.; Zhang, T.; Pegion, P.; Chen, M. Anatomy of an Extreme Event. J. Clim. 2012, 26, 2811–2832. [Google Scholar] [CrossRef]
- Palmer, W.C. Meteorological Drought; US Department of Commerce Weather Bureau Research Paper No. 45; U.S. Weather Bureau: Washington, DC, USA, 1965.
- Wehner, M.; Easterling, D.R.; Lqwrimore, J.H.; Heim, R.R., Jr.; Vose, R.S. Projections of Future Drought in the Continental United States and Mexico. J. Hidrometeorol. 2011, 12, 1359–1377. [Google Scholar] [CrossRef]
- Wu, H.; Hayes, M.J.; Wilhite, D.A.; Svoboda, M.D. The effect of the length of record on the standardized precipitation index calculation. Int. J. Climatol. 2005, 25, 505–520. [Google Scholar] [CrossRef] [Green Version]
- Orlowsky, B.; Seneviratne, S.I. Elusive drought: Uncertainty in observed trends and short-and long-term CMIP5 projections. Hydrol. Earth Syst. Sci. 2013, 17, 1765–1781. [Google Scholar] [CrossRef] [Green Version]
- Ibarrarán, M.E.; Malone, E.L.; Brenkert, A.L. Climate change vulnerability and resilience: Current status and trends for Mexico. Environment. Dev. Sustain. 2010, 12, 365–388. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Nicholls, N.; Easterling, D.; Goodess, C.; Kanae, S.; Kossin, J.; Luo, Y.; Marengo, J.; McInnes, K.; Rahimi, M.; et al. Changes in climate extremes and their impacts on the natural physical environment. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC); Field, C.B., Barros, V., Stocker, T., Qin, D., Dokken, D., Ebi, K., Mastrandrea, M., Mach, K., Plattner, G.-K., Allen, S., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012; pp. 109–230. [Google Scholar]
- Ortega-Gaucin, D.; Velasco, I. Aspectos socioeconómicos y ambientales de las sequías en México. Aqua-LAC 2013, 5, 78–90. [Google Scholar] [CrossRef]
- Kim, T.-K.; Jehanzaib, M. Drought Risk Analysis, Forecasting and Assessment under Climate Change. Water 2020, 12, 1862. [Google Scholar] [CrossRef]
- CONAGUA. Situación de los Recursos Hídricos. Available online: http://sina.conagua.gob.mx/sina/tema.php?tema=regionesHidrologicas (accessed on 4 January 2021).
- Harris, I.; Jones, P.D.; Osborn, T.J.; Lister, D.H. Updated high-resolution grids of monthly climatic observations–the CRU TS3. 10 Dataset. Int. J. Climatol. 2014, 34, 623–642. [Google Scholar] [CrossRef] [Green Version]
- Ortiz Pérez, M.A.; Hernández Santana, J.R.; Figueroa Mah Eng, J.M. Cambios de la línea costera en el delta del río Balsas, Pacífico mexicano, entre los años 1943–2009. Investig. Geogr. 2017, 94, 1–17. [Google Scholar] [CrossRef]
- CONAGUA. Estadísticas del Agua en México. Edición 2018; Secretaría de Medio Ambiente y Recursos Naturales: Ciudad de México, México, 2018; p. 303. [Google Scholar]
- IMTA. Bases Centro Mexicano en Innovación de Energía Hidroeléctrica. In Primera Parte: Infraestructura Hidroeléctrica Actual. Primera Edición; Instituto Mexicano de Tecnología del Agua: Jiutepec, Mexico, 2017; p. 74. [Google Scholar]
- CONAGUA. Estadísticas del Agua en la Cuenca del Río Balsas. Primera Edición; Secretaría del Medio Ambiente y Recursos Naturales: Ciudad de México, Mexico, 2010; p. 169. [Google Scholar]
- Vive Cuenca del Río Balsas la Peor Sequía de los Últimos 50 Años. Available online: https://agua.org.mx/vive-cuenca-del-rio-balsas-la-peor-sequia-de-los-ultimos-50-anos/ (accessed on 4 January 2021).
- IMTA. Atlas de vulnerabilidad hídrica en México ante el cambio climático. In Efectos del Cambio Climático en el Recurso Hídrico de México. Primera Edición; Instituto Mexicano de Tecnología del Agua: Jiutepec, Mexico, 2015; p. 147. [Google Scholar]
- Valencia-Vargas, J.C. Desarrollo de la región hidrológica del Balsas mediante la modificación de su veda. Tecnol. Cienc. Del Agua 2015, 6, 81–97. [Google Scholar]
- Trejo, I.; Dirzo, R. Deforestation of seasonally dry tropical forest: A national and local analysis in Mexico. Biol. Conserv. 2000, 94, 133–142. [Google Scholar] [CrossRef]
- Miller, P.W.; Mote, T.L.; Ramseyer, C.A. An Empirical Study of the Relationship between Seasonal Precipitation and Thermodynamic Environment in Puerto Rico. Weather Forecast. 2019, 34, 277–288. [Google Scholar] [CrossRef]
- The Gálvez-Davison Index for Tropical Convection. Available online: https://www.wpc.ncep.noaa.gov/international/gdi/GDI_Manuscript_V20161021.pdf (accessed on 4 January 2021).
- Stohl, A.; Hittenberger, M.; Wotawa, G. Validation of the Lagrangian particle dispersion model FLEXPART against large-scale tracer experiment data. Atmos. Environ. 1998, 32, 4245–4264. [Google Scholar] [CrossRef]
- Stohl, A.; Forster, C.; Frank, A.; Seibert, P.; Wotawa, C. Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2. Atmos. Chem. Phys. 2005, 5, 2461–2474. [Google Scholar] [CrossRef] [Green Version]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; Volume 17, pp. 179–183. [Google Scholar]
- Guenang, G.M.; Kamga, M. Computation of the Standardized Precipitation Index (SPI) and Its Use to Assess Drought Occurrences in Cameroon over Recent Decades. J. Appl. Meteorol. Climatol. 2014, 53, 2310–2324. [Google Scholar] [CrossRef]
- Hayes, M.; Svoboda, M.; Wall, N.; Widhalm, M. The Lincoln declaration on drought indices: Universal meteorological drought index recommended. Bull. Am. Meteorol. Soc. 2011, 92, 485–488. [Google Scholar] [CrossRef] [Green Version]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- Vicente-Serrano, S.M.; Van der Schrier, G.; Beguería, S.; Azorin-Molina, C.; Lopez-Moreno, J.I. Contribution of precipitation and reference evapotranspiration to drought indices under different climates. J. Hydrol. 2015, 526, 42–54. [Google Scholar] [CrossRef] [Green Version]
- Skøien, J.O.; Bloschl, G. Characteristic space scales and timescales in hydrology. Water Resour. Res. 2003, 39, 1304. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; López-Moreno, J.I. Hydrological response to different time scales of climatological drought: An evaluation of the Standardized Precipitation Index in a mountainous Mediterranean basin. Hydrol. Earth Syst. Sci. 2005, 9, 523–533. [Google Scholar] [CrossRef] [Green Version]
- Edossa, D.C.; Babel, M.S.; Gupta, A.D. Drought analysis in the Awash river basin, Ethiopia. Water Resour. Manag. 2010, 24, 1441–1460. [Google Scholar] [CrossRef]
- Tabrizi, A.A.; Khalili, D.; Haghighi, A.A.K. Utilization of time-based meteorological droughts to investigate occurrence of streamflow droughts. Water Resour. Manag. 2010, 24, 4287–4306. [Google Scholar] [CrossRef]
- Stohl, A.; James, P. A Lagrangian analysis of the atmospheric branch of the global water cycle. Part I: Method description, validation, and demonstration for the August 2002 flooding in central Europe. J. Hydrometeorol. 2004, 5, 656–678. [Google Scholar] [CrossRef]
- Stohl, A.; James, P. A Lagrangian analysis of the atmospheric branch of the global water cycle. Part II: Moisture transports between Earth’s ocean basins and river catchments. J. Hydrometeorol. 2005, 6, 961–984. [Google Scholar] [CrossRef]
- Gimeno, L.; Stohl, A.; Trigo, R.M.; Dominguez, F.; Yoshimura, K.; Yu, L.; Drumond, A.; Duran-Quesada, A.M.; Nieto, N. Oceanic and Terrestrial Sources of Continental Precipitation. Rev. Geophys. 2012, 50, 1–41. [Google Scholar] [CrossRef]
- Sorí, R.; Marengo, J.A.; Nieto, R.; Drumond, A.; Gimeno, L. The atmospheric branch of the hydrological cycle over the Negro and Madeira river basins in the Amazon Region. Water 2018, 10, 738. [Google Scholar] [CrossRef] [Green Version]
- Sorí, R.; Nieto, R.; Drumond, A.; Gimeno, L. The Niger River Basin Moisture Sources: A Lagrangian Analysis. Atmosphere 2017, 8, 38. [Google Scholar] [CrossRef] [Green Version]
- Stojanovic, M.; Drumond, A.; Nieto, R.; Gimeno, L. Moisture transport anomalies over the Danube River basin during two drought events: A Lagrangian analysis. Atmosphere 2017, 8, 193. [Google Scholar] [CrossRef] [Green Version]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Bechtold, P. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Nieto, R.; Gimeno, L. A database of optimal integration times for Lagrangian studies of atmospheric moisture sources and sinks. Sci. Data 2019, 6, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Ishii, M.; Shouji, A.; Sugimoto, S.; Matsumoto, T. Objective analyses of sea-surface temperature and marine meteorological variables for the 20th century using ICOADS and the Kobe collection. Int. J. Climatol. 2005, 25, 865–879. [Google Scholar] [CrossRef]
- Hirahara, S.; Ishii, M.; Fukuda, Y. Centennial-scale sea surface temperature analysis and its uncertainty. J. Clim. 2014, 27, 57–75. [Google Scholar] [CrossRef]
- Woodruff, S.D.; Worley, S.J.; Lubker, S.J.; Ji, Z.; Freeman, J.E.; Berry, D.I.; Brohan, P.; Kent, E.C.; Reynolds, R.W.; Smith, S.R.; et al. ICOADS Release 2.5: Extensions and enhancements to the surface marine meteorological archive. Int. J. Climatol. 2011, 31, 951–967. [Google Scholar] [CrossRef] [Green Version]
- Bolton, D. The computation of Equivalent Potential Temperature. Mon. Weather Rev. 1980, 108, 1046–1053. [Google Scholar] [CrossRef] [Green Version]
- Peña-Angulo, D.; Vicente-Serrano, S.M.; Domínguez-Castro, F.; Murphy, C.; Reig, F.; Tramblay, Y.; Trigo, R.M.; Luna, M.Y.; Turco, M.; Noguera, I.; et al. Long-term precipitation in Southwestern Europe reveals no clear trend attributable to anthropogenic forcing. Environ. Res. Lett. 2020, 15, 094070. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Domínguez-Castro, F.; Murphy, C.; Hannaford, J.; Reig, F.; Peña-Angulo, D.; Tramblay, Y.; Trigo, R.M.; Mac Donald, N.; Yolanda Luna, M.; et al. Long-term variability and trends in meteorological droughts in Western Europe (1851–2018). Int. J. Climatol. 2021, 41, E690–E717. [Google Scholar] [CrossRef]
- Perkins, S.E. A review on the scientific understanding of heatwaves—Their measurement, driving mechanisms, and changes at the global scale. Atmos. Res. 2015, 164–165, 242–267. [Google Scholar] [CrossRef]
- Mueller, B.; Seneviratne, S.I. Hot days induced by precipitation deficits at the global scale. Proc. Natl. Acad. Sci. USA 2012, 109, 12398–12403. [Google Scholar] [CrossRef] [Green Version]
- Fischer, E.M.; Seneviratne, S.I.; Vidale, P.L.; Lüthi, D.; Schär, C. Soil moisture–atmosphere interactions during the 2003 European summer heat wave. J. Clim. 2007, 20, 5081–5099. [Google Scholar] [CrossRef]
- Fischer, E.M.; Seneviratne, S.I.; Lüthi, D.; Schär, C. Contribution of land–atmosphere coupling to recent European summer heat waves. Geophys. Res. Lett. 2007, 34, L06707. [Google Scholar] [CrossRef] [Green Version]
- García-Herrera, R.; Garrido-Perez, J.M.; Barriopedro, D.; Ordóñez, C.; Vicente-Serrano, S.M.; Nieto, R.; Gimeno, L.; Sori, R.; Yiou, P. The European 2016/2017 drought. J. Clim. 2019, 32, 3169–3187. [Google Scholar] [CrossRef]
- Meresa, H.K.; Osuch, M.; Romanowicz, R. Hydro-meteorological drought projections into the 21-st century for selected polish catchments. Water 2016, 8, 206. [Google Scholar] [CrossRef] [Green Version]
- Rhee, J.; Im, J. Meteorological drought forecasting for ungauged areas based on machine learning: Using long-range climate forecast and remote sensing data. Agric. For. Meteorol. 2017, 237, 105–122. [Google Scholar] [CrossRef]
- Abbasi, A.; Khalili, K.; Behmanesh, J.; Shirzad, A. Drought monitoring and prediction using SPEI index and gene expression programming model in the west of Urmia Lake. Theor. Appl. Climatol. 2019, 138, 553–567. [Google Scholar] [CrossRef]
- Polong, F.; Chen, H.; Sun, S.; Ongoma, V. Temporal and spatial evolution of the standard precipitation evapotranspiration index (SPEI) in the Tana River basin, Kenya. Theor. Appl. Climatol. 2019, 138, 777–792. [Google Scholar] [CrossRef]
- Magaña, V.; Vázquez, J.; Pérez, J.; Pérez, J. Impact of El Niño on precipitation in Mexico. Geofis. Int. 2003, 42, 313–330. [Google Scholar]
- Seager, R.; Ting, M.; Davis, M.; Cane, M.; Naik, N.; Nakamura, J.; Li, C.; Cook, E.; Stahle, D.W. Mexican drought: An observational modeling and tree ring study of variability and climate change. Atmosfera 2009, 22, 1–31. [Google Scholar]
- Melgarejo, A.E.; Ordoñez, P.; Nieto, R.; Gimeno, L.; Ribera, P. Moisture transport related to the ENSO effects in the Mexican precipitation. In Proceedings of the First International Electronic Conference on the Hydrological Cycle, 12–16 November 2017; Multidisciplinary Digital Publishing Institute: Basel, Switzerland, 2017; p. 4884. [Google Scholar]
- Muñoz, E.; Busalacchi, A.J.; Nigam, S.; Ruiz-Barradas, A. Winter and summer structure of the Caribbean low-level jet. J Clim. 2008, 21, 1260–1276. [Google Scholar] [CrossRef]
- Wang, C. Variability of the Caribbean low-level jet and its relations to climate. Clim. Dyn. 2007, 29, 411–422. [Google Scholar] [CrossRef] [Green Version]
- Perdigón-Morales, J.; Romero-Centeno, R.; Ordoñez, P.; Nieto, R.; Gimeno, L.; Barret, B.S. Influence of the Madden-Julian Oscillation on moisture transport by the Caribbean Low Level Jet during the Midsummer Drought in Mexico. Atmos. Res. 2021, 48, 105243. [Google Scholar] [CrossRef]
- Whyte, F.S.; Taylor, M.A.; Stephenson, T.S.; Campbell, J.D. Features of the Caribbean low-level jet. Int. J. Climatol. 2008, 28, 119–128. [Google Scholar] [CrossRef]
- Chiang, J.C.H.; Kushnir, Y.; Zebiak, S.E. Interdecadal changes in eastern Pacific ITCZ variability and its influence on the Atlantic ITCZ. Geophys. Res. Lett. 2000, 27, 3687–3690. [Google Scholar] [CrossRef] [Green Version]
- Chiang, J.C.H.; Kushnir, Y.; Giannini, A. Deconstructing Atlantic ITCZ variability: Influence of the local cross-equatorial SST gradient, and remote forcing from the eastern equatorial Pacific. J. Geophys. Res. 2002, 107, 148–227. [Google Scholar]
- Giannini, A.; Kushnir, Y.; Cane, M.A. Interannual variability of Caribbean rainfall, ENSO, and the Atlantic Ocean. J. Clim. 2000, 13, 297–311. [Google Scholar] [CrossRef]
- Amador, J.A.; Alfaro, E.J.; Lizano, O.G.; Magaña, V.O. Atmospheric forcing of the eastern tropical Pacific: A review. Prog. Oceanogr. 2006, 69, 101–142. [Google Scholar] [CrossRef]
- Wang, C.; Lee, S.-K.; Enfield, D.B. Impact of the Atlantic Warm Pool on the Summer Climate of the Western Hemisphere. J. Clim. 2007, 20, 5021–5040. [Google Scholar] [CrossRef]
- Wang, C.; Lee, S.-K. Atlantic warm pool, Caribbean low-level jet, and their potential impact on Atlantic hurricanes. Geophys. Res. Lett. 2007, 34, L02703. [Google Scholar] [CrossRef] [Green Version]
- Amador, J.A. The Intra-Americas Sea Low-level Jet. Overview and Future Research. Trends and Directions in Climate Research. Ann. N. Y. Acad. Sci. 2008, 1146, 153–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C. Atmospheric circulation cells associated with the El Nino–Southern Oscillation. J. Clim. 2002, 15, 399–419. [Google Scholar] [CrossRef]
- Wang, C. Atlantic climate variability and its associated atmospheric circulation cells. J. Clim. 2002, 15, 1516–1536. [Google Scholar] [CrossRef]
- Gutnick, M. Climatology of the trade-wind inversion in the Caribbean. Bull. Am. Meteorol. Soc. 1958, 39, 410–420. [Google Scholar] [CrossRef] [Green Version]
- Malkus, J.S. On the maintenance of the trade winds. Tellus 1956, 8, 335–350. [Google Scholar] [CrossRef]
- Cao, G.; Giambelluca, T.W.; Stevens, D.E.; Schroeder, T.A. Inversion Variability in the Hawaiian Trade Wind Regime. J. Clim. 2007, 20, 1145–1160. [Google Scholar] [CrossRef] [Green Version]
- Carrillo, J.; Guerra, J.C.; Cuevas, E.; Barrancos, J. Characterization of the Marine Boundary Layer and the Trade-Wind Inversion over the Sub-tropical North Atlantic. Bound. Layer Meteorol. 2015, 158, 311–330. [Google Scholar] [CrossRef]
- Mote, T.L.; Ramseyer, C.A.; Miller, P.W. The Saharan Air Layer as an early rainfall season suppressant in the eastern Caribbean: The 2015 Puerto Rico drought. J. Geophys. Res. Atmos. 2017, 122, 10966–10982. [Google Scholar] [CrossRef]
- Leduc, G.; Vidal, L.; Tachikawa, K.; Bard, E. ITCZ rather than ENSO signature for abrupt climate changes across the tropical Pacific? Quat. Res. 2009, 72, 123–131. [Google Scholar] [CrossRef]
- Hu, S.; Fedorov, A.V. Cross-equatorial winds control El Niño diversity and change. Nat. Clim. Chang. 2018, 8, 798–802. [Google Scholar] [CrossRef]
- Yeh, S.-W.; Cai, W.; Min, S.-K.; McPhaden, M.J.; Dommenget, D.; Dewitte, B.; Collins, M.; Ashok, K.; An, S.-I.; Yim, J.-S.; et al. ENSO Atmospheric Teleconnections and Their Response to Greenhouse Gas Forcing. Rev. Geophys. 2018, 56, 185–206. [Google Scholar] [CrossRef]
- Record-Breaking Atlantic Hurricane Season Draws to an End. Available online: https://www.noaa.gov/media-release/record-breaking-atlantic-hurricane-season-draws-to-end (accessed on 4 January 2021).
- Trenberth, K.E.; Shea, D.J. Atlantic hurricanes and natural variability in 2005. Geophys. Res. Lett. 2006, 33, L12704. [Google Scholar] [CrossRef] [Green Version]
- Gill, A.E. Some simple solutions for heat-induced tropical circulation. Q. J. R. Meteorol. Soc. 1980, 106, 447–462. [Google Scholar] [CrossRef]
- Donner, S.; Knutson, T.R.; Oppenheimer, M. Model-based assessment of the role of human-induced climate change in the 2005 Caribbean coral bleaching event. Proc. Natl. Acad. Sci. USA 2007, 104, 5483–5488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simonti, A.L.; Eastman, R.J. 2005 Caribbean mass coral bleaching event: A sea surface temperature empirical orthogonal teleconnection analysis. J. Geophys. Res. 2010, 115, C11009. [Google Scholar] [CrossRef] [Green Version]
Year | SPEI-6 | Drought Intensity | SPEI-1 May | SPEI-1 June | SPEI-1 July | SPEI-1 August | SPEI-1 September | SPEI-1 October |
---|---|---|---|---|---|---|---|---|
1982 | −2.15 | Extreme | 0.90 | −1.39 | −1.35 | −1.96 | −1.95 | 0.32 |
1986 | −1.36 | Moderate | 0.51 | 0.36 | −1.45 | −0.85 | −1.40 | −0.20 |
1987 | −1.41 | Moderate | −0.93 | −0.55 | 1.02 | −1.03 | −0.15 | −1.86 |
1994 | −1.11 | Moderate | −0.43 | −0.86 | −1.71 | 0.40 | −0.93 | 1.02 |
1997 | −1.40 | Moderate | 0.03 | −0.65 | −0.76 | −1.41 | −0.92 | 0.79 |
2005 | −1.61 | Severe | −1.04 | −1.89 | 0.38 | 0.29 | −1.84 | −0.17 |
2009 | −1.30 | Moderate | −0.16 | −0.50 | −1.86 | −1.36 | 0.44 | 1.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melgarejo, A.E.; Ordoñez, P.; Nieto, R.; Peña-Ortiz, C.; García-Herrera, R.; Gimeno, L. Mechanisms for Severe Drought Occurrence in the Balsas River Basin (Mexico). Atmosphere 2021, 12, 368. https://doi.org/10.3390/atmos12030368
Melgarejo AE, Ordoñez P, Nieto R, Peña-Ortiz C, García-Herrera R, Gimeno L. Mechanisms for Severe Drought Occurrence in the Balsas River Basin (Mexico). Atmosphere. 2021; 12(3):368. https://doi.org/10.3390/atmos12030368
Chicago/Turabian StyleMelgarejo, Ana E., Paulina Ordoñez, Raquel Nieto, Cristina Peña-Ortiz, Ricardo García-Herrera, and Luis Gimeno. 2021. "Mechanisms for Severe Drought Occurrence in the Balsas River Basin (Mexico)" Atmosphere 12, no. 3: 368. https://doi.org/10.3390/atmos12030368
APA StyleMelgarejo, A. E., Ordoñez, P., Nieto, R., Peña-Ortiz, C., García-Herrera, R., & Gimeno, L. (2021). Mechanisms for Severe Drought Occurrence in the Balsas River Basin (Mexico). Atmosphere, 12(3), 368. https://doi.org/10.3390/atmos12030368