The Effect of Non-Compliance of Diesel Vehicle Emissions with Euro Limits on Mortality in the City of Milan
Abstract
:1. Introduction
2. Materials and Methods
- Actual: corresponding to the diesel emissions generated by the transport sector, evaluated using COPERT, the official European methodology, estimates. In this real-driving scenario, speed-depending emission factors were considered.
- Diesel Emission Standards Compliance (DESC): a hypothetical scenario in which all diesel vehicles were supposed to comply with the NOX emission standards in force at their homologation time. In this scenario, vehicles’ diesel NOX emissions were computed as the maximum allowed emissions for each EURO category; the other pollutant emissions remain those calculated for the actual scenario.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IARC. Diesel and Gasoline Engine Exhausts and Some Nitroarenes. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; IARC: Lyon, France, 2014; Volume 105. [Google Scholar]
- USEPA (U.S. Environmental Protection Agency). Health Effects Support Document for Perfluorooctanoic Acid (PFOA); EPA 822R16003; U.S. Environmental Protection Agency: Washington, DC, USA. Available online: https://www.epa.gov/safewater (accessed on 5 May 2016).
- WHO. Health Risk of Air Pollution in Europe—HRAPIE Project; WHO: Geneva, Switzerland, 2013. [Google Scholar]
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the global burden of diseases study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef] [Green Version]
- Dieselnet. Available online: https://dieselnet.com/standards/eu/ld.php (accessed on 26 October 2020).
- Conte, M.; Donateo, A.; Contini, D. Characterisation of particle size distributions and corresponding size-segregated turbulent fluxes simultaneously with CO2 exchange in an urban area. Sci. Total Environ. 2018, 622, 1067–1078. [Google Scholar] [CrossRef] [PubMed]
- Conte, M.; Contini, D. Size-resolved particle emission factors of vehicular traffic derived from urban eddy covariance measurements. Environ. Pollut. 2019, 251, 830–838. [Google Scholar] [CrossRef] [PubMed]
- Korzhenevych, A.; Dehnen, N.; Bröcker, J.; Holtkamp, M.; Meier, H.; Gibson, G.; Varma, A.; Cox, V. Update of the Handbook on External Costs of Transport. Report. 2014. Available online: https://ec.europa.eu/transport/sites/transport/files/handbook_on_external_costs_of_transport_2014_0.pdf (accessed on 11 January 2021).
- U.S. EPA. Integrated Science Assessment (ISA) for Oxides of Nitrogen—Health Criteria; EPA/600/R-15/068; Final Report; U.S. Environmental Protection Agency: Washington, DC, USA, 2016.
- ARPA Lombardia. Rapporto Annuale Sulla Qualità Dell’aria. 2019. Available online: https://www.arpalombardia.it/qariafiles/RelazioniAnnuali/RQA_MI_2018.pdf (accessed on 2 October 2020).
- ARPA Lombardia. INEMAR Inventario Emissioni Aria Regione Lombardia. 2017. Available online: https://www.inemar.eu/xwiki/bin/view/InemarDatiWeb/Aggiornamenti+dell%27inventario+2014 (accessed on 2 October 2020).
- Silibello, C.; Nanni, A.; Pepe, N.; Calori, G.; Brusasca, G. Milano senza diesel: Quanto migliorerebbe la qualità dell’aria? Ing. dell’Ambiente 2020, 2. [Google Scholar] [CrossRef]
- EPHA. 2020. Available online: https://epha.org/dieselgate-5-years-later-experts-estimate-over-500-premature-deaths-in-milan (accessed on 11 February 2020).
- NCAR. WRF—Weather Research & Forecasting Model. 2021. Available online: https://www.mmm.ucar.edu/weather-research-and-forecasting-model (accessed on 19 February 2021).
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Duda, M.G.; Huang, X.Y.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3; NCAR Tech. Note NCAR/TN-4751STR; National Center for Atmospheric Research: Boulder, CO, USA, 2008; 113p. [Google Scholar] [CrossRef]
- US National Centers for Environmental Information (NOAA)—Global Forecast System (GFS). Available online: https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs (accessed on 23 February 2021).
- EMEP/EEA. Atmospheric Emissions Inventory Guidebook. 2019. Available online: https://www.eea.europa.eu/publications/emep-eea-guidebook-2019/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-3-b-i/view (accessed on 2 October 2020).
- ARIANET. TREFIC—Traffic Emission Factors Improved Calculator. 2014. Available online: http://www.aria-net.it/front/ENG/codes/files/7.pdf (accessed on 5 March 2021).
- Gariazzo, C.; Silibello, C.; Finardi, S.; Radice, P.; Piersanti, A.; Calori, G.; Cecinato, A.; Perrino, C.; Nussio, F.; Cagnoli, M.; et al. A gas/aerosol air pollutants study over the urban area of Rome using a comprehensivechemical transport model. Atmos. Environ. 2007, 41, 7286–7303. [Google Scholar] [CrossRef]
- Silibello, C.; Calori, G.; Brusasca, G.; Giudici, A.; Angelino, E.; Fossati, G.; Peroni, E.; Buganza, E. Modelling of PM10 Concentrations Over Milano Urban Area Using Two Aerosol Modules. Environ. Model. Softw. 2008, 23, 333–343. [Google Scholar] [CrossRef]
- Bessagnet, B.; Pirovano, G.; Mircea, M.; Cuvelier, C.; Aulinger, A.; Calori, G.; Ciarelli, G.; Manders, A.; Stern, R.; Tsyro, S.; et al. Presentation of the EURODELTA III intercomparison exercise—Evaluation of the chemistry transport models’ performance on criteria pollutants and joint analysis with meteorology. Atmos. Chem. Phys. 2016, 16, 12667–12701. [Google Scholar] [CrossRef] [Green Version]
- Mircea, M.; Bessagnet, B.; D’Isidoro, M.; Pirovano, G.; Aksoyoglu, S.; Ciarelli, G.; Tsyro, S.; Manders, A.; Bieser, J.; Stern, R.; et al. EURODELTA III exercise: An evaluation of air quality models’ capacity to reproduce the carbonaceous aerosol. Atmos. Environ. X 2019, 2, 100018. [Google Scholar] [CrossRef]
- Binkowski, F.S. The Aerosol Portion of Models-3 CMAQ. In Science Algorithms of the EPA Models-3 Community Multiscale Air Quality (CMAQ) Modeling System; Part II: Chapters 9–18; EPA-600/R-99/030; Byun, D.W., Ching, J.K.S., Eds.; National Exposure Research Laboratory, U.S. Environmental Protection Agency: Research Triangle Park, NC, USA, 1999; pp. 10-1–10-16. [Google Scholar]
- Carter, W.P.L. Implementation of the SAPRC-99 Chemical Mechanism into the Models-3 Framework. Report to the United States Environmental Protection Agency. 2000. Available online: http://www.cert.ucr.edu/carter/absts.htm#s99mod3S (accessed on 5 March 2021).
- ARIANET. QualeAria Forecast System for the Air Quality in Italy and Europe. Available online: https://www.qualearia.it (accessed on 22 February 2021).
- US National Center for Environmental Prediction (NCEP). Available online: https://www.ncep.noaa.gov/ (accessed on 22 February 2021).
- Copernicus Atmosphere Monitoring Service (CAMS). Available online: https://atmosphere.copernicus.eu/ (accessed on 22 February 2021).
- Ostro, B.; Chestnut, L. Assessing the health benefits of reducing particulate matter air pollution in United States. Environ. Res. 1998, A76, 94–106. [Google Scholar] [CrossRef] [PubMed]
- Faustini, A.; Rapp, R.; Forastiere, F. Nitrogen dioxide and mortality: Review and meta-analysis of long-term studies. Eur. Respir. J. 2014, 44, 744–753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ATS Milano. Selected “Milano”. Available online: https://portale.ats-milano.it/salute/stato_salute.php?stato_salute (accessed on 16 May 2020).
- Crosignani, P.; Borgini, A.; Cadum, E.; Mirabelli, D.; Porro, E. New directions: Air pollution—How many victims? Atmos. Environ. 2002, 36, 4705–4706. [Google Scholar] [CrossRef]
- Rothman, K.J.; Greenland, S.; Lash, T.L. Modern Epidemiology, 3rd ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2008. [Google Scholar]
- Cesaroni, G.; Badaloni, C.; Gariazzo, C.; Stafoggia, M.; Sozzi, R.; Davoli, M.; Forastiere, F. Long-term exposure to urban air pollution and mortality in a cohort of more than a million adults in Rome. Environ. Health Perspect. 2013, 121, 324–331. [Google Scholar] [CrossRef] [Green Version]
- Heinrich, J.; Thiering, E.; Rzehak, P.; Krämer, U.; Hochadel, M.; Rauchfuss, K.M.; Gehring, U.; Wichmann, H.-E. Long-term exposure to NO2 and PM10 and all-cause and cause-specific mortality in a prospective cohort of females. Occup. Environ. Med. 2013, 70, 179–186. [Google Scholar] [CrossRef] [Green Version]
- Maheswaran, R.; Pearson, T.; Smeeton, N.C.; Beevers, S.; Campbell, M.J.; Wolfe, C.D. Impact of outdoor air pollution on survival after stroke: Population based cohort study. Stroke 2010, 41, 869–877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beelen, R.; Hoek, G.; van den Brandt, P.A.; Goldbohm, R.A.; Fischer, P.; Schouten, L.J.; Jerrett, M.; Hughes, E.; Armstron, B.; Brunekreef, B. Long-term effects of traffic-related air pollution on mortality in a Dutch cohort (NLCS-AIR Study). Environ. Health Perspect. 2008, 116, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Gehring, U.; Heinrich, J.; Krämer, U.; Grote, V.; Hochadel, M.; Sugiri, D.; Kraft, M.; Rauchfuss, K.; Eberwein, H.G.; Wichmann, H.-E. Long-term exposure to ambient air pollution and cardiopulmonary mortality in females. Epidemiology 2006, 17, 545–551. [Google Scholar] [CrossRef] [PubMed]
- Filleul, L.; Rondeau, V.; Vandentorren, S.; Le Moual, N.; Cantagrel, A.; Annesi-Maesano, I.; Charpin, D.; Declercq, C.; Neukirch, F.; Paris, C.; et al. Twenty five year mortality and air pollution: Results from the French PAARC survey. Occup. Environ. Med. 2005, 62, 453–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoek, G.; Krishnan, R.M.; Beelen, R.; Peters, A.; Ostro, B.; Brunekreef, B.; Kaufman, J.D. Long-term air pollution exposure and cardio- respiratory mortality: A review. Environ. Health 2013, 12, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pope, A., III; Burnet, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K.; Thurston, G.D. Lung cancer, Cardiopulmonary mortality and long-term exposure to fine particulate air pollution. JAMA 2002, 287, 1132–1141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CE Delft. Further Explanation of Methods Used for Monetizing Impacts from Air Pollution. 2020. Available online: https://www.cedelft.eu/assets/upload/file/Rapporten/2020/CE_Delft_180005_Further_explanation_of_methods_used_for_monetizing_impacts_from_air_pollution_def.pdf (accessed on 6 November 2020).
- Moshammer, H.; Poteser, M.; Kundi, M.; Lemmerer, K.; Weitensfelder, L.; Wallner, P.; Hutter, H.P. Nitrogen-Dioxide Remains a Valid Air Quality Indicator. Int. J. Environ. Res. Public Health 2020, 17, 3733. [Google Scholar] [CrossRef] [PubMed]
- Forastiere, F.; Peters, A.; Kelly, F.J.; Holgate, S.T. Nitrogen Dioxide. In Air Quality Guidelines Global Update 2005; WHO Europe: Copenhagen, Denmark, 2006; Available online: https://www.euro.who.int/__data/assets/pdf_file/0005/78638/E90038.pdf (accessed on 11 November 2020).
- HEI. HEI Panel on the Health Effects of Traffic-Related Air Pollution. In Traffic-Related Air Pollution: A Critical Review of the Literature on Emissions, Exposure, and Health Effects; HEI Special Report 17; Health Effects Institute: Boston, MA, USA, 2010. [Google Scholar]
WRF Physics Scheme | Description |
---|---|
Microphysics | Single-Moment 6-class scheme (ice, snow and graupel processes) |
Longwave Radiation | RRTM (Rapid Radiative Transfer Model) |
Shortwave Radiation | RRTM (Rapid Radiative Transfer Model) |
Cumulus Parameterization | Kain–Fritsch scheme (deep and shallow convection) |
Land Surface | Noah-MP (multi-physics) Land Surface Model |
Surface Layer | MYNN (Nakanishi and Niino PBL’s surface layer scheme). |
Planetary Boundary layer | MYNN2 (Mellor–Yamada Nakanishi and Niino Level 2.5 PBL) |
Fuel | Euro Standard | Annual km × Vehicles | NOX Emissions (t/y) | ||
---|---|---|---|---|---|
Petrol | Euro 0 | 5,846,568 | 0.1% | 674.2 | 13.9% |
Euro 1 | 34,597,697 | 0.7% | |||
Euro 2 | 197,116,738 | 4.2% | |||
Euro 3 | 205,461,759 | 4.4% | |||
Euro 4 | 566,541,256 | 12.0% | |||
Euro 5 | 458,313,389 | 9.7% | |||
Euro 6 | 378,787,933 | 8.0% | |||
Diesel | Euro 0 | 12,681,610 | 0.3% | 92.9 | 1.9% |
Euro 1 | 4,026,808 | 0.1% | 54.7 | 1.1% | |
Euro 2 | 40,356,320 | 0.9% | 262.7 | 5.4% | |
Euro 3 | 313,638,005 | 6.6% | 963.1 | 19.9% | |
Euro 4 | 822,463,448 | 17.4% | 697.4 | 14.4% | |
Euro 5 | 751,938,667 | 15.9% | 1510.5 | 31.2% | |
Euro 6 | 416,170,063 | 8.8% | 582.7 | 12.0% | |
Hybrid | Euro 0 | 5,846,568 | 0.1% | 0.6 | 0.01% |
Euro 1 | 3,283,558 | 0.1% | |||
Euro 2 | 13,158,865 | 0.3% | |||
Euro 3 | 18,487,034 | 0.4% | |||
Euro 4 | 238,687,285 | 5.1% | |||
Euro 5 | 198,080,770 | 4.2% | |||
Euro 6 | 33,316,394 | 0.7% |
Diesel Category | Actual | DESC | Actual—DESC |
---|---|---|---|
Euro 0 | 0.33 | 0.33 | 0.00 |
Euro 1 | 0.19 | 0.23 | −0.04 |
Euro 2 | 0.94 | 1.16 | −0.22 |
Euro 3 | 3.43 | 2.79 | 0.64 |
Euro 4 | 2.49 | 1.22 | 1.27 |
Euro 5 | 5.36 | 1.73 | 3.63 |
Euro 6B | 1.35 | 0.43 | 0.92 |
Euro 6C | 1.07 | 0.65 | 0.42 |
TOTAL diesel | 15.16 | 8.54 | |
Other sources | 29.10 | 29.10 | |
Total NO2 | 44.26 | 37.64 |
Study | Weight | RR |
---|---|---|
Cesaroni et al. [33] | 13.05 | 1.03 |
Heinrich et al. [34] | 3.52 | 1.13 |
Maheswaran et al. [35] | 2.0 | 1.28 |
Beelen et al. [36] | 11.31 | 1.03 |
Gehring et al. [37] | 6.22 | 1.08 |
Filleul et al. [38] | 3.44 | 1.14 |
Sum of weights | 39.54 | |
RR weighted | 1.068983 |
Marche (Traffic) | Liguria (Traffic) | Senato (Traffic) | Zavattari (Traffic) | Verziere (Traffic) | Pascal (Background) | Abbiategrasso (Background) | Parco Lambro (Suburban Background) | |
---|---|---|---|---|---|---|---|---|
Measured (M) | 64.4 | 55.9 | 54.1 | 50.5 | 48.1 | 44.5 | 35.0 | 35.1 |
Computed (C) | 66.4 | 68.4 | 66.8 | 74.2 | 66.4 | 55.2 | 54.4 | 63.0 |
C/M | 1.03 | 1.22 | 1.24 | 1.47 | 1.38 | 1.24 | 1.55 | 1.79 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crosignani, P.; Nanni, A.; Pepe, N.; Pozzi, C.; Silibello, C.; Poggio, A.; Conte, M. The Effect of Non-Compliance of Diesel Vehicle Emissions with Euro Limits on Mortality in the City of Milan. Atmosphere 2021, 12, 342. https://doi.org/10.3390/atmos12030342
Crosignani P, Nanni A, Pepe N, Pozzi C, Silibello C, Poggio A, Conte M. The Effect of Non-Compliance of Diesel Vehicle Emissions with Euro Limits on Mortality in the City of Milan. Atmosphere. 2021; 12(3):342. https://doi.org/10.3390/atmos12030342
Chicago/Turabian StyleCrosignani, Paolo, Alessandro Nanni, Nicola Pepe, Cristina Pozzi, Camillo Silibello, Andrea Poggio, and Marianna Conte. 2021. "The Effect of Non-Compliance of Diesel Vehicle Emissions with Euro Limits on Mortality in the City of Milan" Atmosphere 12, no. 3: 342. https://doi.org/10.3390/atmos12030342
APA StyleCrosignani, P., Nanni, A., Pepe, N., Pozzi, C., Silibello, C., Poggio, A., & Conte, M. (2021). The Effect of Non-Compliance of Diesel Vehicle Emissions with Euro Limits on Mortality in the City of Milan. Atmosphere, 12(3), 342. https://doi.org/10.3390/atmos12030342