Impact of COVID-19 Lockdown on Air Pollutants in a Coastal Area of the Yangtze River Delta, China, Measured by a Low-Cost Sensor Package
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Site
2.2. Impact of COVID-19 on a Coastal Area of the YRD Region of China
2.3. Experimental Instruments
3. Results and Discussion
3.1. Comparison between Sensor Package and Reference Apparatus
3.2. Impact on Nitrogen Dioxide (NO2)
3.3. Impact on Ozone (O3)
3.4. Impact on Carbon Monoxide (CO)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sicard, P.; De Marco, A.; Agathokleous, E.; Feng, Z.; Xu, X.; Paoletti, E.; Rodriguez, J.J.D.; Calatayud, V. Amplified ozone pollution in cities during the COVID-19 lockdown. Sci. Total Environ. 2020, 735, 139542. [Google Scholar] [CrossRef]
- Xu, K.; Cui, K.; Young, L.; Hsieh, Y.; Wang, Y.; Zhang, J.; Wan, S. Impact of the COVID-19 Event on Air Quality in Central China. Aerosol Air Qual. Res. 2020, 20, 915–929. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Xue, T.; Jin, X. Effects of meteorological conditions and air pollution on COVID-19 transmission: Evidence from 219 Chinese cities. Sci. Total Environ. 2020, 741, 140244. [Google Scholar] [CrossRef]
- Ghahremanloo, M.; Lops, Y.; Choi, Y.; Mousavinezhad, S. Impact of the COVID-19 outbreak on air pollution levels in East Asia. Sci. Total Environ. 2021, 754, 142226. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Su, M. A preliminary assessment of the impact of COVID-19 on environment—A case study of China. Sci. Total Environ. 2020, 728, 138915. [Google Scholar] [CrossRef]
- Bauwens, M.; Compernolle, S.; Stavrakou, T.; Muller, J.F.; van Gent, J.; Eskes, H.; Levelt, P.F.; van der A, R.; Veefkind, J.P.; Vlietinck, J.; et al. Impact of coronavirus outbreak on NO2 pollution assessed using TROPOMI and OMI observations. Geophys. Res. Lett. 2020, 47. [Google Scholar] [CrossRef]
- Li, L.; Li, Q.; Huang, L.; Wang, Q.; Zhu, A.; Xu, J.; Liu, Z.; Li, H.; Shi, L.; Li, R.; et al. Air quality changes during the COVID-19 lockdown over the Yangtze River Delta Region: An insight into the impact of human activity pattern changes on air pollution variation. Sci. Total Environ. 2020, 732, 139282. [Google Scholar] [CrossRef] [PubMed]
- Pei, Z.; Han, G.; Ma, X.; Su, H.; Gong, W. Response of major air pollutants to COVID-19 lockdowns in China. Sci. Total Environ. 2020, 743, 140879. [Google Scholar] [CrossRef] [PubMed]
- Nakada, L.Y.K.; Urban, R.C. COVID-19 pandemic: Impacts on the air quality during the partial lockdown in São Paulo state, Brazil. Sci. Total Environ. 2020, 730, 139087. [Google Scholar] [CrossRef]
- Dantas, G.; Siciliano, B.; França, B.B.; da Silva, C.M.; Arbilla, G. The impact of COVID-19 partial lockdown on the air quality of the city of Rio de Janeiro, Brazil. Sci. Total Environ. 2020, 729, 139085. [Google Scholar] [CrossRef] [PubMed]
- Mahato, S.; Pal, S.; Ghosh, K.G. Effect of lockdown amid COVID-19 pandemic on air quality of the megacity Delhi, India. Sci. Total Environ. 2020, 730, 139086. [Google Scholar] [CrossRef] [PubMed]
- Siciliano, B.; Dantas, G.; da Silva, C.M.; Arbilla, G. Increased ozone levels during the COVID-19 lockdown: Analysis for the city of Rio de Janeiro, Brazil. Sci. Total Environ. 2020, 737, 139765. [Google Scholar] [CrossRef]
- Wang, Y.; Yuan, Y.; Wang, Q.; Liu, C.; Zhi, Q.; Cao, J. Changes in air quality related to the control of coronavirus in China: Implications for traffic and industrial emissions. Sci. Total Environ. 2020, 731, 139133. [Google Scholar] [CrossRef] [PubMed]
- Tobias, A.; Carnerero, C.; Reche, C.; Massague, J.; Via, M.; Minguillon, M.C.; Alastuey, A.; Querol, X. Changes in air quality during the lockdown in Barcelona (Spain) one month into the SARS-CoV-2 epidemic. Sci. Total Environ. 2020, 726, 4. [Google Scholar] [CrossRef] [PubMed]
- Xiang, J.; Austin, E.; Gould, T.; Larson, T.; Shirai, J.; Liu, Y.; Marshall, J.; Seto, E. Impacts of the COVID-19 responses on traffic-related air pollution in a Northwestern US city. Sci. Total Environ. 2020, 747, 141325. [Google Scholar] [CrossRef]
- Liu, Q.; Harris, J.T.; Chiu, L.S.; Sun, D.; Houser, P.R.; Yu, M.; Duffy, D.Q.; Little, M.M.; Yang, C. Spatiotemporal impacts of COVID-19 on air pollution in California, USA. Sci. Total Environ. 2021, 750, 141592. [Google Scholar] [CrossRef]
- Singh, V.; Singh, S.; Biswal, A.; Kesarkar, A.P.; Mor, S.; Ravindra, K. Diurnal and temporal changes in air pollution during COVID-19 strict lockdown over different regions of India. Environ. Pollut. 2020, 266, 115368. [Google Scholar] [CrossRef] [PubMed]
- Otmani, A.; Benchrif, A.; Tahri, M.; Bounakhla, M.; Chakir, E.M.; El Bouch, M.; Krombi, M.h. Impact of Covid-19 lockdown on PM10, SO2 and NO2 concentrations in Salé City (Morocco). Sci. Total Environ. 2020, 735, 139541. [Google Scholar] [CrossRef] [PubMed]
- Ju, M.J.; Oh, J.; Choi, Y.-H. Changes in air pollution levels after COVID-19 outbreak in Korea. Sci. Total Environ. 2021, 750, 141521. [Google Scholar] [CrossRef]
- Kanniah, K.D.; Zaman, N.; Kaskaoutis, D.G.; Latif, M.T. COVID-19’s impact on the atmospheric environment in the Southeast Asia region. Sci. Total Environ. 2020, 736. [Google Scholar] [CrossRef]
- Kerimray, A.; Baimatova, N.; Ibragimova, O.P.; Bukenov, B.; Kenessov, B.; Plotitsyn, P.; Karaca, F. Assessing air quality changes in large cities during COVID-19 lockdowns: The impacts of traffic-free urban conditions in Almaty, Kazakhstan. Sci. Total Environ. 2020, 730, 139179. [Google Scholar] [CrossRef]
- Yuan, Q.; Teng, X.; Tu, S.; Feng, B.; Wu, Z.; Xiao, H.; Cai, Q.; Zhang, Y.; Lin, Q.; Liu, Z.; et al. Atmospheric fine particles in a typical coastal port of Yangtze River Delta. J. Environ. Sci. 2020, 98, 62–70. [Google Scholar] [CrossRef]
- Cullinane, K.; Bergqvist, R. Emission control areas and their impact on maritime transport. Transp. Res. Part D Transp. Environ. 2014, 28, 1–5. [Google Scholar] [CrossRef]
- Marelle, L.; Thomas, J.L.; Raut, J.C.; Law, K.S.; Jalkanen, J.P.; Johansson, L.; Roiger, A.; Schlager, H.; Kim, J.; Reiter, A.; et al. Air quality and radiative impacts of Arctic shipping emissions in the summertime in northern Norway: From the local to the regional scale. Atmos. Chem. Phys. 2016, 16, 2359–2379. [Google Scholar] [CrossRef] [Green Version]
- Xue, R.B.; Wang, S.S.; Li, D.R.; Zou, Z.; Chan, K.L.; Valks, P.; Saiz-Lopez, A.; Zhou, B. Spatio-temporal variations in NO2 and SO2 over Shanghai and Chongming Eco-Island measured by Ozone Monitoring Instrument (OMI) during 2008–2017. J. Clean. Prod. 2020, 258, 14. [Google Scholar] [CrossRef]
- Johansson, L.; Jalkanen, J.-P.; Kukkonen, J. Global assessment of shipping emissions in 2015 on a high spatial and temporal resolution. Atmos. Environ. 2017, 167, 403–415. [Google Scholar] [CrossRef]
- Mo, Z.; Shao, M.; Lu, S.; Niu, H.; Zhou, M.; Sun, J. Characterization of non-methane hydrocarbons and their sources in an industrialized coastal city, Yangtze River Delta, China. Sci. Total Environ. 2017, 593–594, 641–653. [Google Scholar] [CrossRef]
- Wang, X.; Shen, Y.; Lin, Y.; Pan, J.; Zhang, Y.; Louie, P.K.K.; Li, M.; Fu, Q. Atmospheric pollution from ships and its impact on local air quality at a port site in Shanghai. Atmos. Chem. Phys. 2019, 19, 6315–6330. [Google Scholar] [CrossRef] [Green Version]
- Griffith, S.M.; Huang, W.S.; Lin, C.C.; Chen, Y.C.; Chang, K.E.; Lin, T.H.; Wang, S.H.; Lin, N.H. Long-range air pollution transport in East Asia during the first week of the COVID-19 lockdown in China. Sci. Total Environ. 2020, 741, 140214. [Google Scholar] [CrossRef] [PubMed]
- Hua, Y.; Cheng, Z.; Wang, S.; Jiang, J.; Chen, D.; Cai, S.; Fu, X.; Fu, Q.; Chen, C.; Xu, B.; et al. Characteristics and source apportionment of PM2.5 during a fall heavy haze episode in the Yangtze River Delta of China. Atmos. Environ. 2015, 123, 380–391. [Google Scholar] [CrossRef]
- Pang, X.; Chen, L.; Shi, K.; Wu, F.; Chen, J.; Fang, S.; Wang, J.; Xu, M. A lightweight low-cost and multipollutant sensor package for aerial observations of air pollutants in atmospheric boundary layer. Sci. Total Environ. 2020. [Google Scholar] [CrossRef]
- Zyrichidou, I.; Κoukouli, M.E.; Balis, D.; Markakis, K.; Poupkou, A.; Katragkou, E.; Kioutsioukis, I.; Melas, D.; Boersma, K.F.; van Roozendael, M. Identification of surface NOx emission sources on a regional scale using OMI NO2. Atmos. Environ. 2015, 101, 82–93. [Google Scholar] [CrossRef]
- Gerstenberger, M.; Listl, G. Impact analysis of changes in passenger vehicle fleet composition to reduce the NO2 immissions. Transp. Res. Procedia 2019, 41, 708–721. [Google Scholar] [CrossRef]
- Lin, J.T.; McElroy, M.B. Detection from space of a reduction in anthropogenic emissions of nitrogen oxides during the Chinese economic downturn. Atmos. Chem. Phys. 2011, 11, 8171–8188. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.X.; Wang, Y.H.; Smeltzer, C.; Qu, H.; Koshak, W.; Boersma, K.F. Comparing OMI-based and EPA AQS in situ NO2 trends: Towards understanding surface NOx emission changes. Atmos. Meas. Tech. 2018, 11, 3955–3967. [Google Scholar] [CrossRef] [Green Version]
- Tong, L.; Zhang, H.; Yu, J.; He, M.; Xu, N.; Zhang, J.; Qian, F.; Feng, J.; Xiao, H. Characteristics of surface ozone and nitrogen oxides at urban, suburban and rural sites in Ningbo, China. Atmos. Res. 2017, 187, 57–68. [Google Scholar] [CrossRef]
- Wang, T.; Xue, L.; Brimblecombe, P.; Lam, Y.F.; Li, L.; Zhang, L. Ozone pollution in China: A review of concentrations, meteorological influences, chemical precursors, and effects. Sci. Total Environ. 2017, 575, 1582–1596. [Google Scholar] [CrossRef]
- Jain, S.; Sharma, T. Social and travel lockdown impact considering coronavirus disease (COVID-19) on air quality in megacities of India: Present Benefits, Future Challenges and Way Forward. Aerosol Air Qual. Res. 2020, 20, 1222–1236. [Google Scholar] [CrossRef]
- Payus, C.M.; Vasu Thevan, A.T.; Sentian, J. Impact of school traffic on outdoor carbon monoxide levels. City Environ. Interact. 2019, 4, 100032. [Google Scholar] [CrossRef]
- Hao, H.; Chow, C.L.; Lau, D. Carbon monoxide release mechanism in cellulose combustion using reactive forcefield. Fuel 2020, 269, 117422. [Google Scholar] [CrossRef]
- Yarragunta, Y.; Srivastava, S.; Mitra, D.; Le Flochmoën, E.; Barret, B.; Kumar, P.; Chandola, H.C. Source attribution of carbon monoxide and ozone over the Indian subcontinent using MOZART-4 chemistry transport model. Atmos. Res. 2019, 227, 165–177. [Google Scholar] [CrossRef]
- Liu, S.; Fang, S.; Liang, M.; Sun, W.; Feng, Z. Temporal patterns and source regions of atmospheric carbon monoxide at two background stations in China. Atmos. Res. 2019, 220, 169–180. [Google Scholar] [CrossRef]
City, Country | O3 | NO2 | SO2 | CO |
---|---|---|---|---|
Ningbo, China | +38% | −63% | - | −7% |
Wuhan, China [1,4] | +36% | −83% | −71% | −4% |
Washington, USA [15] | - | −29% | - | −17% |
California, USA [16] | - | −38% | - | −49% |
São Paulo, Brazil [9] | +30% | −54% | - | −65% |
Delhi, India [11] | - | −53% | - | −30% |
India [17] | - | −30~70% | - | −20~40% |
Salé, Morocco [18] | - | −96% | −49% | - |
Seoul, Korea [4] | - | −33% | - | - |
Korea [19] | - | −20% | - | −17% |
Tokyo, Japan [4] | - | −19% | - | - |
Malaysia [20] | - | −63~64% | −9~20% | −25~31% |
Almaty, Kazakhstan [21] | +15% | −35% | - | −49% |
Southern European cities [1] | +2~27% | - | - | - |
Barcelona, Spain [14] | +33~57% | −45~51% | - | - |
Year | Northeast Wind | Southeast Wind | Northwest Wind | Southwest Wind |
---|---|---|---|---|
2020 | 16 | 20 | 25 | 2 |
2019 | 18 | 23 | 21 | 1 |
Economic Indicators (Unit) | First-Quarter, 2019 | First-Quarter, 2020 | Variation in % |
---|---|---|---|
Electricity consumption of the whole city (100 million kwh) | 182.1 | 152.6 | −16.2% |
Industrial power consumption (100 million kwh) | 124.4 | 102.0 | −18.0% |
City’s GDP (RMB 100 million) | 2649.2 | 2463.8 | −7.0% |
Total import and export (RMB 100 million) | 2053.7 | 1842.2 | −10.3% |
Total retail sales of consumer goods (RMB 100 million) | 935.2 | 806.1 | −13.8% |
Industrial added value * (RMB 100 million) | 909.5 | 802.2 | −11.8% |
Industrial sales value * (RMB 100 million) | 4040.1 | 3304.8 | −18.2% |
Industrial energy consumption * (10,000 tons of standard coal) | 687.3 | 637.8 | −7.2% |
Road freight volume (10,000 tons) | 7131.6 | 6233.0 | −12.6% |
Waterway freight volume (10,000 tons) | 7176.8 | 5691.2 | −20.7% |
Cargo throughput of civil aviation (10,000 tons) | 4.8 | 2.9 | −39.6% |
Passenger traffic volume (ten thousand people) | 2764.7 | 1183.3 | −57.2% |
Month | Container Throughput (10,000 TEUs *), 2019 | Container Throughput (10,000 TEUs), 2020 | Variation in % |
---|---|---|---|
January | 276 | 267 | −3.3% |
February | 204 | 162 | −20.6% |
March | 234 | 228 | −2.6% |
Cargo throughput (10,000 tons), 2019 | Cargo throughput (10,000 tons), 2020 | Variation in % | |
January | 7368 | 7154 | −2.9% |
February | 5873 | 5397 | −8.1% |
March | 6901 | 6266 | −9.2% |
Air Pollutants | 1 February to 13 March 2019 | 21 January to 1 March 2020 During the Lockdown | Difference | Variation in % |
---|---|---|---|---|
NO2 (ppb) | 19.5 | 7.2 | −12.3 | −63.1% |
O3 (ppb) | 27.2 | 37.5 | +10.3 | +37.9% |
CO (ppb) | 696.6 | 648.5 | −48.1 | −6.9% |
Air Pollutants | 14 March to 4 April 2019 | 2 March to 23 March 2020 After the Lockdown | Difference | Variation in % |
NO2 (ppb) | 24.2 | 17.5 | −6.7 | −27.7% |
O3 (ppb) | 32.2 | 43.3 | +11.1 | +34.5% |
CO (ppb) | 635.9 | 524.9 | −111.0 | −17.5% |
Air Pollutants | During the Lockdown, 2020 | After the Lockdown, 2020 | Difference | Variation in % |
NO2 (ppb) | 7.2 | 17.5 | +10.3 | +143.1% |
O3 (ppb) | 37.5 | 43.3 | +5.8 | +15.5% |
CO (ppb) | 648.5 | 524.9 | −123.6 | −19.1% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Li, J.; Pang, X.; Shi, K.; Chen, J.; Wang, J.; Xu, M. Impact of COVID-19 Lockdown on Air Pollutants in a Coastal Area of the Yangtze River Delta, China, Measured by a Low-Cost Sensor Package. Atmosphere 2021, 12, 345. https://doi.org/10.3390/atmos12030345
Chen L, Li J, Pang X, Shi K, Chen J, Wang J, Xu M. Impact of COVID-19 Lockdown on Air Pollutants in a Coastal Area of the Yangtze River Delta, China, Measured by a Low-Cost Sensor Package. Atmosphere. 2021; 12(3):345. https://doi.org/10.3390/atmos12030345
Chicago/Turabian StyleChen, Lang, Jingjing Li, Xiaobing Pang, Kangli Shi, Jianmeng Chen, Junliang Wang, and Meng Xu. 2021. "Impact of COVID-19 Lockdown on Air Pollutants in a Coastal Area of the Yangtze River Delta, China, Measured by a Low-Cost Sensor Package" Atmosphere 12, no. 3: 345. https://doi.org/10.3390/atmos12030345
APA StyleChen, L., Li, J., Pang, X., Shi, K., Chen, J., Wang, J., & Xu, M. (2021). Impact of COVID-19 Lockdown on Air Pollutants in a Coastal Area of the Yangtze River Delta, China, Measured by a Low-Cost Sensor Package. Atmosphere, 12(3), 345. https://doi.org/10.3390/atmos12030345