The Role of the Atmospheric Aerosol in Weather Forecasts for the Iberian Peninsula: Investigating the Direct Effects Using the WRF-Chem Model
Abstract
:1. Introduction
2. Model Configurations and Input Data
- -
- Topography, soil properties and albedo were interpolated for the simulation grids from USGS (United States Geological Survey) data at 2 arc-min resolution.
- -
- A very high-resolution Land Cover (LC) database combining the 2012 Corine Land Cover classification with an existing LC map for Portugal was reclassified and employed within the WRF Preprocessing System (WPS) according to the new 33-classes USGS nomenclature following the [42] suggestions.
- -
- Emission data from anthropogenic and natural sources. Anthropogenic emissions from the EMEP (European Monitoring and Evaluation Programme) database with a 0.1° × 0.1° horizontal resolution for the year 2015 were used. This annual emission inventory is available to each GNFR (Gridding Nomenclature for Reporting) source category considering distinct effective emission heights per GNFR sector code. The spatial allocation of emissions for the simulation domains was based on the land cover and assigning greater weight to urban areas, also vertical distribution and user-defined time profiles (monthly, weekly and daily) by activity sector and air pollutant were applied, and the speciation and aggregation of emissions into WRF-Chem species was accomplished using the emissions interface built by [43]. Biogenic, sea-salt and dust emissions were calculated online, using WRF-Chem-coupled specific modules and pre-processing tools that create initialization fields. For computing biogenic emissions, the MEGAN module (The Model of Gases and Aerosols from Nature—version 2.04) was initialized with monthly leaf area index data, fraction by plant functional type and emission factors prepared from the bio_emiss utility [44]. Sea-salt and dust emissions calculation depends on the weather conditions (horizontal wind speed and air temperature). In case of dust emissions, additional parameters, such as land use characteristics, surface roughness and soil’s texture and moisture, are also considered.
- -
- Initial and boundary conditions for the meteorological and chemical fields. Regarding the meteorology, ERA-Interim’s global reanalysis data (0.5° × 0.5° horizontal resolution) at 6 h intervals were provided by the ECMWF (European Centre for Medium-Range Weather Forecasts). The use of reanalysis instead of prognostic data is justified by the more correct model performance associated to the meteorological outputs. Regarding the time-variant chemical boundary conditions, they were extracted from the MOZART-4/GEOS-5 (The global Model for Ozone and Related Chemical Tracers) and updated every 6 h with 1.9° × 2.5° horizontal resolution and 56 vertical levels using the WRF-Chem pre-processing tool mozbc [44]. For initializing the chemistry, chemical fields at the end of each simulation period (24-h forecasting cycles) are used as initial fields for the next simulation period.
3. Statistical Methods
4. Direct and Semi-Direct Aerosol Effects on Meteorology
5. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baklanov, A.; Schlünzen, K.; Suppan, P.; Baldasano, J.; Brunner, D.; Aksoyoglu, S.; Carmichael, G.; Douros, J.; Flemming, J.; Forkel, R.; et al. Online coupled regional meteorology chemistry models in Europe: Current status and prospects. Atmos. Chem. Phys. 2014, 14, 317–398. [Google Scholar] [CrossRef] [Green Version]
- Grell, G.; Baklanov, A. Integrated modeling for forecasting weather and air quality: A call for fully coupled approaches. Atmos. Environ. 2011, 45, 6845–6851. [Google Scholar] [CrossRef]
- Inness, P.; Dorling, S. Operational Weather Forecasting; John Wiley & Sons, Ltd.: Chichester, UK, 2012; ISBN 9781118447659. [Google Scholar]
- Wang, J.; Allen, D.J.; Pickering, K.E.; Li, Z.; He, H. Impact of aerosol direct effect on East Asian air quality during the EAST-AIRE campaign. J. Geophys. Res. Atmos. 2016, 121, 6534–6554. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Kusaka, H.; Bornstein, R.; Ching, J.; Grimmond, C.S.B.; Grossman-Clarke, S.; Loridan, T.; Manning, K.W.; Martilli, A.; Miao, S.; et al. The integrated WRF/urban modelling system: Development, evaluation, and applications to urban environmental problems. Int. J. Climatol. 2011, 31, 273–288. [Google Scholar] [CrossRef]
- Werner, M.; Kryza, M.; Skjøth, C.A.; Wałaszek, K.; Dore, A.J.; Ojrzyńska, H.; Kapłon, J. Aerosol-Radiation Feedback and PM10 Air Concentrations Over Poland. Pure Appl. Geophys. 2017, 174, 551–568. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y. Online-coupled meteorology and chemistry models: History, current status, and outlook. Atmos. Chem. Phys. 2008, 8, 2895–2932. [Google Scholar] [CrossRef] [Green Version]
- Vautard, R.; Moran, M.D.; Solazzo, E.; Gilliam, R.C.; Matthias, V.; Bianconi, R.; Chemel, C.; Ferreira, J.; Geyer, B.; Hansen, A.B.; et al. Evaluation of the meteorological forcing used for the Air Quality Model Evaluation International Initiative (AQMEII) air quality simulations. Atmos. Environ. 2012, 53, 15–37. [Google Scholar] [CrossRef] [Green Version]
- Korsholm, U.S.; Baklanov, A.; Gross, A.; Sørensen, J.H. On the importance of the meteorological coupling interval in dispersion modeling during ETEX-1. Atmos. Environ. 2009, 43, 4805–4810. [Google Scholar] [CrossRef]
- Grell, G.A. Online versus offline air quality modeling on cloud-resolving scales. Geophys. Res. Lett. 2004, 31, L16117. [Google Scholar] [CrossRef]
- Thomas, M.A.; Kahnert, M.; Andersson, C.; Kokkola, H.; Hansson, U.; Jones, C.; Langner, J.; Devasthale, A. Integration of prognostic aerosol–cloud interactions in a chemistry transport model coupled offline to a regional climate model. Geosci. Model Dev. 2015, 8, 1885–1898. [Google Scholar] [CrossRef] [Green Version]
- Forkel, R.; Balzarini, A.; Baró, R.; Bianconi, R.; Curci, G.; Jiménez-Guerrero, P.; Hirtl, M.; Honzak, L.; Lorenz, C.; Im, U.; et al. Analysis of the WRF-Chem contributions to AQMEII phase2 with respect to aerosol radiative feedbacks on meteorology and pollutant distributions. Atmos. Environ. 2015, 115, 630–645. [Google Scholar] [CrossRef]
- Archer-Nicholls, S.; Lowe, D.; Schultz, D.M.; McFiggans, G. Aerosol–radiation–cloud interactions in a regional coupled model: The effects of convective parameterisation and resolution. Atmos. Chem. Phys. 2016, 16, 5573–5594. [Google Scholar] [CrossRef] [Green Version]
- Fast, J.D.; Gustafson, W.I.; Easter, R.C.; Zaveri, R.A.; Barnard, J.C.; Chapman, E.G.; Grell, G.A.; Peckham, S.E. Evolution of ozone, particulates, and aerosol direct radiative forcing in the vicinity of Houston using a fully coupled meteorology-chemistry-aerosol model. J. Geophys. Res. 2006, 111, D21305. [Google Scholar] [CrossRef]
- Palacios-Peña, L.; Baró, R.; Guerrero-Rascado, J.L.; Alados-Arboledas, L.; Brunner, D.; Jiménez-Guerrero, P. Evaluating the representation of aerosol optical properties using an online coupled model over the Iberian Peninsula. Atmos. Chem. Phys. 2017, 17, 277–296. [Google Scholar] [CrossRef] [Green Version]
- Chapman, E.G.; Gustafson, W.I.; Easter, R.C.; Barnard, J.C.; Ghan, S.J.; Pekour, M.S.; Fast, J.D. Coupling aerosol-cloud-radiative processes in the WRF-Chem model: Investigating the radiative impact of elevated point sources. Atmos. Chem. Phys. 2009, 9, 945–964. [Google Scholar] [CrossRef] [Green Version]
- Forkel, R.; Werhahn, J.; Hansen, A.B.; McKeen, S.; Peckham, S.; Grell, G.; Suppan, P. Effect of aerosol-radiation feedback on regional air quality—A case study with WRF/Chem. Atmos. Environ. 2012, 53, 202–211. [Google Scholar] [CrossRef]
- Liu, X.-Y.; Zhang, Y.; Zhang, Q.; He, K.-B. Application of online-coupled WRF/Chem-MADRID in East Asia: Model evaluation and climatic effects of anthropogenic aerosols. Atmos. Environ. 2016, 124, 321–336. [Google Scholar] [CrossRef] [Green Version]
- San José, R.; Pérez, J.L.; Balzarini, A.; Baró, R.; Curci, G.; Forkel, R.; Galmarini, S.; Grell, G.; Hirtl, M.; Honzak, L.; et al. Sensitivity of feedback effects in CBMZ/MOSAIC chemical mechanism. Atmos. Environ. 2015, 115, 646–656. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Xue, H.; Yang, F. A modeling study of ice formation affected by aerosols. J. Geophys. Res. Atmos. 2013, 118, 11213–11227. [Google Scholar] [CrossRef]
- Fan, J.; Wang, Y.; Rosenfeld, D.; Liu, X. Review of aerosol-cloud interactions: Mechanisms, significance, and challenges. J. Atmos. Sci. 2016, 73, 4221–4252. [Google Scholar] [CrossRef]
- Glotfelty, T.; Zhang, Y.; Karamchandani, P.; Streets, D.G. Changes in future air quality, deposition, and aerosol-cloud interactions under future climate and emission scenarios. Atmos. Environ. 2016, 139, 176–191. [Google Scholar] [CrossRef] [Green Version]
- Brunner, D.; Savage, N.; Jorba, O.; Eder, B.; Giordano, L.; Badia, A.; Balzarini, A.; Baró, R.; Bianconi, R.; Chemel, C.; et al. Comparative analysis of meteorological performance of coupled chemistry-meteorology models in the context of AQMEII phase 2. Atmos. Environ. 2015, 115, 470–498. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, Y.; Hao, J. Simulating aerosol–radiation–cloud feedbacks on meteorology and air quality over eastern China under severe haze conditions in winter. Atmos. Chem. Phys. 2015, 15, 2387–2404. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Karamchandani, P.; Glotfelty, T.; Streets, D.G.; Grell, G.; Nenes, A.; Yu, F.; Bennartz, R. Development and initial application of the global-through-urban weather research and forecasting model with chemistry (GU-WRF/Chem). J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Cai, C.; Zhang, X.; Wang, K.; Zhang, Y.; Wang, L.; Zhang, Q.; Duan, F.; He, K.; Yu, S.-C. Incorporation of new particle formation and early growth treatments into WRF/Chem: Model improvement, evaluation, and impacts of anthropogenic aerosols over East Asia. Atmos. Environ. 2016, 124, 262–284. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhang, X.; Wang, K.; Zhang, Q.; Duan, F.; He, K. Application of WRF/Chem over East Asia: Part II. Model improvement and sensitivity simulations. Atmos. Environ. 2016, 124, 301–320. [Google Scholar] [CrossRef] [Green Version]
- Kong, X.; Forkel, R.; Sokhi, R.S.; Suppan, P.; Baklanov, A.; Gauss, M.; Brunner, D.; Barò, R.; Balzarini, A.; Chemel, C.; et al. Analysis of meteorology–chemistry interactions during air pollution episodes using online coupled models within AQMEII phase-2. Atmos. Environ. 2015, 115, 527–540. [Google Scholar] [CrossRef]
- Zhang, Y.; Sartelet, K.; Zhu, S.; Wang, W.; Wu, S.-Y.; Zhang, X.; Wang, K.; Tran, P.; Seigneur, C.; Wang, Z.-F. Application of WRF/Chem-MADRID and WRF/Polyphemus in Europe—Part 2: Evaluation of chemical concentrations and sensitivity simulations. Atmos. Chem. Phys. 2013, 13, 6845–6875. [Google Scholar] [CrossRef] [Green Version]
- Park, S.-Y.; Lee, H.-J.; Kang, J.-E.; Lee, T.; Kim, C.-H. Aerosol radiative effects on mesoscale cloud–precipitation variables over Northeast Asia during the MAPS-Seoul 2015 campaign. Atmos. Environ. 2018, 172, 109–123. [Google Scholar] [CrossRef]
- Saide, P.E.; Spak, S.N.; Carmichael, G.R.; Mena-Carrasco, M.A.; Yang, Q.; Howell, S.; Leon, D.C.; Snider, J.R.; Bandy, A.R.; Collett, J.L.; et al. Evaluating WRF-Chem aerosol indirect effects in Southeast Pacific marine stratocumulus during VOCALS-REx. Atmos. Chem. Phys. 2012, 12, 3045–3064. [Google Scholar] [CrossRef] [Green Version]
- Tuccella, P.; Curci, G.; Crumeyrolle, S.; Visconti, G. Modeling of Aerosol Indirect Effects with WRF/Chem over Europe. In Air Pollution Modeling and Its Application XXIII; Springer: Cham, Switzerland, 2014; pp. 91–95. [Google Scholar]
- Yang, Q.; Gustafson, W.I.; Fast, J.D.; Wang, H.; Easter, R.C.; Wang, M.; Ghan, S.J.; Berg, L.K.; Leung, L.R.; Morrison, H. Impact of natural and anthropogenic aerosols on stratocumulus and precipitation in the Southeast Pacific: A regional modelling study using WRF-Chem. Atmos. Chem. Phys. 2012, 12, 8777–8796. [Google Scholar] [CrossRef] [Green Version]
- Soupiona, O.; Papayannis, A.; Kokkalis, P.; Foskinis, R.; Sánchez Hernández, G.; Ortiz-Amezcua, P.; Mylonaki, M.; Papanikolaou, C.-A.; Papagiannopoulos, N.; Samaras, S.; et al. EARLINET observations of Saharan dust intrusions over the northern Mediterranean region (2014–2017): Properties and impact on radiative forcing. Atmos. Chem. Phys. 2020, 20, 15147–15166. [Google Scholar] [CrossRef]
- Salvador, P.; Barreiro, M.; Gómez-Moreno, F.J.; Alonso-Blanco, E.; Artíñano, B. Synoptic classification of meteorological patterns and their impact on air pollution episodes and new particle formation processes in a south European air basin. Atmos. Environ. 2021, 245, 118016. [Google Scholar] [CrossRef]
- Grell, G.A.; Peckham, S.E.; Schmitz, R.; McKeen, S.A.; Frost, G.; Skamarock, W.C.; Eder, B. Fully coupled “online” chemistry within the WRF model. Atmos. Environ. 2005, 39, 6957–6975. [Google Scholar] [CrossRef]
- WMO. WMO Statement on the Status of the Global Climate in 2015; WMO-No. 11; World Meteorological Organization: Geneva, Switzerland, 2016; ISBN 978-92-63-11167-8. [Google Scholar]
- EEA. Air Quality in Europe—2019 Report; EEA: Copenhagen, Denmark, 2019; ISBN 978-92-9480-088-6. [Google Scholar]
- Kuik, F.; Lauer, A.; Churkina, G.; Denier van der Gon, H.A.C.; Fenner, D.; Mar, K.A.; Butler, T.M. Air quality modelling in the Berlin–Brandenburg region using WRF-Chem v3.7.1: Sensitivity to resolution of model grid and input data. Geosci. Model Dev. 2016, 9, 4339–4363. [Google Scholar] [CrossRef] [Green Version]
- National Center for Atmospheric Research (NCAR) WRF Model Users’ Page. Available online: https://www2.mmm.ucar.edu/wrf/users/ (accessed on 2 February 2021).
- National Oceanic and Atmospheric Administration (NOAA) Weather Research and Forecasting Model Coupled to Chemistry (WRF-Chem)—User Support. Available online: https://ruc.noaa.gov/wrf/wrf-chem/user-support.htm (accessed on 2 February 2021).
- Pineda, N.; Jorba, O.; Jorge, J.; Baldasano, J.M. Using NOAA AVHRR and SPOT VGT data to estimate surface parameters: Application to a mesoscale meteorological model. Int. J. Remote Sens. 2004, 25, 129–143. [Google Scholar] [CrossRef]
- Tuccella, P.; Curci, G.; Visconti, G.; Bessagnet, B.; Menut, L.; Park, R.J. Modeling of gas and aerosol with WRF/Chem over Europe: Evaluation and sensitivity study. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- NCAR WRF-Chem Tools for the Community. Available online: https://www2.acom.ucar.edu/wrf-chem/wrf-chem-tools-community (accessed on 26 April 2019).
- Cardoso, R.M.; Soares, P.M.M.; Miranda, P.M.A.; Belo-Pereira, M. WRF high resolution simulation of Iberian mean and extreme precipitation climate. Int. J. Climatol. 2013, 33, 2591–2608. [Google Scholar] [CrossRef]
- Marta-Almeida, M.; Teixeira, J.C.; Carvalho, M.J.; Melo-Gonçalves, P.; Rocha, A.M. High resolution WRF climatic simulations for the Iberian Peninsula: Model validation. Phys. Chem. Earth Parts A/B/C 2016, 94, 94–105. [Google Scholar] [CrossRef]
- Baró, R.; Palacios-Peña, L.; Baklanov, A.; Balzarini, A.; Brunner, D.; Forkel, R.; Hirtl, M.; Honzak, L.; Pérez, J.L.; Pirovano, G.; et al. Regional effects of atmospheric aerosols on temperature: An evaluation of an ensemble of online coupled models. Atmos. Chem. Phys. 2017, 17, 9677–9696. [Google Scholar] [CrossRef] [Green Version]
- Kay, S.M. Modern Spectral Estimation: Theory and Application; Prentice Hall: Englewood Cliffs, NJ, USA, 1988; ISBN 013598582X. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Available online: http://www.r-project.org (accessed on 2 February 2021).
- Pierce, D. ncdf4: Interface to Unidata netCDF (Version 4 or Earlier) Format Data Files. Available online: https://cran.r-project.org/web/packages/ncdf4/ (accessed on 2 February 2021).
- Bronaugh, D. ncdf4.helpers: Helper Functions for Use with the “ncdf4” Package. Available online: CRAN.R-project.org/package=ncdf4.helpers (accessed on 2 February 2021).
- Sueur, J.; Aubin, T.; Simonis, C. Seewave, a free modular tool for sound analysis and synthesis. Bioacoustics 2008, 18, 213–226. [Google Scholar] [CrossRef]
- Borchers, H.W. pracma: Practical Numerical Math Functions. Available online: https://cran.r-project.org/package=pracma (accessed on 2 February 2021).
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Deckmyn, A. maps: Draw Geographical Maps. Available online: https://cran.r-project.org/package=maps (accessed on 2 February 2021).
- Bivand, R.; Lewin-Koh, N.; Pebesma, E.; Archer, E. Maptools: Tools for Handling Spatial Objects. Available online: https://cran.r-project.org/package=maptools (accessed on 2 February 2021).
- Pebesma, E.; Bivand, R.S. Classes and Methods for Spatial Data: The sp Package. R News 2005, 5, 9–13. Available online: https://CRAN.R-project.org/doc/Rnews/ (accessed on 2 February 2021).
- Baquero, O.S. ggsn: North Symbols and Scale Bars for Maps Created with “ggplot2” or “ggmap”. Available online: https://cran.r-project.org/web/packages/ggsn/ (accessed on 2 February 2021).
- Garnier, S.; Ross, N.; Rudis, B.; Sciaini, M.; Scherer, C. viridis: Default Color Maps from “matplotlib”. Available online: https://cran.r-project.org/package=viridis (accessed on 2 February 2021).
- Briant, R.; Tuccella, P.; Deroubaix, A.; Khvorostyanov, D.; Menut, L.; Mailler, S.; Turquety, S. Aerosol–radiation interaction modelling using online coupling between the WRF 3.7.1 meteorological model and the CHIMERE 2016 chemistry-transport model, through the OASIS3-MCT coupler. Geosci. Model Dev. 2017, 10, 927–944. [Google Scholar] [CrossRef] [Green Version]
- Sporre, M.K.; Blichner, S.M.; Karset, I.H.H.; Makkonen, R.; Berntsen, T.K. BVOC–aerosol–climate feedbacks investigated using NorESM. Atmos. Chem. Phys. 2019, 19, 4763–4782. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Liu, Z.; Davis, C.; Gu, Y. Dust radiative effects on atmospheric thermodynamics and tropical cyclogenesis over the Atlantic Ocean using WRF-Chem coupled with an AOD data assimilation system. Atmos. Chem. Phys. 2017, 17, 7917–7939. [Google Scholar] [CrossRef] [Green Version]
Processes | Option 1 | Remarks |
---|---|---|
Microphysics | Morrison double-moment | |
Short-wave radiation | RRTMG | Called every 25 min |
Long-wave radiation | RRTMG | Called every 25 min |
Surface layer | Monin–Obukhov Similarity | |
Land-surface model | NCEP Noah LSM | 33-classes land cover |
Boundary-layer scheme | MYNN 2.5 level TKE | |
Cumulus | Grell 3D | |
Photolysis | Fast-J | |
Gas-phase mechanism | RADM2 | Fixed version (chem_opt = 2) |
Aerosol module | MADE/SORGAM | |
Aerosol-radiation feedback | turned on or off | Direct and semi-direct effects |
Aerosol optical properties | Volume approximation |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silveira, C.; Martins, A.; Gouveia, S.; Scotto, M.; Miranda, A.I.; Monteiro, A. The Role of the Atmospheric Aerosol in Weather Forecasts for the Iberian Peninsula: Investigating the Direct Effects Using the WRF-Chem Model. Atmosphere 2021, 12, 288. https://doi.org/10.3390/atmos12020288
Silveira C, Martins A, Gouveia S, Scotto M, Miranda AI, Monteiro A. The Role of the Atmospheric Aerosol in Weather Forecasts for the Iberian Peninsula: Investigating the Direct Effects Using the WRF-Chem Model. Atmosphere. 2021; 12(2):288. https://doi.org/10.3390/atmos12020288
Chicago/Turabian StyleSilveira, Carlos, Ana Martins, Sónia Gouveia, Manuel Scotto, Ana I. Miranda, and Alexandra Monteiro. 2021. "The Role of the Atmospheric Aerosol in Weather Forecasts for the Iberian Peninsula: Investigating the Direct Effects Using the WRF-Chem Model" Atmosphere 12, no. 2: 288. https://doi.org/10.3390/atmos12020288
APA StyleSilveira, C., Martins, A., Gouveia, S., Scotto, M., Miranda, A. I., & Monteiro, A. (2021). The Role of the Atmospheric Aerosol in Weather Forecasts for the Iberian Peninsula: Investigating the Direct Effects Using the WRF-Chem Model. Atmosphere, 12(2), 288. https://doi.org/10.3390/atmos12020288