A Synoptic Scale Perspective on Greenland Ice Core δ18O Variability and Related Teleconnection Patterns
Abstract
:1. Introduction
2. Data and Methods
3. Results
3.1. Sensitivity of Ice Core δ18O to Extreme Water Vapor Transport
3.2. Relationship to Rossby Wave Breaking
3.3. Teleconnections with Sea Surface Temperature Anomalies
3.4. Teleconnections with Extreme Low Temperatures
3.5. Ice Core δ18O Variability during the Last Millennia
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vinther, B.M.; Jones, P.D.; Briffa, K.R.; Clausen, H.B.; Andersen, K.K.; Dahl-Jensen, D.; Johnsen, S.J. Climatic signals in multiple highly resolved stable isotope records from Greenland. Q. Sci. Rev. 2010, 29, 522–538. [Google Scholar] [CrossRef]
- Rimbu, N.; Lohmann, G.; Werner, M.; Ionita, M. Links between central Greenland stable isotopes, blocking and extreme climate variability over Europe at decadal to multidecadal time scales. Clim. Dyn. 2017, 49, 649–663. [Google Scholar] [CrossRef] [Green Version]
- Rimbu, N.; Lohmann, G. Decadal Variability in a Central Greenland High-Resolution Deuterium Isotope Record and Its Relationship to the Frequency of Daily Atmospheric Circulation Patterns from the North Atlantic Region. J. Clim. 2010, 23, 4608–4618. [Google Scholar] [CrossRef] [Green Version]
- Ortega, P.; Swingedouw, D.; Masson-Delmotte, M.; Risi, C.; Vinther, B.; Yiou, P.; Vautard, R.; Yoshimura, K. Characterizing atmospheric circulation signals in Greenland ice cores: Insights from a weather regime approach. Clim. Dyn. 2014, 43, 2585–2605. [Google Scholar] [CrossRef]
- Liu, C.; Barnes, E.A. Extreme moisture transport into the Arctic linked to Rossby wave breaking. J. Geophys. Res. Atmos. 2015, 120, 3774–3788. [Google Scholar] [CrossRef]
- Neff, W.; Compo, G.P.; Ralph, F.M.; Shupe, M.D. Continental heat anomalies and the extreme melting of the Greenland ice surface in 2012 and 1889. J. Geophys. Res. Atmos. 2014, 119, 6520–6536. [Google Scholar] [CrossRef]
- Newman, M.G.; Kiladis, N.; Weickmann, K.M.; Ralph, F.M.; Sardeshmukh, P.D. Relative contributions of synoptic and low-frequency eddies to time-mean atmospheric moisture transport, including the role of atmospheric rivers. J. Clim. 2012, 25, 7341–7361. [Google Scholar] [CrossRef]
- Woods, C.; Caballero, R.; Svensson, G. Large-scale circulation associated with moisture intrusions into the Arctic during winter. Geophys. Res. Lett. 2013, 40, 4717–4721. [Google Scholar] [CrossRef]
- Pelly, J.; Hoskins, B. A new perspective on blocking. J. Atmos. Sci. 2003, 60, 743–755. [Google Scholar] [CrossRef]
- Messori, G.; Davini, P.; Alvarez-Castro, M.C.; Pausata, F.S.R.; Yiou, P.; Caballero, R. On the low-frequency variability of wintertime Euro-Atlantic planetary wave-breaking. Clim. Dyn. 2019, 52, 2431–2450. [Google Scholar] [CrossRef] [Green Version]
- Davini, P.; Cagnazzo, C.; Gualdi, S.; Navarra, A. Bidimensional diagnostics, variability, and trends of Northern Hemisphere blocking. J. Clim. 2012, 25, 6496–6509. [Google Scholar] [CrossRef]
- Vinther, B.M.; Jones, P.D.; Briffa, K.R.; Clausen, H.B.; Dahl-Jensen, D.; Johnsen, S. DYE-3, GRIP, Crete winter season δ18O average. PANGAEA 2010. [Google Scholar] [CrossRef]
- Compo, G.P.; Whitaker, J.S.; Sardesmukh, P.D.; Matsui, N.; Allan, R.J.; Yin, X.; Gleason, B.E.; Vose, R.-S.; Rutledge, G.; Bassemoulin, P.; et al. The Twentieth Century Reanalysis Project. Q. J. R. Meteorol. Soc. 2011, 137, 1–28. [Google Scholar] [CrossRef]
- Scherrer, S.C.; Croci-Maspoli, M.; Schwierz, C.; Appenzeller, C. Two-dimensional indices of atmospheric blocking and their statistical relationship with winter climate patterns in the EuroAtlantic region. Int. J. Climatol. 2006, 26, 233–249. [Google Scholar] [CrossRef]
- Hirahara, S.; Ishii, M.; Fukuda, Y. Centennial-scale sea surface temperature analysis and its uncertainty. J. Clim. 2014, 27, 57–75. [Google Scholar] [CrossRef]
- Dunn, R.J.H.; Alexander, L.; Donat, M.; Zhang, X.; Bador, M.; Herold, N.; Lippmann, T.; Allan, R.J.; Aguilar, E.; Aziz, A.; et al. Development of an Updated Global Land In Situ-Based Data Set of Temperature and Precipitation Extremes: HadEX3. J. Geophy. Res. Atm. 2020, 125, e2019JD032263. [Google Scholar] [CrossRef]
- Von Storch, H.; Zwiers, F. Statistical Analysis in Climate Research; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar] [CrossRef] [Green Version]
- R Core Team R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2014; Available online: http://www.R-project.org/ (accessed on 10 October 2020).
- Zhang, X.; Alexander, L.; Hegerl, G.C.; Jones, P.; Klein Tank, A.; Peterson, T.C.; Trewin, B.; Zwiers, F.W. Indices for monitoring changes in extremes based on daily temperature and precipitation data. WCG 2011, 2, 851–870. [Google Scholar] [CrossRef]
- Greatchbach, R.J.; Gollan, G.; Jung, T.; Kunz, T. Tropical origin of the severe European winter of 1962/63. Q. J. R. Meteorol. Soc. 2015, 141, 153–165. [Google Scholar] [CrossRef]
- Rimbu, N.; Lohmann, G. Winter and summer blocking variability in the North Atlantic region. Evidence from long-term observational and proxy data from southwestern Greenland. Clim. Past 2011, 7, 543–555. [Google Scholar] [CrossRef] [Green Version]
- Davini, P.; von Hardenberg, J.; Corti, S. Tropical origin for the impacts of the Atlantic Multidecadal variability on the Euro-Atlantic climate. Environ. Res. Lett. 2015, 10. [Google Scholar] [CrossRef]
- Rimbu, N.; Lohmann, G.; Ionita, M. Interannual to multidecadal Euro-Atlantic blocking variability during winter and its relationship with extreme low temperatures in Europe. J. Geopys. Res. Atmos. 2014, 119, 13621–13636. [Google Scholar] [CrossRef] [Green Version]
- Masson-Delmotte, V.; Steen-Larsen, H.C.; Ortega, P.; Swingedouw, D.; Popp, T.; Vinther, B.M.; Oerter, H.; Sveinbjornsdottir, A.E.; Gudlaugsdottir, H.; Box, J.E.; et al. Recent changes in northwest Greenland climate documented by NEEM shallow ice core data and simulations, and implications for past temperature reconstructions. Cryosphere 2015, 9, 1481–1504. [Google Scholar] [CrossRef] [Green Version]
- Nicolle, M.; Massei, N.; Colin, C.; de Vernal, A.; Colin, C.; Divine, D.; Werner, J.P.; Hormes, A.; Korhola, A.; Linderholm, H.W. Climate variability in the subarctic area for the last 2 millennia. Clim. Past 2018, 14, 101–116. [Google Scholar] [CrossRef] [Green Version]
- PAGES 2K Consortium. A global multiproxy database for temperature reconstructions of the Common Era. Sci. Data 2017, 4. [Google Scholar] [CrossRef]
- Peings, Y.; Magnusdottir, G. Forcing of the wintertime atmospheric circulation by the multidecadal fluctuations of the North Atlantic ocean. Environ. Res. Lett. 2014, 9, 034018. [Google Scholar] [CrossRef]
- Sutton, R.T.; Hodson, D.L. Climate response to basin-scale warming and cooling of the North Atlantic Ocean. J. Clim. 2007, 20, 891–907. [Google Scholar] [CrossRef]
- Gill, A. Some simple solutions for heat-induced tropical circulation. Q. J. R. Meteorol. Soc. 1980, 106, 447–462. [Google Scholar] [CrossRef]
- Barett, S.B.; Henderson, G.R.; McDonell, E.; Henry, M.; Mote, T. Extreme Greenland blocking and high latitude moisture transport. Atmos. Sci. Lett. 2020, e1002. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rimbu, N.; Ionita, M.; Lohmann, G. A Synoptic Scale Perspective on Greenland Ice Core δ18O Variability and Related Teleconnection Patterns. Atmosphere 2021, 12, 294. https://doi.org/10.3390/atmos12030294
Rimbu N, Ionita M, Lohmann G. A Synoptic Scale Perspective on Greenland Ice Core δ18O Variability and Related Teleconnection Patterns. Atmosphere. 2021; 12(3):294. https://doi.org/10.3390/atmos12030294
Chicago/Turabian StyleRimbu, Norel, Monica Ionita, and Gerrit Lohmann. 2021. "A Synoptic Scale Perspective on Greenland Ice Core δ18O Variability and Related Teleconnection Patterns" Atmosphere 12, no. 3: 294. https://doi.org/10.3390/atmos12030294
APA StyleRimbu, N., Ionita, M., & Lohmann, G. (2021). A Synoptic Scale Perspective on Greenland Ice Core δ18O Variability and Related Teleconnection Patterns. Atmosphere, 12(3), 294. https://doi.org/10.3390/atmos12030294